A Runtime Library for Lightweight Process-Scope Threads

P.E. Hadjidoukas V.V. Dimakopoulos

Parallel Processing Group
Department of Computer Science
University of loannina, loannina 45110, Greece
{phadj i do, di mako} @s. uoi . gr
http://paragroup.cs. uoi.gr

Technical Report PPG-CS-UOI-280907

Abstract
This work presents an open-source software packageimplements a two-level thread model. It
consists of two thread libraries, UthLib and PStldise UthLib (Underlying Threads Library) is a very
portable thread package core that provides theguyimprimitives for managing non-preemptive user-
level threads (creation and context-switch) on UNIdd Windows platforms. The PSthreads (process
scope threads) library takes advantage of UthLibiarplements a hybrid thread model. The software
package is freely available from the webpaloftp://www.cs.uoi.gr/~ompilt is distributed under the
terms of the GNU General Public License (GPL) \@r< or later.

1. Introduction

It is common knowledge that the performance of &kthreads, although an order of magnitude better
than that of traditional processes, has been tipieam order of magnitude worse than the best-case
performance of user-level threaf§. In an application that utilizes user threattee threads of the
application are managed by the application itdalthis way, functionality and scheduling policynca
be chosen according to the application. Thesethseads are much more efficient than kernel threads
in carrying out operations such as context switghisince no kernel intervention is necessary to
manipulate threads.

This work presents an open-source software packaafeimplements a two-level thread model. It
consists of two thread libraries, UthLib and PStldise UthLib is a very portable thread package core
that provides the primary primitives for managingnipreemptive user-level threads (creation and
context-switch) on UNIX and Windows platforms. Tipairpose of UthLib is to facilitate the
implementation of two-level thread models, whemtuel processors are system scope POSIX Threads.
The PSthreads library takes advantage of UthLibiemdements a two-level user-level thread model.
PSthreads provide efficient support of nested feisth to the OMPi OpenMP compiler. The software
package is freely available from the webpaloftp://www.cs.uoi.gr/~ompilt is distributed under the
terms of the GNU General Public License (GPL) \@r< or later.

2. Design

The configuration and installation process of be8threads and UthLib is performed with a common
configure script that includes the whole software packadgeer& are configuration options related
either to Uthlib or to PSthreads. Moreover, somefigoiration options apply to both software librarie
and allow the user to determine the maximum numidfevirtual processors, the synchronization
mechanism used, the thread recycling approachtendache line size.

Figure 1 presents the general design of the softwackage. At the lower level, UthLib implements
the necessary primitives for thread managemenaftioreand context-switch). As we will show, these
primitives may constitute the machine dependent)(patt of the library. They are based on the
management routines of jmpbuf or ucontext_t stmestuor exclusively on POSIX threads. UthLib
utilizes a queue-based recycling mechanism foruthe@erlying threads. The necessary routines for
multiprocessor synchronization and queue managearenimplemented in two separate header files
(locks.h and queues.h). These routines and theredpbapplication programming interface of UthLib
are both utilized by the PSthreads runtime libravizich implements the two-level thread model. It
also exports a Pthreads-like application programgminterface (API), which can be used by
multithreaded applications. In the case of the OPenMP C compiler, its OpenMP runtime library
can take advantage of PSthreads, providing thusesft support of nested parallelism to applicagion
that have been parallelized according to the OpepMBramming model.

OpenMP application
Y

Multithreaded application OpenMP runtime library
Y Y

PSthreads libra

UthLib library
| locks.h
MD [queues.h
(imnhuf iicontext Pthreac

Figure 1. General design

3. UthLib

UthLib (Underlying Threads Library) is a very pdsta thread package core that provides the primary
primitives (creation and context-switch) for mamagiportable non-preemptive user-level threads on
UNIX and Windows platforms. UthLib is not a starmla thread package; it does not provide its own
synchronization primitives and requires/assumespilesence of a POSIX Threads librdBj. Its
purpose is to facilitate the implementation of tlwgel thread libraries, where virtual processors ar
system scope POSIX Threads. It also exports adedihed API that can be easily implemented using
custom (platform specific) thread libraries. Uthlhias been partially implemented using a minimal and
modified version of the State Threads Libr§ry. Therefore, it is distributed under the ternisttoe
Mozilla Public License (MPL) version 1.1 or the GNEkneral Public License (GPL) version 2 or
later.

