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Abstract

The OpenMP programming model provides a number of
loop scheduling policies which the application developer
can utilize to split loop iterations among the threads exe-
cuting a parallel region. Because determining the optimal
schedule policy and its parameters may be a tedious task,
OpenMP offers a special schedule, called runtime; this al-
lows the application developer to experiment with different
scheduling policies at execution time, using a special en-
vironment variable, without the need to re-compile their
program. However, there is a fundamental limitation to
this facility: all application loops with the runtime schedule
must follow the exact same scheduling policy. We propose
a simple but effective extension that alleviates this limita-
tion by allowing for different, per-loop runtime schedules.
In addition, we use this mechanism to introduce extra loop
scheduling policies which are not officially supported by
OpenMP but may however prove effective in certain appli-
cations.

1 Introduction

OpenMP [1] is a popular application programming inter-
face which keeps evolving. Based on compiler directives,
it offers a layer of abstraction for creating parallel applica-
tions with many low level operations like thread creation
handled automatically. Since its inception, one of the core
functionalities of OpenMP is loop parallelization; special
directives specify that the iterations of a given for loop be
divided between all available threads. In addition, it pro-
vides three different, parametrizeable scheduling methods
for controlling how the iterations will be distributed. How-
ever, finding the optimal way to divide the iterations is not a
trivial task; among a variety of factors, the optimal schedul-
ing strategy may depend on the code a loop contains and the
speed or load of the cores executing its iterations.

To retain flexibility, the OpenMP API offers runtime
functions for setting values that affect various aspects of
the execution of an application. Additionally, some of those
values can be initialized through specific environment vari-
ables. This way, there is no need to keep modifying the ap-
plication code if one only wishes to experiment with differ-

ent values for some specific parameter. The loop schedul-
ing method is one of the execution parameters a user can
modify at runtime. However, because a single environment
variable initializes the schedule values, a single choice must
be made for all the runtime-controlled loops of the pro-
gram.

The three available scheduling methods is a further limi-
tation of OpenMP. While they can be parametrized to cover
a wide variety of loop-based applications, other methods
have been proposed and proven to be more effective in spe-
cific cases (e.g. [2, 3]). This motivated Müller Korndörfer
et al. [4] to implement additional scheduling strategies for
the Clang/LLVM compiler. Their implementation utilizes
the runtime scheduling option of OpenMP plus additional
environment variables; as such their scheme still has the
limitation that all runtime-controlled loops of the program
use the value of the same environment variable.

In this work we first propose a novel extension for
OpenMP that allows per-loop runtime selection and
parametrization of the applied scheduling strategy. We
achieve this by introducing a tagging mechanism which al-
lows labeling the OpenMP constructs of interest and then
controlling them through matching environment variables.
We then present an infrastructure which allows the addition
and utilization of new scheduling strategies, in a portable
way. The new strategies may be utilized either through the
OpenMP auto schedule and/or the aforementioned tagging
mechanism. The major contributions presented in this pa-
per are the following:

• A language-level extension that allows assigning a tag
to any OpenMP loop construct either through a new
clause or through a new directive.

• A runtime mechanism that provides the means to con-
trol the scheduling of loops with a given tag.

• An infrastructure for implementing and utilizing addi-
tional loop scheduling strategies for OpenMP loops in
a portable way.

• A full implementation of all the above in an open-
source OpenMP compiler [5].

The rest of the paper is organized as follows: After dis-
cussing related work in Section 1.1, we give an overview
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of what OpenMP offers for loop scheduling, in Section 2.
Section 3 presents our tagging proposal while Section 4
presents the mechanisms used to implement and deploy
new scheduling policies. We then present experimental re-
sults to demonstrate and evaluate our proposal in Section 5.
Finally, Section 6 concludes the paper.

1.1 Related Work

Loop scheduling algorithms has been a topic of quite ex-
tensive research and a comprehensive survey is beyond the
scope of this work. We only present a small subset of
well known methods here. Work is usually given out to
threads in chunks of consecutive iterations. Many schedul-
ing strategies, including the ones offered by OpenMP, fo-
cus on calculating an efficient chunk size based on a vari-
ety of criteria, while trying to keep synchronization over-
heads low; fixed size chunking [6], taper [7], factoring [8],
and trapezoid self-scheduling [2] are characteristic exam-
ples. Weighted Factoring [9] requires additional knowledge
about the relative processing unit speeds. Fractiling [10]
exploits the self-similarity properties of fractals, attempt-
ing to maximize data locality.

