
A portable C compiler for OpenMP V.2.0

Vassilios V. Dimakopoulos
Dept. of Computer Science

University of Ioannina, Greece

E-mail: dimako@cs.uoi.gr

Elias Leontiadis
Dept. of Computer Science

University of Ioannina, Greece

E-mail: ilias@cs.uoi.gr

George Tzoumas
Dept. of Informatics and Telecommunications

University of Athens, Greece

E-mail: grad0491@di.uoa.gr

Abstract

This paper presents an overview of OMPi, a portable

implementation of the OpenMP API for C, adhering to

the recently released version 2.0 of the standard. OMPi

is a C-to-C translator which takes C code with OpenMP

directives and produces equivalent C code which uses

POSIX threads, similarly to other publicly available

implementations. However, in contrast to the latter,

OMPi is written entirely in C and, more importantly,

implements fully version 2.0 of the OpenMP C API.

We present major aspects of the implementation, along

with performance results.

1. Introduction

Multiprocessor systems are becoming increasingly

popular even for the desktop; workstations with two

to four processors are commonplace nowadays. The

majority of such systems support shared memory by

utilizing either symmetric multiprocessor (SMP) or dis-

tributed shared memory (DSM) organizations. Shared

memory is even supported in clustered multiprocessors

and networks of workstations through software DSM

(SDSM).

Shared memory programming is one of the most

popular parallel programming paradigms. Until re-

cently, however, writing a shared-memory parallel pro-

gram required the use of vendor-specific constructs

which raised a lot of portability issues. This problem

was solved by OpenMP [10, 11], a standard API for

C, C++ and Fortran which has been endorsed by all

major software and hardware vendors. In contrast to

other APIs such as the POSIX threads (pthreads for

short), OpenMP is a higher level API which allows the

programmer to parallelize a serial program in a con-

trolled and incremental way.

The OpenMP API consists of a set of compiler di-

rectives for expressing parallelism, work sharing, data

environment and synchronization. These directives are

added to an existing serial program in such a way that

they can be safely discarded by compilers that do not

understand the API (thus leaving the original serial

program unchanged). That is to say, OpenMP extends

but does not change the base language (C/Fortran).

This paper presents OMPi, our implementation of

an experimental C compiler for OpenMP version 2.0

and is organized as follows: after reviewing some re-

lated implementations in Subsection 1.1, we give an

overview of our implementation in Section 2. In Sec-

tion 3 we evaluate OMPi’s performance and compare

it to other implementations. We conclude the paper

in Section 4 with a summary and a discussion of the

project’s current status.

1.1. Related work

Most of the compilers that understand the OpenMP

directives are vendor proprietary or commercial. How-

ever, some non-commercial implementations have re-

cently become available, such as the OdinMP/CCp and

the Omni compilers.

OdinMP/CCp [3] supports OpenMP for C and is a

C-to-C translator that produces C code with pthreads

calls. A new version called OdinMP is available as part

of the Intone project [2]. The Intone project aims at

producing a compilation system along with instrumen-

tation and performance libraries for OpenMP. The cur-

rent version of OdinMP [8] produces C/C++ code but

it does not fully support the OpenMP API (e.g. there

are no threadprivate variables allowed). The output

code includes calls to the Intone run-time library which

is based on the Nanos system.

Nanos [1] was a source-to-source Fortran compila-

tion environment mainly for SGI Irix machines, which

included a parallelizing compiler, a user-level thread li-

brary and visualization tools. The Nanos system sup-

ported a subset of version 1.0 of the OpenMP Fortran

standard.

Omni [13] is a sophisticated compilation system that

supports OpenMP for both C and Fortran. It is also a

source-to-source compiler which can target a number of

thread libraries such as pthreads, Solaris threads, IRIX

sprocs, etc., and it also includes a cluster-enabled en-

vironment. Omni currently adheres to the first version

of the C standard.

2. Overview of OMPi

Like the other publicly available implementations,

OMPi is a C-to-C translator which takes as input

C source code with OpenMP directives and outputs

equivalent C code which uses pthreads, ready for par-

allel execution on a multiprocessor. Pthread-based

code is actually a desirable feature since it is quite

portable, and can even be used in uniprocessor ma-

chines. Our students do most of their program devel-

opment in uniprocessor workstations and move to mul-

tiprocessor machines at the final stages of code fine-

tuning.

In contrast with other implementations, which sup-

port the first version of the standard [10], our compiler

adheres to the latest (second) version [12]. To the best

of our knowledge, this is the first publicly available im-

plementation for this new version of the standard.