State Threads is an application library that presid foundation for writing fast and highly scatabl
Internet Applications on UNIX-like platforms. It otines the simplicity of the multithreaded
programming paradigm, in which one thread supp@dsh simultaneous connection, with the
performance and scalability of event-driven statehine architecture. It is a very portable useelev
threads package based on the setjmp-longjmp pviesitibut supports a multi-process rather than a
multithreaded environment. It can be combined withditional threading or multiple process
parallelism to take advantage of multiple processtirhas been derived from the Netscape's Portable

RunTime Library[5], which however supports multithreading.

3.1 Implementation Issues
In this section, we discuss the most important an@ntation issues of UthLib.

o Sdf-identification: UthLib targets two-level thread models, where -poeemptive user-level
threads are executed on top of kernel-level thrélaatsact as virtual processors, ranked from O to
MAX_VPS-1). For this reason, it maintains per-vaityrocessor global data. Several operations
require a self-identification method of the curreintual processor. A portable way to perform this
is to use the self-identification mechanism prodidey the POSIX Threads API: pthread_self.
When a virtual processor is initialized, it storesspthread_t identifier into a global array andh ca
find its rank by locating the position of its idéigr in this array.

e Sacksize: In the current implementation, all threads haeelss of equal size, set with the uth_init
call. This design decision is not mandatory and haen adopted because it simplifies the
recycling of threads.

e Synchronization: UthLib optionally reuses finished thread desanipt The recycling can be
performed globally or on a per-processor basigjtliizing appropriate thread queues.

e Internal data structures: The data structures that describe a user-levehthand its stack (thread
and stack descriptors) are similar with those aefiim the State Thread library. However, we have

encapsulated the stack descriptor in the threadrigésr and thus a single memory allocation
operation is required for creating a user-leveddlorand its stack.

e Thread context: The only platform-dependant part of the libragsides in the thread context
management (initialization and context-switch). T8tate information of a user-level thread is
manipulated using an appropriate structure thstioieed in its descriptor. We support two methods:

o SILJ (setjmp/longjmp): According to this method, which is utilized byetState Threads
library, the thread descriptor includes a jmpbufadstructure, defined in the setjmp.h
header file. Two ingredients of the jmpbuf dataisture (the program counter and the
stack pointer) have to be manually set in the thra@ation routine. The data structure
differs from platform to platform. Usually the pmagn counter is a structure member with
PC in the name and the stack pointer is a struchgnmber with SP in the name. One can
also look in the Netscape's NSPR library sourcachwvalready has this code for many
UNIX-like platforms (mozilla/nsprpub/pr/include/midh files). Furthermore, the State
Threads library provides an assembly-based builiriplementation of the setjmp-
longjmp operations on some platforms.

0 MCSC (makecontext/swapcontext): Most modern UNIX environments provide one more
option for user-level context-switching between tiplé threads of control within a
process: the ucontext data structure defined inntaxb.h and the four functions:
getcontext, setcontext, makecontext and swapcarfextmore information on the usage
of these functions, you can look [&]. Although the Microsoft C Runtime Library does
not provide these functions, we have implementex WINIX ucontext operations on
Windows platforms by using the Win32 API GetThread@xt and SetThreadContext
functions[3].

3.2 UthLib Configuration Options

Some configuration options are related to both likthand PSthreads libraries. Since we discuss
UthLib first, we report them here:

e Maximum number of virtual processors. This option determines the maximum number of
supported virtual processors (default = 16).

e Default stack size: This option determines the default size of therdsvel stacks. As already
mentioned, all user-level threads have stack oélkesjae (default = 4MB).

e Thread recycling: This option activates a recycling mechanism fo threads. Thread creation
tries to reuse a finished thread that has beerclegtybefore. The use can specify whether the
recycling mechanism will be performed on a peruatprocessor or global basis.