A different approach is followed by the so-called adap-
tive scheduling methods. These policies change their
scheduling decision according to data they collect during
runtime; [4] is a comprehensive survey for such methods,
as well as the methods mentioned above.

Another idea is improving load balance by work steal-
ing. The affinity scheduling strategy [3] employs this tech-
nique while also accounting for processor affinity; iCH [11]
is another recent scheduling proposal which uses the same
technique. Finally there have been proposals of automatic
scheduling method selection [12–14].

There have been some works aiming to enhance the
scheduling capabilities of OpenMP, focusing mainly on the
addition of extra scheduling strategies. OpenMP supports
three scheduling schemes, static, dynamic and guided [1].
A methodology for implementing new scheduling tech-
niques is given in [15] for the LLVM compiler infrastruc-
ture, where the authors implemented an additional schedul-
ing scheme, while [4, 16] argue that more scheduling tech-
niques should be included. The authors in [17] make
a proposal for allowing arbitrary user-defined scheduling
methods to be supported in OpenMP. Our tagging pro-
posal in this work is orthogonal to all these works since
it is schedule-agnostic and offers a way to employ different
policies on different runtime-scheduled loops.

2 OpenMP Loop Scheduling

OpenMP offers three loop scheduling methods, namely
static, dynamic and guided. In all these methods, work is
assigned to threads in chunks of consecutive iterations; a
chunksize parameter may be specified to control the size of

iteration chunks. In static scheduling, the iteration distribu-
tion is predetermined and fixed, thus keeping the schedul-
ing overheads small. Chunks are assigned in a round-robin
fashion to the available threads. Without a chunksize, the it-
erations are divided to chunks of approximately equal size
and each thread gets at most one chunk. The static sched-
ule is a good choice for loops whose iterations have ap-
proximately the same amount of work to do, and the avail-
able processing units are evenly loaded. Otherwise, this
scheduling strategy will lead to suboptimal performance.

The dynamic and guided methods are self-scheduling
policies and assign chunks dynamically during the program
execution. While dynamic distributes chunks of equal size,
guided initially assigns larger chunks, in order to keep the
scheduling overheads low; then the chunk sizes are gradu-
ally reduced so as to achieve better load balance. For the
guided policy, if the user provides a chunksize, it will act
as a lower bound on the size of chunks given away (except
possibly for the last chunk which may be smaller).

OpenMP also supports two more schedule “types”,
auto and runtime. The former is an unspecified,
implementation-defined schedule; the compiler and/or the
runtime system is free to map iterations to threads in any
possible way. The runtime schedule is not actually a dif-
ferent scheduling policy; it just allows picking the ex-
act scheduling method during the program execution (in-
stead of hard-coding it in the program source), by select-
ing among the four methods available (static, dynamic,
guided and auto). This allows experimenting with differ-
ent scheduling methods during runtime execution, without
recompiling the application.

To understand the mechanism, one needs to know that
an OpenMP implementation must maintain a number of in-
ternal control variables (ICVs) which control the behavior
of an OpenMP program. One of the ICVs is run-sched-
var which specifies the actually employed method when
a runtime schedule is in effect. The initial value of run-
sched-var is implementation-specific while its value may
change at any time during a program’s execution. When an
OpenMP application starts its execution, a set of environ-
ment variables are checked, and if the user has assigned a
value to any of them, the corresponding ICV is updated ac-
cordingly. After that, OpenMP API routines can be called
to retrieve or modify the value of the ICV.

For worksharing loops parallelized by the OpenMP for
directive, the schedule clause may be used to force a
particular scheduling policy for that loop. This clause ac-
cepts the name of the scheduling method and, optionally,
an integer that represents the desired chunksize. Determin-
ing the actual scheduling policy goes through the following
steps:

1. If there is no schedule clause, the scheduling pol-
icy of the def-sched-var ICV is employed; this is
implementation-defined and there is no way for a pro-
grammer to determine or change its value.