In addition, OMPi is implemented entirely in C,

while OdinMP and Omni have parts of the compiler

written in Java and require a Java interpreter dur-

ing compilation. We made this choice for many rea-

sons, an important one being compilation performance.

First, Java may not be available on all platforms; sec-

ond its resource requirements are quite high. This

shows up clearly during compilation; Fig. 1 includes

&RPSLODWLRQ�WLPHV�IRU�WKH�6*,�2ULJLQ������V\VWHP

�

��

��

��

��

���

���

���

���

���

���

EW OX VS

VH
FR

QG
V

RGLQ
RPQL
RPSL
PLSVSUR

&RPSLODWLRQ�WLPHV�IRU���&38�/LQX[�V\VWHP

�

��

��

	�

�

��

��

�

EW OX VS
VH

FR
QG

V

RGLQ
RPQL
RPSL
LFF

Figure 1. Compilation times for three of the NAS
Parallel benchmarks on two systems

a comparison of compilation times on a SGI Origin

2000 with 48 CPUs, running Irix 6.5 and on a 2-CPU

Compaq Proliant ML570 server running Redhat Linux

9.0. The compilation times are for three applications

(bt, lu, sp) from the NAS Parallel Benchmarks suite

[7]. We compared OMPi to OdinMP/CCp, Omni and

the corresponding proprietary compilers which support

OpenMP (MIPSpro 7.3 and Intel C/C++ compiler

7.1). It is seen that while the commercial compilers

have an expected advantage, OMPi is faster than the

other implementations.

2.1. Code parallelization

The parallelization processes consists of various code

transformations. In particular, a parallel region spawns

a number of threads, each executing the code inside the

region. The transformed program has this code moved

to a new function which is executed by all threads.

Private variables are declared inside this function while

shared variables are accessed through pointers.

An example is given in Fig. 2 where:

int a; /* global */

main()

{

int b, c;

#pragma omp parallel private(c)\

num_threads(3)

{

c = b a;

...

1 int a;

2 typedef struct /* Shared vars structure */

3 {

4 int (*b); /* b is shared, non-global */

5 } par0_t;

6 main()

7 {

8 int b, c;

9 _omp_initialize();

10 {

11 /* Declares par0_vars, the shared var struct */

12 _OMP_PARALLEL_DECL_VARSTRUCT(par0);

13 /* par0_vars->b will point to real b */

14 _OMP_PARALLEL_INIT_VAR(par0, b);

15 /* Run the threads */

16 _omp_create_team(3, _OMP_THREAD, par0_thread,

17 (void *) &par0_vars);

18 _omp_destroy_team(_OMP_THREAD->parent);

19 }

20 }

21 void *par0_thread(void *_omp_thread_data)

22 {

23 int _dummy = _omp_assign_key(_omp_thread_data);

24 int (*b) = &_OMP_VARREF(par0, b);

25 int c;

26 c = (*(b)) + a;

27 ...

28 }

Figure 2. Code transformation: original (left), produced (right)

1. Each thread will execute par0 thread(), lines 16

and 21–28.

2. Private variables (like c) are re-declared as local

to par0 thread(), line 25.

3. Shared variables that are local in main() (like

b) cannot be accessed in par0 thread(), so a

structure is defined which contains pointers to all

shared variables associated with the parallel re-

gion (par0 t par0 vars in the example, lines 12

and 2–5).

4. Global variables are by nature available to all

threads. Thus, shared global variables (like a) are

not included in the structure, and are accessed di-

rectly by each thread (line 25).

Special precautions are taken for array variables, for

which we have noticed that some implementations (like

OdinMP/CCp 1.02) have problems.

OMPi initially creates a pool of threads which are

put to sleep, waiting for work. Upon encountering a

parallel region, a number of threads are awakened and

are given the function to execute (along with the mas-

ter thread). At the end of the parallel region each

threads goes to sleep; after all threads sleep, the mas-

ter thread is the only one to continue its execution.

The number of threads to participate in the exe-

cution of a parallel region is governed by the standard

OpenMP library functions and environmental variables

and can also be dynamically adjusted. The new clause

num threads(N) of OpenMP V.2.0 is also supported

whereby the parallel region is enforced to use exactly

N threads.

2.2. Data environment

The handling of shared and private variables was

described in the previous section. In addition, re-

privatization of variables is supported. That is, vari-

ables declared as private in a parallel region can be

declared as private in a nested directive, as in the fol-

lowing example:

int a;

#pragma omp parallel private(a)

{

...

#pragma omp for private (a)

...

}

OMPi supports threadprivate variables, where

globally defined variables can be local to the execut-

ing threads. In conformance with V.2.0, static block-

scope variables are also allowed to be declared as

threadprivate.