The following configuration options are exclusiveglated to UthLib:

e Context switch method: This option determines the most platform-depehgiant of the runtime
library, i.e. thread initialization and context-¢sti. The available methods are SJLJ and MCSC,
based on the setjmp-longjmp and ucontext primitirespectively. Engelschall proposes[2} a
portable trick for user-level thread creation alsh aeferences these two methods.

o Sack alignment: The user-level stack can be aligned on eithelpydd-or page boundary.

o User-level thread emulation: UthLib provides the primary primitives for nongamptive user-
level threads. Optionally, UthLib can emulate theser-level threads with POSIX threads. This
emulation is completely transparent to the usent&d-switch between threads is implemented
using condition variables.

3.3 Programming Interface
The API of UthLib includes the following definitisrand calls (exported to the user through uth.h):

e uth_t: Type of the underlying thread

e void uth_init (int stacksize): Initializes the library and sets the stack-sizéhe user-level threads.
Itis called only once.

e int uth_vp_init (int vp, void *arg): Initializes the current virtual processor. Eadarriel thread
must call this once, associating itself with amaitd an argument. If uth_init has not been called
yet, it is called setting the stack size to itsadéifsize. Returns 0 on success, -1 on error.

e int uth_get vpid(void): Returns the rank (id) of the current virtual pssor
(0...UTH_MAX_CPUS-1). On error, terminates the dqadion.

e uth_t uth_create (void (*fn)(void *), void *arg): Creates a user-level thread that will execute fn
function, which receives a single argument (arfg)hé recycling mechanism is active, the routine
tries to reuse a finished thread. Upon successfuptetion, a (new) thread descriptor is returned.
Otherwise, it returns NULL.

e void uth_reinit (uth_t thread, void (*func)(void *), void *arg): Re-initializes an underlying
thread.

e void uth_delete(uth_t thread): Deletes (or recycles) and underlying thread.

e void uth_switchto(uth_t old, uth_t new): Performs thread context-switching on the current
virtual processor, saving the context of thread (dlthis is not NULL) and restoring the context
new.

e uth_t *uth_self(void): Returns a reference to the current thread.

e void *uth_getarg(uth_t thread): Returns the function argument of a thread.

e void *uth_setarg(uth_t thread, void *arg): Sets the function argument of a thread.

e doubleuth_gettime(void): Returns current time.

e void uth_vp_deep(int ms): Suspends the kernel thread for ms milliseconds.

For performance reasons, the following routinesatse provided:

e void uth_switchto_ex(int vp, uth_t old, uth_t new): Performs thread context-switching on the

virtual processor with rank vp. It can be usedaeas where the user's runtime library provides this
information on its own.

e uth_t *uth_self ex(int vp): Returns a reference to the thread that is cuyrenxecuted on the
virtual processor with rank vp.

e void *uth_getarg ex(int vp): Returns the function argument of the thread tiaturrently
running on virtual processor with rank vp.

3.4 Validation

The successful execution of the program in Figurealdates the feasibility of a two-level thread
model implementation on top of POSIX Threads. Thannkernel thread (vp O - virtualprocessorA)
creates NumThreads user-level threads. Next, ggzathe control of execution to the first userdeve
thread, the first to the second and so on (Firstrid}, until the control of execution returns to thain
thread. Finally, it creates a kernel thread (vpvirtualprocessorB) that repeats the previous péss
execution on the same threads (Second Round).

The output of the program should be similar toftilewing:

[0x312c48] naster thread A starts [pthread_t = 0x2f 44a0]
[Ox45fffc] round one: arg (0 / 0) [local =1 global = 1]
[0x480034] round one: arg (1 / 1) [local = 1 global = 2]
[0x312c48] naster thread A continues [global = 2]

[0x312d28] naster thread B starts [pthread_t = 0x2f4528]
[Ox45fffc] round two: arg (0 / 0) [local = 2 global = 3]
[0x480034] round two: arg (1 / 1) [local = 2 global = 4]
[0x312d28] nmster thread B exits [gl obal = 4]

[0x312c48] naster thread A exits

UthLib, and particularly the test application, Hasen tested successfully on the hardware/software
configurations presented in Table 1.