2. If a schedule clause is present and it specifies any
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of the scheduling policies except runtime, the speci-
fied policy is used.

3. The presence of schedule(runtime) clause
forces the scheduling policy of the run-sched-var ICV.

In the last case, the OMP_SCHEDULE environment vari-
able can be used to give the desired initial value to the run-
sched-var ICV. The value may also be changed program-
matically through the omp_set_schedule() runtime
API call.

There are two things to notice here:

• First, because a single environment variable controls
the value of run-sched-var, all loops parallelized with
the schedule(runtime) will be forced to use the
same scheduling policy.

• Second, although the omp_set_schedule() can
change the value of run-sched-var dynamically, it
must specify a concrete schedule type which has to
be hard-coded in the program source code; changing
the schedule type thus requires re-compilation of the
user program after all.

As a result, for applications that contain more than one
parallelized for loops, OpenMP offers no easy way for
exploring the scheduling policy space without repetitive
source code-level changes and re-compilations. Our pro-
posal tries to remedy this limitation in an easy and portable
way.

3 Proposed Extension: Tags
In what follows, when we talk about loops, we imply loops
parallelized with the OpenMP for directive, utilizing the
schedule(runtime) clause. In order to overcome the
limitations of the runtime OpenMP schedule when multi-
ple such parallel loops are present, the user must be able
to specify different scheduling policies for different loops.
The single OMP_SCHEDULE environment variable can not
provide the means to do that; the natural solution is to use
a separate environment variable for each loop.

In order to be able to identify a loop so as to provide a
specific environment variable for it, we propose a labeling
scheme for loops. In particular, we propose the addition of
a new tag clause which can be used to label a for or a
combined parallel for construct, with the following
syntax:

tag( label )
tag( label, n )

The clause accepts a legal label name to be used as the tag
of the construct. Optionally, it accepts a second argument
which must be an integer expression; its value will be con-
catenated with the first argument, forming the final label
name. The second form is useful in the case the OpenMP
loop of interest is enclosed within another loop; using the

index of the outer loop as the second argument of the tag
clause produces a unique label for each of the instances of
the inner loop.

While the tag clause is a very easy way to label a loop
construct, its presence results in a non-compliant OpenMP
program as no compiler will accept it (save OMPi, which
we have modified to accept and act on it). For this reason,
we also propose a compliant and portable way of tagging
any OpenMP construct, with the following general form:

#pragma ompext tag( label [, n] )
openmp-construct

The OpenMP construct we need to label is preceded by a
non-OpenMP tag directive which provides the label. This
pragma should be ignored by standard compilers, causing
no compatibility problems.

Labeling arbitrary OpenMP constructs with the tag di-
rective is quite general and, in addition, it allows consider-
able flexibility. For example, if a parallel region contains
multiple for loops and we want to set the same tag for all
of them, instead of using a tag clause on every single loop,
we can set a tag for the whole parallel region. The tags are
passed down to any descendant threads, so any code inside
the parallel region can use the information we set for the
specified tag.

A tagging directive may be nested inside an OpenMP
construct that has already been labeled by another tagging
directive. In the above example, some of the loops inside
the tagged parallel region could have their own tags; if a
loop construct has not been individually tagged, it inherits
the tag assigned to the region it appears in.

3.1 Per-Tag Environment Variables

Given that loops can be identified with tags, we can spec-
ify their runtime schedule using different environment vari-
ables. The environment variable that corresponds to a loop
tagged with label is named OMPI_TAG_SCHED_label.
For example the environment variable for the tag loop1
would be OMPI_TAG_SCHED_loop1. For compatibil-
ity, the value given to such an environment variable fol-
lows the standard OpenMP syntax. For example, setting
OMPI_TAG_SCHED_loop1=static,10 would make
the loop tagged as loop1 to utilize the static scheduling
policy with a chunksize of 10 iterations.

