
 1

A Runtime Library for Lightweight Process-Scope Threads

P.E. Hadjidoukas V.V. Dimakopoulos
Parallel Processing Group

Department of Computer Science
University of Ioannina, Ioannina 45110, Greece

{phadjido,dimako}@cs.uoi.gr
http://paragroup.cs.uoi.gr

Technical Report PPG-CS-UOI-280907

Abstract

This work presents an open-source software package that implements a two-level thread model. It
consists of two thread libraries, UthLib and PSthreads. UthLib (Underlying Threads Library) is a very
portable thread package core that provides the primary primitives for managing non-preemptive user-
level threads (creation and context-switch) on UNIX and Windows platforms. The PSthreads (process
scope threads) library takes advantage of UthLib and implements a hybrid thread model. The software
package is freely available from the webpage: http://www.cs.uoi.gr/~ompi. It is distributed under the
terms of the GNU General Public License (GPL) version 2 or later.

1. Introduction
It is common knowledge that the performance of kernel threads, although an order of magnitude better
than that of traditional processes, has been typically an order of magnitude worse than the best-case
performance of user-level threads [2]. In an application that utilizes user threads, the threads of the
application are managed by the application itself. In this way, functionality and scheduling policy can
be chosen according to the application. These user threads are much more efficient than kernel threads
in carrying out operations such as context switching, since no kernel intervention is necessary to
manipulate threads.

This work presents an open-source software package that implements a two-level thread model. It
consists of two thread libraries, UthLib and PSthreads. UthLib is a very portable thread package core
that provides the primary primitives for managing non-preemptive user-level threads (creation and
context-switch) on UNIX and Windows platforms. The purpose of UthLib is to facilitate the
implementation of two-level thread models, where virtual processors are system scope POSIX Threads.
The PSthreads library takes advantage of UthLib and implements a two-level user-level thread model.
PSthreads provide efficient support of nested parallelism to the OMPi OpenMP compiler. The software
package is freely available from the webpage: http://www.cs.uoi.gr/~ompi. It is distributed under the
terms of the GNU General Public License (GPL) version 2 or later.

2. Design
The configuration and installation process of both PSthreads and UthLib is performed with a common
configure script that includes the whole software package. There are configuration options related
either to Uthlib or to PSthreads. Moreover, some configuration options apply to both software libraries
and allow the user to determine the maximum number of virtual processors, the synchronization
mechanism used, the thread recycling approach and the cache line size.

Figure 1 presents the general design of the software package. At the lower level, UthLib implements
the necessary primitives for thread management (creation and context-switch). As we will show, these
primitives may constitute the machine dependent (md) part of the library. They are based on the
management routines of jmpbuf or ucontext_t structures, or exclusively on POSIX threads. UthLib
utilizes a queue-based recycling mechanism for the underlying threads. The necessary routines for
multiprocessor synchronization and queue management are implemented in two separate header files
(locks.h and queues.h). These routines and the exported application programming interface of UthLib
are both utilized by the PSthreads runtime library, which implements the two-level thread model. It
also exports a Pthreads-like application programming interface (API), which can be used by
multithreaded applications. In the case of the OMPi OpenMP C compiler, its OpenMP runtime library
can take advantage of PSthreads, providing thus efficient support of nested parallelism to applications
that have been parallelized according to the OpenMP programming model.

 2

Figure 1. General design

3. UthLib
UthLib (Underlying Threads Library) is a very portable thread package core that provides the primary
primitives (creation and context-switch) for managing portable non-preemptive user-level threads on
UNIX and Windows platforms. UthLib is not a standalone thread package; it does not provide its own
synchronization primitives and requires/assumes the presence of a POSIX Threads library [5]. Its
purpose is to facilitate the implementation of two-level thread libraries, where virtual processors are
system scope POSIX Threads. It also exports a well-defined API that can be easily implemented using
custom (platform specific) thread libraries. UthLib has been partially implemented using a minimal and
modified version of the State Threads Library [7]. Therefore, it is distributed under the terms of the
Mozilla Public License (MPL) version 1.1 or the GNU General Public License (GPL) version 2 or
later.