Operating System Architecture Compiler Context-skvitnethod
GYGWIN (WIN32) | X86 GCC SJLJ, MCSC
MINGW32 X86 GCC SJLJ, MCSC

LINUX 2.6 X86, X86_64| GCC,ICG SJLJ, MCSC
SOLARIS 9 SPARCV9 GCC,Cq SJLJ, MCsC

IRIX 6.5 MIPS GCC, CC| SJLJ, MCsC
FREEBSD 6.2 X86 GCC SJLJ, MCSC

Table 1. Tested Platfor ms

#i ncl ude <pt hread. h>
#i ncl ude <uth. h>
#i ncl ude <stdio. h>

#def i ne Nunirhr eads 2

uth_t worker[NunThreads], virtual processorA, virtual processor B;
int gvar = 0;

voi

vo

}

d wor ker Func(voi d* arg) {
long id = (long)arg;
int lvar = 0;

gvar ++; | var ++;

printf("[0x% x] round one: arg (%d / %d)\t [local = % global = %]\n",
(unsigned long) uth_self(), id, (long) uth_getarg(uth_self()), lvar, gvar);

if (id == NunThreads-1) uth_switchto_ex(0, worker[id], virtual processorA);
el se uth_switchto_ex(0, worker[id], worker[id+1]);

gvar ++; | var ++;

printf("[0x% x] round two: arg (%d / %d)\t [local = % global = %]\n",
(unsigned long) uth_self(), id, (long) uth_getarg(uth_self()), lvar, gvar);

if (id == NunThreads-1) uth_switchto_ex(1, NULL, virtual processorB);
el se uth_switchto_ex(1, NULL, worker[id+1]);

d *kernel t hreadfunc(void *arg) {
uth_vp_init(1l, NULL);
virtual processorB = uth_sel f();

printf("[0x% x] master thread B starts\t [pthread_t = 0x%x]\n",
(unsigned long) uth_self(), pthread_self());

uth_swi tchto_ex(1, virtual processorB, worker[0]);

printf("[0x%x] master thread B exits\t [global = %]\n",
(unsigned long) uth_self(), gvar);

return O;

int nai n_(voi d) {

long i;

pthread_t pth;
pthread_attr_t attr;
| ong status;

pthread_attr_init(&attr);
pt hread_attr_setscope(&attr, PTHREAD SCOPE_SYSTEM ;
pthread_attr_setdetachstate(&attr, PTHREAD CREATE JO NABLE);

uth_init(0);
uth_vp_init(0, NULL);
for(i=0; i<NunThreads; ++i) worker[i] = uth_create(workerFunc, (void *)i);

printf("[0x% x] naster thread A starts\t [pthread_t = O0x% x]\n",
(unsigned long) uth_self(), pthread_self());
virtual processorA = uth_sel f();
uth_switchto_ex(0, virtual processorA, worker[0]);
printf("[0x% x] naster thread A continues\t [global = %d]\n",
(unsigned long) uth_self(), gvar);

pt hread_create(&th, &attr, kernelthreadfunc, NULL);
pt hread_j oi n(pth, (void *)&status);

for(i=0; i<NunThreads; ++i) ut h_del ete(worker[i]);

printf("[0x% x] naster thread A exits\n", (unsigned long) uth_self());
return (gvar == (2*NuniThreads));

Figure 2. Check application

3.5 Evaluation

In this section, we measure the overhead for wsarticontext-switch in UthLib. The experiments
were performed on the following machines:

e LAPTOP: Pentium M 1600 MHz, 512MB RAM

e ATLANTIS: 4xPentium Il 701MHz, 1520MB RAM

e IRO: Pentium 4 2.40GHZ, 512MB RAM

e GRID: 2XAMD Opteron 248 2210MHz, 4 GB RAM
e ARTHUR: 4xSparcv9 480MHz, 3072 MB RAM

e ZEUS: 2xSparcv9 1200MHz, 8192 MB RAM

e SOCRATES:4x MIPS R12000 360MHz, 1536 MB RAM

We measure the pure context-switch overhead uspiggapong benchmark between two threads. The
results are depicted in Table 2. We observe tlatSth.J method provides faster lightweight context-
switch, since it saves fewer registers than the RI@&thod. The latter overhead, however, is balanced
by the portability of the MCSC method.