An immediate observation is that since these environ-
ment variables are not bound to OpenMP rules, they could
utilize an alternative syntax for their values. Taking this
one step further, such variables could be used to select ad-
ditional scheduling policies, which the OpenMP standard
has not yet endorsed. This is exactly what we present in
Section 4; we have implemented a number of new schedul-
ing policies and we exploit the tagging mechanism to apply
them to specific loops. Consequently, except for the stan-
dard OpenMP syntax, we allow an additional syntax for
giving values to the per-tag environment variables:
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OMPI_TAG_SCHED_label = policy( arg [, arg ] ... )

where arg is a parameter-value pair for the given schedul-
ing policy. We call this a parameter-based syntax. For ex-
ample, c represents the chunksize parameter. In the above
example, the static policy with a chunksize of 10 iterations
could be equivallently specified in parameter-based syntax
as:

OMPI_TAG_SCHED_loop1=static(c=10)

More details will be presented in Section 4.

3.2 Scope and Runtime Handling of Tags
In order to support nesting of tags, a tag stack is maintained
at runtime for each implicit or explicit task. Descendant
tasks inherit the ancestor’s stack and may top it with new
tags. For example, when a parallel region is encountered,
the created threads (i.e. implicit tasks) start with the par-
ent thread tag stack. Whenever a new tag is encountered
for an OpenMP construct C, the label is pushed onto the
task’s tag stack. The tag’s scope is the region of construct
C; any nested constructs within C also have access to the
given tag. When the execution of C is completed, the tag is
popped off the stack.

When encountering a loop construct with a runtime
schedule, the following procedure is effected1:

• If the loop construct is not tagged, the topmost tag in
the stack whose matching environment variable pro-
vides scheduling information is utilized.

• If the loop construct is tagged, the top element of the
tag stack is compared with the given label.

• If the two labels concur, the value of the matching en-
vironment variable is utilized to determine the desired
schedule.

• If the two labels do not concur, or the matching envi-
ronment variable has not been set by the user, a default
value is used, as determined from the global ICVs.

Consider Listing 1 as an example. Let us assume that
the environment variables OMPI_TAG_SCHED_outer
and OMPI_TAG_SCHED_nested have been set with
the values guided and dynamic, correspondingly. Fi-
nally, there is no OMPI_TAG_SCHED_dummy variable
set. When the application executes, a tag will be created by
the initial thread before reaching the parallel region (line
1). Since its corresponding environment variable has been
set, its value is read and stored. After the thread team is
created, all child threads contain the “outer” label on their
tag stacks. When reaching the first OpenMP loop (line 4),
the “outer” label will be utilized since the loop has no tag
and “outer” is the topmost label on the stack; consequently
the loop will use a guided schedule. The second loop (line

1Unless the standard OMP SCHEDULE environment variable is set.

Listing 1: Tag example

1 #pragma ompext tag("outer")
2 #pragma omp parallel
3 {
4 #pragma omp for schedule(runtime)
5 for-loop
6 #pragma omp for schedule(runtime) tag("

nested")
7 for-loop
8 #pragma omp for schedule(runtime) tag("

dummy")
9 for-loop

10 #pragma omp for schedule(runtime)
11 for-loop
12 }

6) has a tag, and the matching environment variable has
been set; it will use a dynamic schedule and when done, the
“nested” label will be popped off the stack. The loop in line
8 has a tag whose matching environment variable has not
been set; the default scheduling method of the implementa-
tion will thus be used and the “dummy” tag will be popped
off the stack. The fourth loop (line 10) will use a guided
schedule since the “outer” label is still in effect; it leaves
the tag stack at the end of the parallel region.

3.3 Implementation in the OMPi compiler
The implementation of the tagging extension in OMPi was
relatively straightforward, requiring additions to the parser
grammar and the code generator. The transformation phase
replaces the tag directive by two runtime calls that push
the label name onto the tag stack and then pop it. The
generated function calls are placed right before and right
after the tagged OpenMP construct, correspondingly. The
runtime library implements the tag stack and updates it for
each task as described in 3.2.

When a label is pushed on the stack, the corresponding
environmental variable is retrieved and parsed to identify
the required policy and its parameters; the parameters are
then stored and utilized in every loop that is tagged by that
label.