State Threads is an application library that provides a foundation for writing fast and highly scalable
Internet Applications on UNIX-like platforms. It combines the simplicity of the multithreaded
programming paradigm, in which one thread supports each simultaneous connection, with the
performance and scalability of event-driven state machine architecture. It is a very portable user-level
threads package based on the setjmp-longjmp primitives, but supports a multi-process rather than a
multithreaded environment. It can be combined with traditional threading or multiple process
parallelism to take advantage of multiple processors. It has been derived from the Netscape's Portable
RunTime Library [5], which however supports multithreading.

3.1 Implementation Issues
In this section, we discuss the most important implementation issues of UthLib.

• Self-identification: UthLib targets two-level thread models, where non-preemptive user-level
threads are executed on top of kernel-level threads that act as virtual processors, ranked from 0 to
MAX_VPS-1). For this reason, it maintains per-virtual processor global data. Several operations
require a self-identification method of the current virtual processor. A portable way to perform this
is to use the self-identification mechanism provided by the POSIX Threads API: pthread_self.
When a virtual processor is initialized, it stores its pthread_t identifier into a global array and can
find its rank by locating the position of its identifier in this array.

• Stack size: In the current implementation, all threads have stacks of equal size, set with the uth_init
call. This design decision is not mandatory and has been adopted because it simplifies the
recycling of threads.

• Synchronization: UthLib optionally reuses finished thread descriptors. The recycling can be
performed globally or on a per-processor basis, by utilizing appropriate thread queues.

• Internal data structures: The data structures that describe a user-level thread and its stack (thread
and stack descriptors) are similar with those defined in the State Thread library. However, we have

OpenMP runtime library

OpenMP application

PSthreads library

UthLib library

MD
(jmpbuf,ucontext,Pthreads)

locks.h
queues.h

Multithreaded application

 3

encapsulated the stack descriptor in the thread descriptor and thus a single memory allocation
operation is required for creating a user-level thread and its stack.

• Thread context: The only platform-dependant part of the library resides in the thread context
management (initialization and context-switch). The state information of a user-level thread is
manipulated using an appropriate structure that is stored in its descriptor. We support two methods:

o SJLJ (setjmp/longjmp): According to this method, which is utilized by the State Threads
library, the thread descriptor includes a jmpbuf data structure, defined in the setjmp.h
header file. Two ingredients of the jmpbuf data structure (the program counter and the
stack pointer) have to be manually set in the thread creation routine. The data structure
differs from platform to platform. Usually the program counter is a structure member with
PC in the name and the stack pointer is a structure member with SP in the name. One can
also look in the Netscape's NSPR library source, which already has this code for many
UNIX-like platforms (mozilla/nsprpub/pr/include/md/*.h files). Furthermore, the State
Threads library provides an assembly-based built-in implementation of the setjmp-
longjmp operations on some platforms.

o MCSC (makecontext/swapcontext): Most modern UNIX environments provide one more
option for user-level context-switching between multiple threads of control within a
process: the ucontext data structure defined in ucontext.h and the four functions:
getcontext, setcontext, makecontext and swapcontext. For more information on the usage
of these functions, you can look at [6]. Although the Microsoft C Runtime Library does
not provide these functions, we have implemented the UNIX ucontext operations on
Windows platforms by using the Win32 API GetThreadContext and SetThreadContext
functions [3].

3.2 UthLib Configuration Options
Some configuration options are related to both UthLib and PSthreads libraries. Since we discuss
UthLib first, we report them here:

• Maximum number of virtual processors: This option determines the maximum number of
supported virtual processors (default = 16).

• Default stack size: This option determines the default size of the user-level stacks. As already
mentioned, all user-level threads have stack of equal size (default = 4MB).

