Targeting the Parallella

<u>Spiros N. Agathos</u> Alexandros Papadogiannakis Vassilios V. Dimakopoulos

Department of Computer Science & Engineering UNIVERSITY OF IOANNINA Ioannina, Greece

- Area of Interest
 - OpenMP Device Model
 - Parallella Board/Epiphany

Implementing OpenMP 4.0 on the Parallella

- Compiler Transformations
- Runtime Architecture
- OpenMP Within the Epiphany
- Experimental Results

Area of Interest

Tianhe-2 (China)

16,000 nodes X {2 Intel Xeon + 3 Xeon Phi} RANK 1st (June 2015)

- Market trends (CPU + coprocessor):
 - Home appliances now include embedded systems
 - \blacktriangleright Personal workstations \rightarrow Multiple compute cores in a socket
 - ➢ HPC supercomputers → Multicore CPUs / GPGPUs / DSPs / FPGAs
- The building blocks of heterogeneous computing nodes are designed for different workload scenarios
 - Multicore CPUs perform best in coarse grained tasks
 - Accelerators are designed for large scale data and fine grained vector processing

Area of Interest

Market *

> Hor

> Pers

> HPC

The buil differen

> Mult

> Acce proc

Parallel Processing Group UNIVERSITY OF IOANNINA

2 (China)

3 Xeon Phi}

Code Portability?

gned for

Efficient Programming?

tor

4/22

OpenMP

- Directive-based model for parallel programming
- Base language (C/C++/Fortran)
- > Incremental parallelization
- Highly successful, widely used, supported by many compilers
- Device Support
 - First included in the latest specification (v4.0)
 - Create data environment in the device
 - Instruct device to execute code regions (kernel)

Parallel Processing Group					
• • • • • • • • • • • • •	•••	• • • • • • • • • • • • • • • •			
UNIVERSITY	OF	IOANNINA			

OpenMP Device Model (2/2)

OpenMP Device Model (2/2)

#pragma omp declare target a int a; #pragma omp end declare target #pragma omp target data map(b) { #pragma omp target map(c, d) { ab d = a + b + c;} b += d; c d #pragma omp target update to(b) #pragma omp target {...} Host memory }

7/22

Parallel Processing Group UNIVERSITY OF IOANNINA

Europar 2015

Device Memory

Parallella Board

UNIVERSITY OF IOANNINA

Parallella Board

UNIVERSITY OF IOANNINA

Parallella Board

Epiphany Coprocessor (1/2)

✤ 64x64 mesh => 4096 eCores maximum

11/22

Epiphany Coprocessor (1/2)

✤ 64x64 mesh => 4096 eCores maximum

- 32-bit superscalar RISC
- Single-precision floating point operations
- Global address space (addressable by all eCores)
- Each core owns 1MiB slice (current version provides 32 KiB of physical local scratchpad memory)
- 2 DMA engines, 2 timers

Epiphany Coprocessor (2/2)

Epiphany-16

Parallel Processing Group

UNIVERSITY OF IOANNINA

Implementing OpenMP 4.0 on the Parallella

Parallel Processing Group UNIVERSITY OF IOANNINA 14/22

Implementing OpenMP 4.0 on the Parallella (1/8)

Compiling for the New Device Directives

- The 1st implementation of OpenMP for the Parallella board
- OMPi (<u>http://paragroup.cs.uoi.gr/wpsite/software/ompi</u>):
 - V3.1 OpenMP C infrastructure
 - Source to source compiler + Runtime libraries

Implementing OpenMP 4.0 on the Parallella (2/8)

Compiling for the New Device Directives

- Input grammar modified with the new target-related directives
- ✤ AST augmented with new nodes to represent the new directives
- Each kernel (i.e. target region), is outlined to a separate function
- The code generation phase produces multiple output files, one for each different kernel, plus the host code (host may be called to execute any of them)

16/22

Implementing OpenMP 4.0 on the Parallella (3/8)

Runtime Architecture - What the Host does

- ✤ A full-fledged OpenMP runtime library
 - Supporting execution on the dual-ARM processor \succ
- Additional functionality
 - Required for controlling and accessing the Epiphany device