4 New Scheduling Policies
It is well known that for particular classes of applications
certain scheduling methods extract better performance than
what the standard OpenMP schedules offer [2, 3]. Having
access to such methods is a very useful tool when striv-
ing for optimal scheduling times. A setback would be the
possible need to modify the compiler in order to accom-
modate the new schedules and their parameters at the lan-
guage level. Müller Korndörfer, et al. [4] present tech-
niques for implementing extra scheduling policies within
the LLVM framework. They utilize the existing runtime in-
terface so as not to fiddle with the transformation and code
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generation stages of the compiler. Their scheme is imple-
mented entirely within the OpenMP runtime library and the
new loop schedules become available through the runtime
schedule option of OpenMP. For selecting the new meth-
ods, the OMP_SCHEDULE environment variable is used,
whose syntax was modified to allow additional values. For
providing parameters to the new policies, new environment
variables were utilized.

We take a similar approach to introducing new schedul-
ing policies in the OMPi compiler, in that their implemen-
tation is contained entirely within the OpenMP runtime li-
brary and requires no compiler modifications. In contrast
to [4] we do not exploit the runtime schedule mechanics;
we use two different techniques, both of which allow a user
to employ the new scheduling policies without breaking
compatibility with the OpenMP specifications.

The first technique utilizes the auto schedule type which
is implementation-defined anyway. We created a new envi-
ronment variable to be used when auto is selected. This
variable is called OMPI_SCHED_AUTO and follows the
same syntax as the variables described in Section 3.1, used
by the tagging mechanism.

The second way for the user to employ new scheduling
policies is through our tagging mechanism. In particular,
as mentioned in Section 3.1, the parameter-based syntax of
the environment variables that match the labels on tagged
constructs allows for richer descriptions. Each scheduling
policy has a number of defining parameters; all the user
has to do is state the policy name along with values for the
required parameters.

Implementation-wise, the introduction of new schedul-
ing policies involved modifications to the runtime infras-
tructure but did not require any changes to the compiler.
During code transformations OMPi normalizes all loops
and the generated code for runtime-scheduled loops em-
beds library calls for a thread to get the initial itera-
tion chunk along with a pointer to a chunk-distributing
function, called get_next_chunk. It then repeatedly
calls get_next_chunk, recovers the loop indices from
the normalized ones and executes the loop body until
get_next_chunk returns no further iterations. In the
runtime library, we implemented new chunk distributing
functions, one per policy. Minor modifications were also
needed to the scheduling method selection logic to incor-
porate the new functions and associate them with the tag
mechanism. If the loop is tagged, the top of the tag stack is
first checked for the loop’s label. If the corresponding en-
vironment variable has has been defined, the stored policy
parameters are retrieved and get_next_chunk is made
to point to the matching function.

In what follows, we give a brief presentation of all the
scheduling policies we have made available. Their param-
eters are summarized in Table 1; some of them are optional
and they are marked with a “no” in the Required column.
Certain policies require the mean and standard deviation of
the iterations execution time. To help with obtaining these
values, we have an additional pseudo-policy named profil-

Table 1: Available scheduling policies and their parameters

Policy Parameter Symbol Required
static chunksize c no

dynamic chunksize c no
guided chunksize c no

Trapezoid first f no
last l no

FSC standard deviation (σ) s yes
overhead h yes

Taper

mean (µ) m yes
standard deviation (σ) s yes

c.o.v. factor a no
min. chunksize c no

Factoring mean (µ) m yes
standard deviation (σ) s yes

ing; the user executes the program once to get the required
profiling information and then uses it to set the scheduling
method’s parameters accordingly, for the final run. To find
the scheduling overhead, we used a micro benchmark pre-
sented in [18].

4.1 Trapezoid Self-Scheduling

Trapezoid Self Scheduling [2] works like guided but uses
a linear function for decreasing chunk sizes. It takes
two parameters, the sizes of the first (f ) and the last (l)
chunks. The authors claim that the linearity leads to re-
duced scheduling overheads; additionally they suggest N