• Thread recycling: This option activates a recycling mechanism for the threads. Thread creation
tries to reuse a finished thread that has been recycled before. The use can specify whether the
recycling mechanism will be performed on a per-virtual processor or global basis.

The following configuration options are exclusively related to UthLib:

• Context switch method: This option determines the most platform-dependant part of the runtime
library, i.e. thread initialization and context-switch. The available methods are SJLJ and MCSC,
based on the setjmp-longjmp and ucontext primitives respectively. Engelschall proposes in [2] a
portable trick for user-level thread creation and also references these two methods.

• Stack alignment: The user-level stack can be aligned on either 64-byte or page boundary.

• User-level thread emulation: UthLib provides the primary primitives for non-preemptive user-
level threads. Optionally, UthLib can emulate these user-level threads with POSIX threads. This
emulation is completely transparent to the user. Context-switch between threads is implemented
using condition variables.

3.3 Programming Interface
The API of UthLib includes the following definitions and calls (exported to the user through uth.h):

• uth_t: Type of the underlying thread

• void uth_init (int stacksize): Initializes the library and sets the stack-size of the user-level threads.
It is called only once.

• int uth_vp_init (int vp, void *arg): Initializes the current virtual processor. Each kernel thread
must call this once, associating itself with an id and an argument. If uth_init has not been called
yet, it is called setting the stack size to its default size. Returns 0 on success, -1 on error.

 4

• int uth_get_vpid(void): Returns the rank (id) of the current virtual processor
(0...UTH_MAX_CPUS-1). On error, terminates the application.

• uth_t uth_create (void (*fn)(void *), void *arg): Creates a user-level thread that will execute fn
function, which receives a single argument (arg). If the recycling mechanism is active, the routine
tries to reuse a finished thread. Upon successful completion, a (new) thread descriptor is returned.
Otherwise, it returns NULL.

• void uth_reinit (uth_t thread, void (*func)(void *), void *arg): Re-initializes an underlying
thread.

• void uth_delete(uth_t thread): Deletes (or recycles) and underlying thread.

• void uth_switchto(uth_t old, uth_t new): Performs thread context-switching on the current
virtual processor, saving the context of thread old (if this is not NULL) and restoring the context
new.

• uth_t *uth_self(void): Returns a reference to the current thread.

• void *uth_getarg(uth_t thread): Returns the function argument of a thread.

• void *uth_setarg(uth_t thread, void *arg): Sets the function argument of a thread.

• double uth_gettime(void): Returns current time.

• void uth_vp_sleep(int ms): Suspends the kernel thread for ms milliseconds.

For performance reasons, the following routines are also provided:

• void uth_switchto_ex(int vp, uth_t old, uth_t new): Performs thread context-switching on the
virtual processor with rank vp. It can be used in cases where the user's runtime library provides this
information on its own.

• uth_t *uth_self_ex(int vp): Returns a reference to the thread that is currently executed on the
virtual processor with rank vp.

• void *uth_getarg_ex(int vp): Returns the function argument of the thread that is currently
running on virtual processor with rank vp.

3.4 Validation
The successful execution of the program in Figure 2 validates the feasibility of a two-level thread
model implementation on top of POSIX Threads. The main kernel thread (vp 0 - virtualprocessorA)
creates NumThreads user-level threads. Next, it passes the control of execution to the first user-level
thread, the first to the second and so on (First Round), until the control of execution returns to the main
thread. Finally, it creates a kernel thread (vp 1 - virtualprocessorB) that repeats the previous pass of
execution on the same threads (Second Round).