PLATFORM | OPERATING SYSTEM | ABI | COMPILER | SILJ | MCSC | PTH
LAPTOP CYGWIN 32| GCC34.4| 007 174 6.17
LAPTOP MINGW3Z 32 | GCcc342| 007 174 3.6
LAPTOP LINUX 2.4.20 32| GCC4.20| 007 0.46 4.27
ATLANTIS | LINUX 2.6.18 32 GCC4.20| 0.14 0.85 12.72
IRO FREEBSD 6.2 32| GCCc34.6 015 1.656 2303
GRID LINUX 2.6.9 64 | GCC3.45| 004 027 463
ARTHUR SOLARIS 2.8 64| GCC3.02] 078 17.51 26|09

64 0.42 | 895 |16.04
ZEUS SOLARIS 2.9 3 | GCC342 | 5 953 | 1483

32 0.46 | 16.02 | 5.02

GCC 3.3

64 0.43 | 21.03 | 5.38
SOCRATES | IRIX6.5 32 cc730 | 041 16.65 [4.87

64 ' 0.42 | 16.35 | 5.43

Table 2. Context-Switch Overhead (microseconds)

3.6 Possible Optimizations

e The context-switch mechanism can be based on agsémtructions. For instance, the user can
implement platform-specific versions of setjmp-limg, which might result in lower overhead. In
fact, this is the case the following configuratibpn€YGWIN, MINGW, LINUX/IA64,
LINUX/1386, LINUX/X86_64 and LINUX/AMD64. On both @GWIN and MINGW, we use the
same assembly based version of setjmp-longjmp tidasome complications of the system
provided implementation. On LINUX platforms, thesasbly code is provided by the State
Threads library.

e In order to achieve maximum portability, UthLib Hasen built on top of the POSIX Threads API.
However, it can be also built on top of the natkegnel threads that operating systems provide.
Furthermore, platform-specific mechanisms for mugsalusion can replace the POSIX Threads
based ones in use, while non-blocking/lock-fre@matgms can be utilized for the reuse queues.

e Another possible POSIX Threads compliant self-idimation mechanism is the use of thread-
specific data (pthread_{set,get}_specific). Moreg\ae stack-based implementation for thread self
identification can be used. This can be performgdaliocating stacks on appropriate page
boundaries (memalign).

e User-level threads are executed through a drivetirre (_uth_main). This routine identifies the
currently executed thread and calls the user dpdcifunction for this thread. This self-
identification can be avoided by passing an argunt@rpointer to the thread descriptor) to the
driver routine.

! The Pthreads-win32 and MinGW32 MSys developmentk&ie used. More information can be
found athttp://sources.redhat.com/pthreads-win32/
2 Software package was configured with CFLAGS=-D_| $BC_NAMESPACE_QUALIFIER=

4. Process Scope Threads (PSthreads) Library

41 Introduction

Figure 3 presents a general overview of the desighfunctionality of user-level thread librarieso$t
modern operating systems provide support for argakiernel level threads. In this case, the kernel
distinguishes processes, which include all the s&ary resources for process execution (e.g. virtual
memory, file descriptors), from threads, which emamt the execution state of processes. A running
program consists of a process and one or more Ikewed threads that execute in the context of this
process. Operating systems offer an additionaésysiall for kernel thread creation. Kernel threads
entities the operating system is aware of, and Q% scheduler assigns these threads to physical
processors. An application running on a computstesy withp processors does not usually create
more than p kernel threads, since this is the maximumber of threads that can run in parallel.

