
Author preprint; original article in Parallel Processing Letters, Vol. 33, No. 01n02, 2023 1

Revisiting OpenMP Auto-Scoping Rules
Vassilios V. Dimakopoulos

Department of Computer Science and Engineering,
University of Ioannina

P.O. Box 1186, Ioannina, GR-45110, Greece

Agelos Mourelis
BETA CAE Systems SA,

Kato Scholari,
Thessaloniki, GR-57500 Epanomi, Greece

Abstract

Auto-scoping in OpenMP has been proposed as a means for reliev-
ing the programmer from the non-trivial effort of identifying the data
sharing attributes of variables used within code regions that produce con-
currency, such as parallel and task constructs. In this work we recon-
sider autoscoping on parallel constructs, including combined parallel-
worksharing constructs. We first show that the current implementations
do not always scope variables correctly in the presence of nested parallel
constructs. We then proceed to extend the set of rules that guide the
autoscoping decisions so as to handle nested constructs successfully. We
also discuss how this functionality is implemented in the OMPi source-to-
source OpenMP compiler.

1 Introduction
OpenMP [1] is undeniably one of the most successful parallel programming
models. Through a relatively simple and flexible programming interface it facil-
itates the development of portable and scalable parallel applications. It consists
mainly of compiler directives and a set of runtime library routines, supporting
the C, C++, and Fortran languages.

Over the years, the applicability of OpenMP has expanded from regular,
loop-based applications, to more complex, task-based applications, which may
exhibit recursive and/or irregular parallelism. More recently, OpenMP has en-
tered the realm of accelerators, harnessing their power through its device inter-
face and related constructs.

Key to the success of OpenMP is the fact that it allows for incremental
parallelization of existing sequential programs. Typically, one starts with exist-

https://doi.org/10.1142/S0129626423500020


ing sequential code and gradually adds parallelization directives, parametrizing
them with specific clauses until the desired performance behavior is achieved.
The “catch” is that an OpenMP compiler does not have to check the correctness
of the program code. Assuring that there will be no data dependencies, race
conditions, deadlocks, etc. is the programmer’s responsibility. As a result, while
it may be easy to write an OpenMP program, it is also easy to write a wrong
OpenMP program.

A crucial part in the parallelization of sequential code is identifying the
data-sharing attributes of the involved variables, i.e. determine whether they
should be shared among the team of threads that will execute the parallelized
regions, or privatized and in what way. Realizing that this process can be non-
trivial and error prone, especially if there exists a large number of variables, Liu,
Terboven, Mey and Copty [2] proposed autoscoping, relieving the programmer
of the burden: the compiler analyzes the region in question and automatically
assigns data-sharing attributes to variables.

The motivation of our work is somewhat different but winds up to the same
problem. In particular, we have observed that scoping errors are quite frequent
especially for beginning or casual OpenMP users. They can also be found among
the most common mistakes in OpenMP [3]. It would be thus beneficial if the
compiler analyzed the manually scoped variables and warned the programmer
of any inconsistencies among the data-sharing clauses and the usage patterns of
the involved variables. In fact this is one of the programmer-centric mechanisms
we are introducing in our OMPi source-to-source OpenMP compiler [4] in order
to assist developers with their code.

Nested parallelism is an important feature of OpenMP since its conception.
The specifications allow existing threads to create their own teams of threads
at arbitrary depths and include facilities to control them. This is because in
various application scenarios, nested parallelism may exploit the multiplicity of
processing elements beyond what is possible with a single level of parallelism.
This is particularly relevant today where contemporary systems pack a large
number of cores. Whether there is not enough outer-loop parallelism or there
exist load balance problems in parts of a larger parallel region, nested parallelism
in an invaluable tool if it is used properly.

However, we have found that the implementation of autoscoping with the
rules set in [2] does not always produce correct results in the presence of lexically
nested parallel regions. We thus provide simple additions to the autoscoping
rules so as to guarantee they are applied correctly in such situations.

In this work:
• We review the autoscoping state-of-the-art for OpenMP programs.

• We augment the original autoscoping rules for parallel regions and provide
additional rules so that they work correctly for nested parallel regions.

• We present their application within the OMPi compiler.
The rest of the paper is organized as follows: Section 2 reviews related work;

it also summarizes the data-sharing attribute jargon of OpenMP and the orig-

2



inal autoscoping rules for parallelized regions. Section 3 proposes a new rule,
expanding the autoscoping domain while in Section 4 we present additional rules
that allow the original ones to be applicable to nested parallelism. Section 5
discusses implementation details in the OMPi source-to-source OpenMP com-
piler. A concrete application is used to demonstrate the effectiveness of our new
autoscoping rules in Section 6. Finally, Section 7 concludes the paper.