The output of the program should be similar to the following:

[0x312c48] master thread A starts [pthread_t = 0x2f44a0]
[0x45fffc] round one: arg (0 / 0) [local = 1 global = 1]
[0x480034] round one: arg (1 / 1) [local = 1 global = 2]
[0x312c48] master thread A continues [global = 2]
[0x312d28] master thread B starts [pthread_t = 0x2f4528]
[0x45fffc] round two: arg (0 / 0) [local = 2 global = 3]
[0x480034] round two: arg (1 / 1) [local = 2 global = 4]
[0x312d28] master thread B exits [global = 4]
[0x312c48] master thread A exits

UthLib, and particularly the test application, has been tested successfully on the hardware/software
configurations presented in Table 1.

Operating System Architecture Compiler Context-switch method

GYGWIN (WIN32) X86 GCC SJLJ, MCSC

MINGW32 X86 GCC SJLJ, MCSC

LINUX 2.6 X86, X86_64 GCC, ICC SJLJ, MCSC

SOLARIS 9 SPARCv9 GCC, CC SJLJ, MCSC

IRIX 6.5 MIPS GCC, CC SJLJ, MCSC
FREEBSD 6.2 X86 GCC SJLJ, MCSC

Table 1. Tested Platforms

 5

Figure 2. Check application

#include <pthread.h>
#include <uth.h>
#include <stdio.h>

#define NumThreads 2

uth_t worker[NumThreads], virtualprocessorA, virtualprocessorB;
int gvar = 0;

void workerFunc(void* arg) {

long id = (long)arg;
int lvar = 0;

gvar++; lvar++;

printf("[0x%lx] round one: arg (%ld / %ld)\t [local = %d global = %d]\n",

(unsigned long) uth_self(), id, (long) uth_getarg(uth_self()), lvar, gvar);

if (id == NumThreads-1) uth_switchto_ex(0, worker[id], virtualprocessorA);
else uth_switchto_ex(0, worker[id], worker[id+1]);

gvar++; lvar++;

printf("[0x%lx] round two: arg (%ld / %ld)\t [local = %d global = %d]\n",

(unsigned long) uth_self(), id, (long) uth_getarg(uth_self()), lvar, gvar);

if (id == NumThreads-1) uth_switchto_ex(1, NULL, virtualprocessorB);
else uth_switchto_ex(1, NULL, worker[id+1]);

}

void *kernelthreadfunc(void *arg) {

uth_vp_init(1, NULL);
virtualprocessorB = uth_self();

printf("[0x%lx] master thread B starts\t [pthread_t = 0x%lx]\n",
 (unsigned long) uth_self(), pthread_self());

uth_switchto_ex(1, virtualprocessorB, worker[0]);
printf("[0x%lx] master thread B exits\t [global = %d]\n",

(unsigned long) uth_self(), gvar);
return 0;

}

int main(void) {
long i;
pthread_t pth;
pthread_attr_t attr;
long status;

pthread_attr_init(&attr);
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

uth_init(0);
uth_vp_init(0, NULL);
for(i=0; i<NumThreads; ++i) worker[i] = uth_create(workerFunc,(void *)i);

printf("[0x%lx] master thread A starts\t [pthread_t = 0x%lx]\n",
 (unsigned long) uth_self(), pthread_self());
virtualprocessorA = uth_self();
uth_switchto_ex(0, virtualprocessorA, worker[0]);
printf("[0x%lx] master thread A continues\t [global = %d]\n",
 (unsigned long) uth_self(), gvar);

pthread_create(&pth, &attr, kernelthreadfunc, NULL);
pthread_join(pth, (void *)&status);

for(i=0; i<NumThreads; ++i) uth_delete(worker[i]);

printf("[0x%lx] master thread A exits\n", (unsigned long) uth_self());
return (gvar == (2*NumThreads));

}

 6

3.5 Evaluation
In this section, we measure the overhead for user-level context-switch in UthLib. The experiments
were performed on the following machines:

• LAPTOP: Pentium M 1600 MHz, 512MB RAM

• ATLANTIS: 4xPentium III 701MHz, 1520MB RAM

• IRO: Pentium 4 2.40GHZ, 512MB RAM

• GRID: 2xAMD Opteron 248 2210MHz, 4 GB RAM

• ARTHUR: 4xSparcv9 480MHz, 3072 MB RAM

• ZEUS: 2xSparcv9 1200MHz, 8192 MB RAM

• SOCRATES: 4x MIPS R12000 360MHz, 1536 MB RAM

We measure the pure context-switch overhead using a ping-pong benchmark between two threads. The
results are depicted in Table 2. We observe that the SJLJ method provides faster lightweight context-
switch, since it saves fewer registers than the MCSC method. The latter overhead, however, is balanced
by the portability of the MCSC method.