As both creation and management of kernel threadgerformed through system calls, the
corresponding runtime overhead is high due torduesttion of processor execution from user to kerne
mode. This overhead prevents many applications feapioiting their fine-grained parallelism, since

the thread creation overhead overwhelms the beniéitn the additional created parallelism. User-
level threads were introduced to overcome this lprabThey consist of a descriptor, where hardware
register contents are stored, a private memorgkstand some additional fields that are used ey th

thread library for their management.

User-Level Threads

=

AT

T T
R W
R M S

NN
L e S
AT

LR e WS

Threads Scheduler User
(User-Level) Level
VP VP VP VP
Kemel- Kemel- Kemel- Kemel-
Thread Thread .o Thread Thread
OS Scheduler Kermel
(Kernel-Level) Level

nnnnnnnnnnnnnnnnnn

uuuuuuuuuuuuuuuuuu

Figure 3. Two-level thread model

User-level threads are unknown to the operatingeaysTheir creation, management, scheduling and
destruction are performed exclusively by the usgel thread library, in the context of a kernektd.

For every task that can be executed in parallekea-level thread is created and executed by akern
thread. This means that kernel threads act ataligwocessors, which execute user-level threads,
similarly to physical processors which execute kethreads. Therefore, exploitation of multiprocegss
hardware cannot be achieved by creating multipée-level threads and having a single kernel thread.
The OS scheduler assigns a single processor ti&éhael thread and consequently, only a single-user
level thread is executed at a given time.

The hybrid thread model manages to exploit multjmlecessors without losing the low overheads of
user-level threads. A parallel program createsegifip number of kernel threads, equal to the degre
of parallelism that needs to achieve. These kethmelads are maintained throughout the application
execution. Meanwhile, the program creates as maay-level threads as required for instantiating the
existing parallelism.

4.2 Implementation Issues

The PSthreads library implements a two-level threediel, as previously discussed. There are local
ready queues, one per virtual processor, and agtoie. Each virtual processor runs a dispatch,loo
selecting the next to run user-level thread from #et of ready queues, where threads are submitted
for execution. An idle virtual processor extradtseds from the front of its local ready queue but
steals from the end of remote queues. The globaugus used for coarse grain tasks. The queue
architecture allows the runtime library to repreégee layout of physical processors.

PSthreads are non-preemptive, therefore a threadotatart its execution before the previous one
terminates or voluntarily releases its processtre Tser-level thread scheduler is activated at well
defined entry points of the runtime library and petiodically using an appropriate timer.

Despite the user-level multithreading, the PSthsditdary is fully portable because its implemeiatat

is based on the POSIX standard. The primary uset-tread operations are provided by UthLib. An
underlying thread is actually the stack that agstti uses during its execution. An important featfr
PSthreads is the utilization of a lazy stack alfimrapolicy. According to this policy, the stackifut)

of a psthread is allocated just before its exeautichis results in minimal memory consumption and
thread migrations between processors.

4.3 Application Programming I nterface

The PSthreads library exports an application prognang interface (API) that is similar to that of
POSIX threads. To take advantage of this interfd@euser must include psthread.h.

4.3.1 Initialization

e int psthread_init(int nvps, unsigned long stacksize): Initializes the runtime library. It must be
called before any other library routine. It initias the internal data structures of the librargt an
creates the user specified number of virtual premess(nvps parameter). It also sets the stack size
of user-level threads. On success it returns Gailure EAGAIN.