Implementing OpenMP 4.0 on the Parallella (3/8)

Runtime Architecture - What the Host does

- A full-fledged OpenMP runtime library
 - Supporting execution on the dual-ARM processor
- ✤ Additional functionality
 - Required for controlling and accessing the Epiphany device
- The communication between the Host and the eCores takes place through the shared memory portion of the system RAM
- ✤ Initialization phase
 - Initialize bookkeeping for each Ecore
 - Puts them to the idle state
- For offloading a kernel
 - The first idle eCore is chosen
 - Precompiled object file is loaded to it for immediate execution
 - Ecores inform Host about the completion of a kernel through special flags in shared memory.
 - Multiple host threads can offload multiple independent kernels concurrently onto the Epiphany

Implementing OpenMP 4.0 on the Parallella (4/8)

Runtime Architecture – What the Host does

Implementing OpenMP 4.0 on the Parallella (5/8)

OpenMP Within the Epiphany

Parallel Processing Group
UNIVERSITY OF IOANNINA

20/22

Implementing OpenMP 4.0 on the Parallella (5/8)

OpenMP Within the Epiphany

- Supporting OpenMP within the Epiphany is nontrivial
 - ECores do not execute any OS
 - > No provision for dynamic parallelism
 - > The 32KiB local memory is quite limited:
 - Unable to handle sophisticated OpenMP runtime structures
- The runtime infrastructure originally designed for the Host was trimmed down to a minimum
 - This is linked and offloaded with each kernel
- The corresponding coordination among the participating eCores utilizes the local memory of the team's master eCore
 - This is possible because an ecore can access any address in the Epiphany address space
 - The mesh coordinates of the master core are available to all team eCores through the DCD area in shared memory

Implementing OpenMP 4.0 on the Parallella (6/8)

OpenMP Within the Epiphany

OpenMP device model allows directives within kernel code

- > Dynamic creation of a team of threads within Epiphany is necessary
- eSDK tools:
 - Provide mechanisms to activate and control eCores only from Host side
 - Cannot be directly utilized by an OpenMP implementation
- We designed new Host assisted mechanisms to override these limitations
- Creation of parallel team...

Parallel Processing Group UNIVERSITY OF IOANNINA

Implementing OpenMP 4.0 on the Parallella (7/8)

#parallel inside a kernel

Implementing OpenMP 4.0 on the Parallella (8/8)

OpenMP Within the Epiphany

Locks and barriers

- Basic mechanisms for locks and barriers are provided through the eSDK libraries eCores
- However they are not directly usable by an OpenMP runtime
- We create custom locks and barriers that can support tasking extensions
- Our prototype tasking infrastructure is based on a blocking shared queue stored in the local memory of the master eCore
 - The corresponding task data environments are stored in the shared memory

Experimental Results

25/22

Experimental Results (1/3)

Environment

- Parallella-16 SKUA101020
- Ubuntu 14.04, kernel 3.12.0 armv7l
- gcc and e-gcc v.4.8.2 as back-end for OMPi
- eSDK 5.13.9.10

Experimental Results (2/3)

Modified version of the EPCC benchmarks

- Basic routines are offloaded through target directives
- Measurements from the host side after subtracting any offloading costs

Overhead results of EPCC benchmark

Experimental Results (3/3)

Frames per second for the Mandelbrot deep zoom application (1024x768)

#frames	esdk@Epiphany	OMPi@Epiphany	ompi@Zynq
204	17.854	15.829	4.139
408	15.250	13.630	3.469
612	13.411	12.292	3.015
816	12.528	11.632	2.794
1020	13.330	12.304	2.997
1224	14.486	13.234	3.288

eSDK version: only 8%-13% better

Original code: 301 lines (3 files) OpenMP code: 198 lines (1 file)

Parallel Processing Group

UNIVERSITY OF IOANNINA

28/22

Acknowledgements:

Parallel Processing Group UNIVERSITY OF IOANNINA 29/22