PLATFORM OPERATING SYSTEM ABI COMPILER SJLJ MCSC PTH
LAPTOP CYGWIN 32 GCC 3.4.4 0.07 1.74 6.17
LAPTOP MINGW321 32 GCC 3.4.2 0.07 1.74 3.67
LAPTOP LINUX 2.4.20 32 GCC 4.2.0 0.07 0.46 4.27
ATLANTIS LINUX 2.6.18 32 GCC 4.2.0 0.18 0.85 12.72
IRO FREEBSD 6.2 32 GCC 3.4.6 0.15 1.65 23.03
GRID LINUX 2.6.9 64 GCC 3.4.5 0.04 0.27 4.63
ARTHUR SOLARIS 2.8 64 GCC 3.0.2 0.78 17.51 26.09

ZEUS SOLARIS 2.9
64
32

GCC 3.4.2
0.42
0.44

8.95
9.23

16.04
14.83

32
64

GCC 3.32
0.46
0.43

16.02
21.03

5.02
5.38

SOCRATES IRIX 6.5
32
64

CC 7.30
0.41
0.42

16.65
16.35

4.87
5.43

Table 2. Context-Switch Overhead (microseconds)

3.6 Possible Optimizations
• The context-switch mechanism can be based on assembly instructions. For instance, the user can

implement platform-specific versions of setjmp-longjmp, which might result in lower overhead. In
fact, this is the case the following configurations: CYGWIN, MINGW, LINUX/IA64,
LINUX/I386, LINUX/X86_64 and LINUX/AMD64. On both CYGWIN and MINGW, we use the
same assembly based version of setjmp-longjmp to avoid some complications of the system
provided implementation. On LINUX platforms, the assembly code is provided by the State
Threads library.

• In order to achieve maximum portability, UthLib has been built on top of the POSIX Threads API.
However, it can be also built on top of the native kernel threads that operating systems provide.
Furthermore, platform-specific mechanisms for mutual exclusion can replace the POSIX Threads
based ones in use, while non-blocking/lock-free algorithms can be utilized for the reuse queues.

• Another possible POSIX Threads compliant self-identification mechanism is the use of thread-
specific data (pthread_{set,get}_specific). Moreover, a stack-based implementation for thread self
identification can be used. This can be performed by allocating stacks on appropriate page
boundaries (memalign).

• User-level threads are executed through a driver routine (_uth_main). This routine identifies the
currently executed thread and calls the user specified function for this thread. This self-
identification can be avoided by passing an argument (a pointer to the thread descriptor) to the
driver routine.

1 The Pthreads-win32 and MinGW32 MSys development kit were used. More information can be
found at http://sources.redhat.com/pthreads-win32/.
2 Software package was configured with CFLAGS=-D__SGI_LIBC_NAMESPACE_QUALIFIER=

 7

4. Process Scope Threads (PSthreads) Library

4.1 Introduction
Figure 3 presents a general overview of the design and functionality of user-level thread libraries. Most
modern operating systems provide support for creating kernel level threads. In this case, the kernel
distinguishes processes, which include all the necessary resources for process execution (e.g. virtual
memory, file descriptors), from threads, which represent the execution state of processes. A running
program consists of a process and one or more kernel level threads that execute in the context of this
process. Operating systems offer an additional system call for kernel thread creation. Kernel threads are
entities the operating system is aware of, and the OS scheduler assigns these threads to physical
processors. An application running on a computer system with p processors does not usually create
more than p kernel threads, since this is the maximum number of threads that can run in parallel.