4.3.2 Thread Management
e psthread_t: Type of a process scope thread.

e psthread_attr_t: Data structure where attributes of PSthreadsetreThe thread attribute allows
the user to define whether a thread will be detdabiejoinable (detachstate field) and also to
explicitly set the parent for this thread (pareid). The default values for the two thread
attributes are PSTHREAD_JOINABLE and NULL.

e int psthread create(psthread_t *psthr, psthread_attr_t *attr, void (func)(void *), void *arg):
Creates a new user-level thread. When scheduledhtbad executes the func routine, which takes
a single argument (arg) and does not return anythnthread terminates its execution when its
routine returns or it calls psthread_exit(). Theated thread is not automatically dispatched for
execution. The user has to explicitly insert itimeady queue. On success, psthread_create stores
the descriptor of the new thread in the addresstediby the first argument and returns O.
Otherwise, it returns EAGAIN.

e int psthread_enqueue(psthread t psthr, int queue id): Inserts a user-level thread in the
specified ready queue. If queue_id equals -1, tineatl is inserted in the global ready queue.
Returns 0 on success, EINVAL on failure (e.g. ivgueue_id).

e int psthread _enqueue head(psthread t thread, int queue): As above, but it puts the thread at
the front of a given queue.

e int psthread_enqueue tail(psthread_t thread, int queue): Alias of psthread_enqueue.

e void psthread_exit(void): Terminates the execution of the current threade Themory of a
finished thread is freed (recycled). If it is joide, the thread notifies its parent (a counter is
decreased).

e int psthread waitall(void): The current thread suspends its execution waitithgts joinable
children threads to finish. If there are not pengdifreads, the current thread continues its
execution. The function returns 1 if the threaduspended and O if there are not children threads
running.

e void psthread_yield(void): The current thread releases it virtual procesdtowing the execution
of another user-level thread. The suspended thréladbe restarted when selected by the thread
scheduler.

e psthread_t psthread_self(void): Returns the descriptor of a current thread.

4.3.3 Execution environment
e int psthread_nvps(void): Returns the number of virtual processors.

e int psthread_current_vp(void): Returns the number of the virtual processor whbeecurrent
user-level thread executes on.

4.3.4 Synchronization

The synchronization primitives of PSthreads arebtam the POSIX threads API. They are mapped to
POSIX mutexes or spinlocks, according to the camfijon process of the library during its
installation. These primitives are not user-leteeéaid aware.

e psthread_lock t: Type of synchronization variable.

e void psthread_lock_init(psthread_lock_t *lock_var): Initializes a lock.

e void psthread_lock_acquire(psthread_lock_t *lock_var): Acquires a lock.

e void psthread lock try acquire(psthread_lock_t *lock_var): Attempts to acquire a lock.

e void psthread_lock_release(psthread_lock_t *lock_var): Releases a lock.

e void psthread_lock_destroy (psthread_lock _t *lock_var): Destroys a lock.

435 Condition Variables
The implementation of condition variables is basedhe queues.

e psthread_cond _t: Type of condition variable.
e void psthread_cond_init(psthread_cond_t *cond): Initializes a condition variable.

e void psthread_cond_wait (psthread_cond_t *cond, psthread _lock_t *lock): The current thread
waits on a condition variable. The thread has toquae the lock before calling
psthread_cond_wait. Before its suspension, theathneleases the lock. When the thread is
resumed, the routine returns and the thread intlgliacquires the lock.

e void psthread cond_signal (psthread cond_t *cond): Signals a condition variable. A single
user-level thread that waits on that conditionafale will become ready for execution.

e void psthread_cond_broadcast (psthread cond_t *cond): Broadcasts a condition variable. All
threads blocked on that condition variable willsveaked.

e void psthread_cond_destroy (psthread_cond_t *cond): Destroys a condition variable.

43.6 Barriers

The barriers of PSthreads are based on D. Butesfidfproposed implementation that makes use of
condition variables.

e psthread_barrier_t: Type of barrier between user-level threads.

e int psthread barrier_init (psthread_barrier_t *barrier, int count): Initializes a barrier.

e int psthread_barrier_wait (psthread_barrier_t *barrier): The current thread blocks until the
required number of threads has reached the barrier.

e int psthread barrier_destroy (psthread_barrier_t *barrier): Destroys a barrier.