Finally, the new copyprivate clause is implemented

for single directives, whereby upon completion of the

single region the value of certain variables are broad-

cast to all threads. In OMPi the thread that executed

the single region allocates sufficient space on a desig-

nated area of the team’s master thread and copies the

required data. The rest of the threads copy the data in

parallel from the master thread to their private space

right after the implied barrier at the end of the single

region. The last thread to do so frees the allocated

space.

2.3. Implementation

OMPi is implemented entirely in C, using the stan-

dard flex and bison tools for lexical and syntax anal-

ysis correspondingly. This makes it quite portable and

porting it to different systems has been proved a triv-

ial task. It currently runs on a variety of uniprocessor

and multiprocessor Sun Solaris, SGI Irix and Linux

machines supporting the pthreads library.

OMPi includes the compiler itself and a supporting

run-time library. The compilation process of a source

file is performed in three steps. In the first step the C

preprocessor is invoked. In the second step, the result-

ing file undergoes code transformations and produces

C code with calls to pthreads and the run-time library.

In the third step the the host’s native C compiler is

invoked to produce the executable.

3. OMPi performance

We have invalidated our implementation and evalu-

ated its performance using a multitude of application

and benchmark codes. Here we present the results for

the NAS Parallel Benchmarks suite (NPB, [7]), version

2.3, which has been ported to OpenMP C by the Omni

group [9].

The benchmarks were run on two different systems.

The first one was an SGI Origin 2000 machine (Irix 6.5)

with a total 48 MIPS R10000 CPUs, where we only

had access to 8 of them. The other one was a SUN E-

1000 server with 4 Sparc CPUs and Solaris 5.7. In the

first system we had access to the native MIPSpro V.7.3

compiler which supports OpenMP pragmas, while the

second system did not have a native OpenMP compiler.

We also used Omni and tried to use OdinMP/CCp but

the later had a lot of problems, while it could not be

used in the SUN machine due to the lack of Java. All

benchmarks were Class W.

Figs. 3–4 show the results for a sample of 4 out of

the 8 application codes, namely the BT, CG, FT and

LU routines. The results in Fig. 3 correspond to the

SGI machine while the ones in Fig. 4 are for the SUN

machine. For the FT benchmarks the Omni compiler

failed for 6 or more threads and we were unable to

resolve the problem. From the plots it is easily seen

that OMPi outperforms Omni in most cases while its

performance is comparable with that of the MIPSpro

compiler on the SGI system.

3.1. EPCC microbenchmarks

We have used the EPCC microbenchmarks [4] from

the University of Edinburgh to measure the synchro-

nization and loop scheduling overheads incurred in by

the OpenMP directives.

In Fig. 5 we give the results on the SGI machine

and we compare it with OdinMP/CCp. We note that

we encountered problems with getting reliable mea-

surements with the MIPSpro compiler which we could

not resolve and thus could not include results here. It

is seen that OMPi scales reasonably well, and in the

same spirit as the Fortran results reported on a similar

machine [5], while OdinMP/CCp shows poor perfor-

mance. The only benchmark that seems to scale poorly

in OMPi is the ordered one which we are currently in-

vestigating.

In Fig. 6 we give the results on the SUN machine,

compared to corresponding results by Omni. Omni

shows higher overheads which however remain more

or less constant. OMPi incurs smaller overhead, but

the parallel and reduction microbenchmarks incur

slightly higher overhead for 4 threads.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
)

number of threads

BT

OMPI
OMNI

MIPSPRO

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
)

number of threads

CG

OMPI
OMNI

MIPSPRO

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
)

number of threads

FT

OMPI
OMNI

MIPSPRO

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8

T
im

e
(s

ec
)

number of threads

LU

OMPI
OMNI

MIPSPRO

Figure 3. NPB benchmarks on the SGI Origin 2000

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4

T
im

e
(s

ec
)

number of threads

BT

OMPI
OMNI

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4

T
im

e
(s

ec
)

number of threads

CG

OMPI
OMNI

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4

T
im

e
(s

ec
)

number of threads

FT

OMPI
OMNI

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4

T
im

e
(s

ec
)

number of threads

LU

OMPI
OMNI

Figure 4. NPB benchmarks on the SUN E-1000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8

T
im

e

number of threads

OMPI

parallel
for

parallel for
barrier
single
critical

lock unlock
ordered
atomic

reduction

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8

T
im

e

number of threads

ODINMP/CCP

parallel
for

parallel for
barrier
single
critical

lock unlock
ordered
atomic

reduction

Figure 5. EPCC microbenchmarks on the SGI system

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4

T
im

e

number of threads

OMPI

parallel
for

parallel for
barrier
single
critical

lock unlock
ordered
atomic

reduction

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4

T
im

e

number of threads

OMNI

parallel
for

parallel for
barrier
single
critical

lock unlock
ordered
atomic

reduction

Figure 6. EPCC microbenchmarks on the Sun system

We are currently investigating the microbenchmarks

results to determine the sources of overhead so as to be

able to improve OMPi-produced code’s scalability.