2P
as a good size for the first chunk, where N is the total num-
ber of iterations and P the available processing units. We
used this as a default value in case the user does not spec-
ify one. The method uses the first and last chunk sizes to
calculate the total number of chunks and the amount (δ) by
which chunk sizes get decreased; the size of the first chunk
is given by c1 = f and the size of the ith chunk is given by:

ci = ci−1 − δ

4.2 Taper

Taper [7] attempts to achieve optimal load balance and re-
duce scheduling overheads by calculating the largest possi-
ble chunk and decreasing the total number of chunks. Like
guided, it distributes chunks in decreasing sizes, but takes
into account the mean and standard deviation of the itera-
tion execution times. In the following equation, ua is the
coefficient of variation (σµ ) multiplied by a scaling factor a
which is found empirically, Ti is the number of remaining
iterations divided by the number of processing units, and
cmin denotes an optional lower limit for the chunk size, ci:

ci = max

{
cmin,

⌈
Ti +

u2
a

2
− ua

√
2Ti +

u2
a

4

⌉}
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4.3 Fixed Size Chunking
Fixed Size Chunking [6] aims to reduce scheduling over-
heads by scheduling multiple iterations at a time. It is sim-
ilar to dynamic scheduling but alleviates the user of having
to find the optimal chunk size by automatically calculating
it using the following formula:

c =

( √
2Nh

σP
√
logP

)2/3

The required inputs are the standard deviation of iteration
execution times (σ) and the method’s scheduling overhead
h, which according to [6] is independent of the chunk size;
P is the number of available processing units and N is the
total number of iterations.

4.4 Factoring
Factoring [8] is also similar to guided scheduling. The
idea is to take into account the execution time variance to
achieve an even better load balance. The difference from
other methods is that it schedules iterations in batches of
P equally-sized chunks (P being the number of process-
ing units). The chunk size ci for the ith batch is calculated
by the following equation, where Ri is the number of re-
maining iterations and xi is a value that depends on the
coefficient of variation (σµ ):

ci =

⌈
Ri

xiP

⌉

5 Evaluation
To evaluate our mechanism we use two applications from
the OpenMP Source Code Repository [19] and one from
the CORAL Benchmarks [20], namely molecular dynam-
ics, Bailey’s “6-step” Fast Fourier Transformation and the
XS benchmark. The applications contain multiple parallel
loops, all of which were tagged appropriately and modi-
fied so as to use the runtime OpenMP scheduling option.
We then run each application using combinations of sched-
ule types through our environment variables for the tagged
loops and measure execution times. For each combination,
we record timing results for 10 runs in total.

We performed our experiments in two systems with very
different capabilities. The smaller one is based on a sin-
gle 8-core Intel Xeon E5-2620v4 CPU with hyperthread-
ing disabled, has 8 GiB of memory and runs Ububtu Linxu
18.04.5 OS. The larger one is equipped with four 16-
core/32-threads Intel Xeon Gold 6130 CPUs, for a total of
64 physical cores and 128 hardware threads. This system
runs on CentOS 8 and has a total amount of 256 GiB of
RAM.

Each application was executed exhaustively with all
schedule combinations for the loops involved, and for a va-
riety of parameter values. Here we present only the most

representative scheduling combinations, with parameters
which offered the best performance for each combination.
Unless otherwise specified, the default chunksize values are
implied for the OpenMP schedules.

To avoid thread placement randomness and/or irregulari-
ties by the OS, the molecular dynamics and XS benchmarks
were run by pinning threads to cores; this was achieved by
setting the environment variables OMP_PLACES=cores
and OMP_PROC_BIND=true. Bailey’s FFT contains
nested parallel regions, so in order to distribute all threads
across the available cores in the 64-core system, we used
OMP_PROC_BIND=spread,close. This leads to a
sparse distribution of threads to sockets for the first level
of parallelism while keeping the second level close to the
primary thread.

5.1 Molecular dynamics

This application is an implementation of a molecular dy-
namics simulation for the velocity Verlet algorithm [21].
The program requires two inputs, the number of particles
and the simulation steps. For both systems we selected 20
simulation steps. For the larger system we used 65536 par-
ticles and for the smaller one 32768. It contains two parallel
for loops which we used for our experiments.

The results are presented in Fig. 1. For each system
we present a selection of policy combinations which bet-
ter convey what can be expected from the attainable perfor-
mance. In the plots execution times are measured in sec-
onds while the x-axis contains the scheduling policies used
for the two loops. The violin plots depict all 10 runs for
each scheduling pair; the shorter the area, the less the vari-
ation in execution times. In Fig. 1(b) we can see that by
using the tag directive with a combination of two policies,
we achieve better times than using a single OpenMP policy.
It is interesting that by combining dynamic or static with
guided using the tagging mechanism, we get the best per-
formance; this shows that even with the build-in scheduling
policies of OpenMP, performance can be improved sub-
stantially by differently scheduled runtime loops. On the
other hand, on the system with 8 cores, we observe no sig-
nificant differences on the execution times by using the new
policies, as seen on Fig. 1(a). Still, the two combinations
of the basic scheduling policies, are again better than sim-
ply using one of them for both loops. In both systems, it is
clear that the static policy is the least stable one, resulting
in large variations in execution times.