437 Thread Local Storage(TLYS)

The PSthreads library supports a limited form ofedd local storage. It allows up to
MAX_TLS KEYS (= 64) keys of storage and there i$ sigpport for key destruction.

o psthread_key t: Type of key for thread specific data.

e int psthread key create(psthread key t *key, void *dummy): Allocates a key for TLS data.

e int psthread_setspecific(psthread_key t key, const void *value): Stores a value at positidey
of thread local storage.

e int psthread_setspecific2(psthread_t thr, psthread key t key, const void *value): Optimized
version of the previous routine.

o void *psthread_getspecific(psthread_key t key): Retrieves the value stored at positkay of
thread local storage.

o void psthread_key destroy(psthread_key t key): Releases a specified position in the thread
local storage array.

438 Auxiliary Routines
e doublepsthread_gettime(void): Returns the current time in seconds.

o void psthread_vp_dleep (int msec): Suspends the current virtual processor (kernedatl) for
msec milliseconds. This call is not user-level dir@ware and thus the running user-level thread
also remains suspended.

4.4 Psthread Specific Configuration Options

e Ready queues architecture: The user can determine whether a single globalguvill be only
available or local ready queues will be also presen

e Thread stealing mechanism: If a single global queue is used, all virtual ggssors try to dispatch
work from there. When local ready queues have beéwated, an idle virtual processor will try to
find work in remote queues only if the thread stepmechanism of the library is enabled.

e Runtime behaviour of idle virtual processors: When there is enough work available, a virtual
processor may not find any thread to execute and Hecomes idle. The user can determine
whether an idle virtual processor executes thedidhmg loop continuously or yields the physical
processor periodically.

5. Configure
Common (general) options
e [--with-maxvps=num]: sets the maximum supported benof virtual processors (default: 16).

o [--with-sync=method]: sets the Pthreads synchrdiimamechanism that will be used. Possible
options: mutex (default), mutex_try, spin, spin. try

o [--with-recycling=method]: sets the recycling menisan for threads in both libraries. Possible
options: local, global, none.

e [--with-cachelinesize=value]: the user can give ¢hehe line size, which is used in the alignment
of internal data structures. The configuration ctiies to find out the exact value. If this not
possible, the default value is set equal to 128.

Uthlib options
e [--with-csm=method]: sets the context switch metkgjtj, mcsc).

e [--enable-asmsjlj]: enables the built-in implemeimta of the sjlj context-switch method. This
option is ignored if there is not such implememtaton the working platform.

e [--enable-uth2pth]: enables the emulation of useel threads on top of POSIX threads. It is
disabled by default. If enabled, the previous apt®omeaningless.

o [--enable-stackalign64]: if set, the stack is atigron 64-byte boundaries. By default, stacks are
page-aligned.

PSthreads options

e [--enable-singlequeue]: a single ready queue wallubed for thread dispatching. It is disabled by
default, which means that local queues are in use.

e [--enable-yieldvp]: an idle virtual processor yiglthe underlying physical processor by calling
sched_vyield() (default:disabled).

e [--enable-stealing]: enables thread stealing fahRfds (default:disabled).

10

References

[1]
(2]
[3]

[4]

[5]
[6]

[7]

Butenhof, D. R.: Programming with POSIX Threadsoffssional Computing Series, Addison-
Wesley, ISBN 0-201-63392-2, May 1997.

Engelschall, R.: Portable Multithreading: the SigBtack Trick for User-Space Thread Creation,
In Proc. of the USENIX Annual Technical Conferen2@Q0.

Hadjidoukas, P. E: Implementing Unix ucontext_t rgiens on Windows Platforms. The Code
Project. Threads, Processes and IPC. May 2003. Iblei at
http://www.codeproject.com/threads/context.asp

Keppel, D.: Tools and Techniques for Building F&sfrtable Thread Packages, University of
Washington at Seattle, Technical Report UW-CSE-8®6, June 1993.

Netscape Portable Runtime Library. Availablép://www.mozilla.org/docs/refList/refNSPR

The Open Group Base Specifications Issue 6, I|EEHE. St003.1, 2003 Edition,
http://www.opengroup.org/onlinepubs/007904975/

State Threads Library for Internet Applications. MB Open Source Projects,
http://oss.sgi.com/projects/state-threads/.

11