As both creation and management of kernel threads is performed through system calls, the
corresponding runtime overhead is high due to the transition of processor execution from user to kernel
mode. This overhead prevents many applications from exploiting their fine-grained parallelism, since
the thread creation overhead overwhelms the benefits from the additional created parallelism. User-
level threads were introduced to overcome this problem. They consist of a descriptor, where hardware
register contents are stored, a private memory (stack), and some additional fields that are used by the
thread library for their management.

Figure 3. Two-level thread model

User-level threads are unknown to the operating system. Their creation, management, scheduling and
destruction are performed exclusively by the user-level thread library, in the context of a kernel thread.
For every task that can be executed in parallel, a user-level thread is created and executed by a kernel
thread. This means that kernel threads act at virtual processors, which execute user-level threads,
similarly to physical processors which execute kernel threads. Therefore, exploitation of multiprocessor
hardware cannot be achieved by creating multiple user-level threads and having a single kernel thread.
The OS scheduler assigns a single processor to that kernel thread and consequently, only a single user-
level thread is executed at a given time.

The hybrid thread model manages to exploit multiple processors without losing the low overheads of
user-level threads. A parallel program creates a specific number of kernel threads, equal to the degree
of parallelism that needs to achieve. These kernel threads are maintained throughout the application
execution. Meanwhile, the program creates as many user-level threads as required for instantiating the
existing parallelism.

 8

4.2 Implementation Issues
The PSthreads library implements a two-level thread model, as previously discussed. There are local
ready queues, one per virtual processor, and a global one. Each virtual processor runs a dispatch loop,
selecting the next to run user-level thread from this set of ready queues, where threads are submitted
for execution. An idle virtual processor extracts threads from the front of its local ready queue but
steals from the end of remote queues. The global queue is used for coarse grain tasks. The queue
architecture allows the runtime library to represent the layout of physical processors.

PSthreads are non-preemptive, therefore a thread cannot start its execution before the previous one
terminates or voluntarily releases its processor. The user-level thread scheduler is activated at well
defined entry points of the runtime library and not periodically using an appropriate timer.

Despite the user-level multithreading, the PSthreads library is fully portable because its implementation
is based on the POSIX standard. The primary user-level thread operations are provided by UthLib. An
underlying thread is actually the stack that a psthread uses during its execution. An important feature of
PSthreads is the utilization of a lazy stack allocation policy. According to this policy, the stack (uth_t)
of a psthread is allocated just before its execution. This results in minimal memory consumption and
thread migrations between processors.

4.3 Application Programming Interface
The PSthreads library exports an application programming interface (API) that is similar to that of
POSIX threads. To take advantage of this interface, the user must include psthread.h.

4.3.1 Initialization

• int psthread_init(int nvps, unsigned long stacksize): Initializes the runtime library. It must be
called before any other library routine. It initializes the internal data structures of the library and
creates the user specified number of virtual processors (nvps parameter). It also sets the stack size
of user-level threads. On success it returns 0, on failure EAGAIN.

4.3.2 Thread Management

• psthread_t: Type of a process scope thread.

• psthread_attr_t: Data structure where attributes of PSthreads are set. The thread attribute allows
the user to define whether a thread will be detached or joinable (detachstate field) and also to
explicitly set the parent for this thread (parent field). The default values for the two thread
attributes are PSTHREAD_JOINABLE and NULL.

• int psthread_create(psthread_t *psthr, psthread_attr_t *attr, void (func)(void *), void *arg):
Creates a new user-level thread. When scheduled, the thread executes the func routine, which takes
a single argument (arg) and does not return anything. A thread terminates its execution when its
routine returns or it calls psthread_exit(). The created thread is not automatically dispatched for
execution. The user has to explicitly insert it in a ready queue. On success, psthread_create stores
the descriptor of the new thread in the address pointed by the first argument and returns 0.
Otherwise, it returns EAGAIN.