5.2 XS Benchmark

The XS benchmark models the most computationally in-
tensive part of a typical Monte Carlo transport algorithm,
and accounts for around 85% of the total execution time of
OpenMC [22]. The application contains two parallel for
loops, one in the initialization phase and one in the actual
calculation. On the system with the 64 processing cores, we
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Figure 1: Molecular dynamics results
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Figure 2: XS benchmark results

set the cross section lookups to 30 million which is double
the default value.

The results are shown in Fig. 2. In both systems the best
execution times were again achieved by using a combina-
tion of scheduling methods (taper and guided in particu-
lar). For taper we used a = 1.3, and m = 6, s = 9.949
(m = 9, s = 35.902) on the smaller (larger) system as ob-
tained after a profiling session. However, by using guided,
the execution times have a smaller variation, while achiev-
ing the same mean.

5.3 Bailey’s “6-step” FFT

This application is an implementation of an FFT algorithm
that consists of six steps and is presented in [23]. The pro-
gram contains four parallel for loops, the three of
which are nested inside the first one. Because the three

nested loops have similar properties, we used the same tag
for all of them. We thus tried combinations of two schedul-
ing policies, the first one corresponding to the outer loop
and the second one corresponding to all three inner loops.
The application requires two inputs, the signal strength and
the number of outer loop iterations. We selected 20 iter-
ations for both systems. For the larger system the signal
strength for our experiments was 8192 and for the smaller
one 4096. Because of the nested parallel regions, care was
taken so as to avoid oversubscription which was found to
impact performance. On the smaller system we used a con-
figuration of 4 × 2 threads (outer × inner level) while on
the larger system we report results for 4×16 threads which
produced the best performance.

The results are displayed in Fig. 3; in the scheduling pol-
icy labels, the first (top) name refers to the outer loop. Be-
cause of the few iterations, guided leads to imbalances, so
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Figure 3: Bailey’s “6-step” FFT results

static or dynamic are proven to be the best choices for the
outer loop. The iterations of the inner loops contain uneven
amounts of work, so a dynamic (8-core system) or static
(64-core system) schedule with a small chunksize is more
effective; static with a large chunksize or no chunksize at
all produces large imbalances leading to the worst possible
performance. Once again, using a single scheduling policy
for all loops, does not yield the best results. We can also
observe that the other two basic policies, unperformed as
compared to the best achievable times, showing the signif-
icance of experimenting and selecting the most appropriate
scheduling technique.

6 Conclusions and Future Work
In this work we propose a tagging mechanism for OpenMP
constructs which offers considerable flexibility with respect
to loop scheduling. In particular, it overcomes the OpenMP
limitation of a single scheduling policy for all applica-
tion loops with the schedule(runtime) clause. The
mechanism allows per-loop runtime scheduling decisions
through separate environment variables. The same mecha-
nism can also be used as a means of providing additional
scheduling strategies beyond the ones offered by OpenMP,
extending the arsenal of scheduling options available to
programmers. Our tagging proposal was implemented in
the OMPi compiler along with four new scheduling meth-
ods. The implementation was evaluated using different
applications where it was found that the basic OpenMP
scheduling techniques do not always distribute iterations in
an optimal manner.

As part of our future plans, we will be implementing ad-
ditional loop scheduling techniques. The syntax of the tag-
related environment variables is quite general and should
support arbitrary schedules. In another direction, we work
on exploiting the tagging mechanism to provide runtime

flexibility for other OpenMP constructs, as well. Our tag
directive can be applied to any OpenMP construct, so con-
ceivably we could offer runtime parametrization of any di-
rective through corresponding environment variables, sim-
ilar to what we did for worksharing loops. In fact we
are currently extending the mechanism to provide separate
OMP_NUM_THREADS environment variables for different
parallel regions, i.e. provide a per-region default number of
threads.
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