4. Discussion

OMPi is an experimental implementation of the

OpenMP API for C, implemented entirely in C, which

uses the standard POSIX threads library. Its perfor-

mance has been proved quite satisfactory, generally be-

ing comparable or superior to other publicly available

implementations, and reasonable as compared to na-

tive compilers we had access to.

OMPi adheres to the second version of the OpenMP

C API which was released in March 2002 [12] and in-

cludes a number of clarifications for the first version as

well as a number of new features. The most important

new features which are supported in OMPi are:

• num threads clause in the parallel directive

• reprivatization: a private variable in a parallel re-

gion is allowed to be marked as private in a nested

directive.

• static variables can also be marked as threadpri-

vate

• run-time routines to measure wall-clock time,

omp get wtick() and omp get wtime().

• new copyprivate clause in the single directive

whereby the value of a private variable is copied

from one thread to the others.

OMPi is a on-going project in the University of Ioan-

nina and currently undergoes major improvements. We

are in the process of targeting, apart form POSIX

threads, the host’s native thread libraries such as so-

laris threads for SUN machines and sprocs for SGI Irix

machines, which we expect will boost OMPi’s perfor-

mance even further.

Also, we are currently adding profiling features in

our compiler, in the spirit of POMP [6], and construct-

ing a graphical tool for performance tuning.

OMPi and its source code will be available at the

following URL: http://www.cs.uoi.gr/~ompi.

References

[1] E. Ayguade, M. Gonzalez, J. Labarta, X. Mar-

torell, N. Navarro and J. Oliver, “NanosCompiler:

A Research Platform for OpenMP Extensions,”

in Proc. EWOMP99, the 1st Europ. Worksh.

OpenMP,, Lund, Sweden, Oct. 1999,

[2] M. Brorsson, “Intone – Tools and Environments

for OpenMP on Clusters of SMPs,” in Proc.

WOMPAT 2000, Worksh. OpenMP Applic. and

Tools , San Diego, CA, USA, July 2000,

[3] C. Brunschen and M. Brorsson, “OdinMP/CCp –

A portable implementation of OpenMP for C,”

Concurrency: Practice and Experience, Vol. 12,

pp. 1193–1203, Oct. 2000.

[4] J. M. Bull, “Measuring Synchronisation and

Scheduling Overheads in OpenMP,” in Proc.

EWOMP 1999, Europ. Worksh. OpenMP , Lund,

Sweden, Sept. 1999,

[5] J. M. Bull and D. O’Neill, “A Microbenchmark

Suite for OpenMP 2.0,” in Proc. EWOMP 2001,

Europ. Worksh. OpenMP , Barcelona, Spain, Sept.

2001,

[6] B. Mohr, A. Mallony, H. - C. Hoppe, F. Schlim-

bach, G. Haab and S. Shah, “A performance mon-

itoring interface for OpenMP,” in Proc. EWOMP

2002, Europ. Worksh. OpenMP , Roma, Italy,

Sept. 2002,

[7] NASA, “The NAS Parallel Benchmarks,”

http://www.nas.nasa.gov/Software/NPB/ ,

[8] OdinMP website, http://odinmp.imit.kth.se/ ,

[9] Omni OpenMP Compiler website,

http://phase.hpcc.jp/Omni ,

[10] OpenMP Architecture Review Board, “OpenMP

C and C++ Application Program Interface,”

http://www.openmp.org, Version 1.0 , Oct. 1998.

[11] OpenMP Architecture Review Board, “OpenMP

Fortran Application Program Interface,”

http://www.openmp.org, Version 2.0 , Nov.

2000.

[12] OpenMP Architecture Review Board, “OpenMP

C and C++ Application Program Interface,”

http://www.openmp.org, Version 2.0 , Mar. 2002.

[13] M. Sato, S. Satoh, K. Kusano and Y. Tanaka, “De-

sign of OpenMP Compiler for an SMP Cluster,” in

Proc. EWOMP ’99, 1st Europ. Worksh. OpenMP ,

Lund, Sweden, Sept. 1999, pp. 32–39.