• int psthread_enqueue(psthread_t psthr, int queue_id): Inserts a user-level thread in the
specified ready queue. If queue_id equals -1, the thread is inserted in the global ready queue.
Returns 0 on success, EINVAL on failure (e.g. invalid queue_id).

• int psthread_enqueue_head(psthread_t thread, int queue): As above, but it puts the thread at
the front of a given queue.

• int psthread_enqueue_tail(psthread_t thread, int queue): Alias of psthread_enqueue.

• void psthread_exit(void): Terminates the execution of the current thread. The memory of a
finished thread is freed (recycled). If it is joinable, the thread notifies its parent (a counter is
decreased).

• int psthread_waitall(void): The current thread suspends its execution waiting all its joinable
children threads to finish. If there are not pending threads, the current thread continues its
execution. The function returns 1 if the thread is suspended and 0 if there are not children threads
running.

 9

• void psthread_yield(void): The current thread releases it virtual processor, allowing the execution
of another user-level thread. The suspended thread will be restarted when selected by the thread
scheduler.

• psthread_t psthread_self(void): Returns the descriptor of a current thread.

4.3.3 Execution environment

• int psthread_nvps(void): Returns the number of virtual processors.

• int psthread_current_vp(void): Returns the number of the virtual processor where the current
user-level thread executes on.

4.3.4 Synchronization
The synchronization primitives of PSthreads are based on the POSIX threads API. They are mapped to
POSIX mutexes or spinlocks, according to the configuration process of the library during its
installation. These primitives are not user-level thread aware.

• psthread_lock_t: Type of synchronization variable.

• void psthread_lock_init(psthread_lock_t *lock_var): Initializes a lock.

• void psthread_lock_acquire(psthread_lock_t *lock_var): Acquires a lock.

• void psthread_lock_try_acquire(psthread_lock_t *lock_var): Attempts to acquire a lock.

• void psthread_lock_release(psthread_lock_t *lock_var): Releases a lock.

• void psthread_lock_destroy (psthread_lock_t *lock_var): Destroys a lock.

4.3.5 Condition Variables
The implementation of condition variables is based on the queues.

• psthread_cond_t: Type of condition variable.

• void psthread_cond_init(psthread_cond_t *cond): Initializes a condition variable.

• void psthread_cond_wait (psthread_cond_t *cond, psthread_lock_t *lock): The current thread
waits on a condition variable. The thread has to acquire the lock before calling
psthread_cond_wait. Before its suspension, the thread releases the lock. When the thread is
resumed, the routine returns and the thread implicitly acquires the lock.

• void psthread_cond_signal (psthread_cond_t *cond): Signals a condition variable. A single
user-level thread that waits on that condition variable will become ready for execution.

• void psthread_cond_broadcast (psthread_cond_t *cond): Broadcasts a condition variable. All
threads blocked on that condition variable will be awaked.

• void psthread_cond_destroy (psthread_cond_t *cond): Destroys a condition variable.

4.3.6 Barriers

The barriers of PSthreads are based on D. Butenhof’s [1] proposed implementation that makes use of
condition variables.

• psthread_barrier_t: Type of barrier between user-level threads.

• int psthread_barrier_init (psthread_barrier_t *barrier, int count): Initializes a barrier.

• int psthread_barrier_wait (psthread_barrier_t *barrier): The current thread blocks until the
required number of threads has reached the barrier.

• int psthread_barrier_destroy (psthread_barrier_t *barrier): Destroys a barrier.

4.3.7 Thread Local Storage (TLS)
The PSthreads library supports a limited form of thread local storage. It allows up to
MAX_TLS_KEYS (= 64) keys of storage and there is not support for key destruction.

• psthread_key_t: Type of key for thread specific data.

• int psthread_key_create(psthread_key_t *key, void *dummy): Allocates a key for TLS data.

• int psthread_setspecific(psthread_key_t key, const void *value): Stores a value at position key
of thread local storage.

 10

• int psthread_setspecific2(psthread_t thr, psthread_key_t key, const void *value): Optimized
version of the previous routine.

• void *psthread_getspecific(psthread_key_t key): Retrieves the value stored at position key of
thread local storage.

• void psthread_key_destroy(psthread_key_t key): Releases a specified position in the thread
local storage array.

4.3.8 Auxiliary Routines

• double psthread_gettime(void): Returns the current time in seconds.

• void psthread_vp_sleep (int msec): Suspends the current virtual processor (kernel thread) for
msec milliseconds. This call is not user-level thread aware and thus the running user-level thread
also remains suspended.

4.4 Psthread Specific Configuration Options
• Ready queues architecture: The user can determine whether a single global queue will be only

available or local ready queues will be also present.

• Thread stealing mechanism: If a single global queue is used, all virtual processors try to dispatch
work from there. When local ready queues have been activated, an idle virtual processor will try to
find work in remote queues only if the thread stealing mechanism of the library is enabled.

• Runtime behaviour of idle virtual processors: When there is enough work available, a virtual
processor may not find any thread to execute and thus becomes idle. The user can determine
whether an idle virtual processor executes the scheduling loop continuously or yields the physical
processor periodically.

5. Configure
Common (general) options

• [--with-maxvps=num]: sets the maximum supported number of virtual processors (default: 16).

• [--with-sync=method]: sets the Pthreads synchronization mechanism that will be used. Possible
options: mutex (default), mutex_try, spin, spin_try.

• [--with-recycling=method]: sets the recycling mechanism for threads in both libraries. Possible
options: local, global, none.

• [--with-cachelinesize=value]: the user can give the cache line size, which is used in the alignment
of internal data structures. The configuration script tries to find out the exact value. If this not
possible, the default value is set equal to 128.

Uthlib options

• [--with-csm=method]: sets the context switch method (sjlj, mcsc).

• [--enable-asmsjlj]: enables the built-in implementation of the sjlj context-switch method. This
option is ignored if there is not such implementation on the working platform.

• [--enable-uth2pth]: enables the emulation of user-level threads on top of POSIX threads. It is
disabled by default. If enabled, the previous option is meaningless.

• [--enable-stackalign64]: if set, the stack is aligned on 64-byte boundaries. By default, stacks are
page-aligned.

PSthreads options

• [--enable-singlequeue]: a single ready queue will be used for thread dispatching. It is disabled by
default, which means that local queues are in use.

• [--enable-yieldvp]: an idle virtual processor yields the underlying physical processor by calling
sched_yield() (default:disabled).

• [--enable-stealing]: enables thread stealing for PSthreads (default:disabled).

 11

References
[1] Butenhof, D. R.: Programming with POSIX Threads. Professional Computing Series, Addison-

Wesley, ISBN 0-201-63392-2, May 1997.

[2] Engelschall, R.: Portable Multithreading: the Signal Stack Trick for User-Space Thread Creation,
In Proc. of the USENIX Annual Technical Conference, 2000.

[3] Hadjidoukas, P. E: Implementing Unix ucontext_t operations on Windows Platforms. The Code
Project. Threads, Processes and IPC. May 2003. Available at
http://www.codeproject.com/threads/context.asp.

[4] Keppel, D.: Tools and Techniques for Building Fast Portable Thread Packages, University of
Washington at Seattle, Technical Report UW-CSE-93-05-06, June 1993.

[5] Netscape Portable Runtime Library. Available at http://www.mozilla.org/docs/refList/refNSPR.

[6] The Open Group Base Specifications Issue 6, IEEE Std. 1003.1, 2003 Edition,
http://www.opengroup.org/onlinepubs/007904975/.

[7] State Threads Library for Internet Applications. IBM Open Source Projects,
http://oss.sgi.com/projects/state-threads/.