2 OpenMP data sharing attributes and auto-
scoping

According to the OpenMP specifications [1], the data-sharing attributes of vari-
ables that are referenced in a given construct can be predetermined, explicitly
determined, or implicitly determined as follows:

• Predetermined variables have a specific data-sharing attribute which is
dictated by the OpenMP API for the particular type of construct. For
example, worksharing loop iteration variables are always private.

• Explicitly determined variables are the ones the programmer specifies
through the data-sharing attribute clauses of the construct, such as private(),
firstprivate(), shared() etc.

• Implicitly determined variables are those that, while used in a construct,
do not have predetermined data-sharing attributes and are not listed in a
data-sharing attribute clause. The OpenMP specifications have rules for
specific types of constructs which define how to scope such variables. For
example, in a parallel construct, if there is no default() clause present,
these variables are shared.

OpenMP specifications always assign a default data-sharing attribute (ei-
ther predetermined or implicitly determined) for all variables appearing in a
construct. However, this default value is rarely enough to guarantee correct-
ness and/or performance; consequently the programmer is obliged to explicitly
scope (i.e. dictate the data-sharing attributes of) most of the variables used in
a construct. For example, a variable could be scoped as private for performance
reasons, or for eliminating race conditions.

Explicitly scoping constructs with a large number of variables can be quite
cumbersome and error-prone. Liu, Terboven, Mey and Copty [2] proposed auto-
scoping, that is a set of rules which allow the compiler to automatically discover
and define the appropriate data-sharing attributes of variables referenced in a
parallel region. There are two ways to activate the mechanism: one is to
use the clause default(__auto) which auto-scopes all implicitly determined
variables; the other is to list the variables that the compiler should scope auto-
matically within an __auto() clause. Autoscoping is implemented in the Oracle
Developer Studio [5].

3



The advent of version 3.0 of the OpenMP specifications brought a significant
new feature: tasks. Since then, all related works have targeted autoscoping
for tasking regions. Five new rules were added to support tasks in the Oracle
Developer Studio [5], extending the rules already implemented for automatically
scoping variables in parallel regions.

Royuela et al. [6] proposed an algorithm to determine automatically the
data-sharing attributes of variables for task regions, with an improved accuracy
over the scheme in the Oracle Developer Studio. The algorithm uses control
flow graphs, liveness and use-def analyses to identify the code regions that can
be concurrently executed with a given task, and determines the relationships
between the involved variables. According to the relationships, specific rules are
used to scope the variables.

Wang and Cheng [7] proposed a simpler scheme, which does not need to
consider the regions that are executed concurrently with the analyzed task. It
offers 100% accuracy, but at the cost of inserting taskwait synchronization
directives at appropriate points to ensure the data dependence relationships
between the concurrent regions and the task.

Finally, Munera et al. [8] consider autoscoping for the tasks of the OmpSs-
2 model. They draw from the work of Royuela et al. [6], adapting it to the
particularities of their model.

Autoscoping is used for classifying variables, as an essential step when auto-
parallelizing sequential code [9]. As mentioned in the introduction, our motiva-
tion is not to perform auto-parallelization but to assist OpenMP programmers
by warning them for possible scoping mistakes. We consider this an important
facility, especially nowadays where the OpenMP API has expanded substan-
tially and has become quite complex. The parallel and combined parallel-
worksharing constructs we target are among the most frequently used ones [10].
It is important for OpenMP toolchains to help and guide developers so as to
avoid common mistakes and pitfalls. For our purposes here, a compiler should
be in a position to understand the use of each variable, even if it is not ex-
plicitely marked as auto-scoped by the programmer. To this end, the compiler
could automatically scope all variables used and report mismatches between
what the programmer specifies in data-sharing attribute clauses and how the
variables are actually used in the code.

2.1 Autoscoping in parallel regions
Autoscoping for parallel and related combined constructs (parallel for,
parallel sections) was proposed by Lin et al. [2] and was implemented in
the Oracle Developer Studio [5] as well as in the Polaris parallelizing compiler
[11] for Fortran. When autoscoping a scalar variable that is referenced in a
parallel construct and that does not have predetermined or implicitly deter-
mined scope, the compiler checks the use of the variable against the following
rules P1–P3 in the given order:

P1 If the use of the variable in the parallel construct is free of data race

4



1 int x, y = 1, z, w;
2 #pragma omp parallel __auto(x,y,z,w)
3 {
4 #pragma omp single nowait
5 {
6 z = 0;
7 }
8

9 x = y + w;
10

11 #pragma omp single
12 {
13 w = y + z;
14 }
15 }

Figure 1: Example of autoscoping

conditions for the threads in the team executing the construct, then the
variable is scoped as shared.

P2 If in each thread executing the parallel construct the variable is always
written before being read by the same thread, then the variable is scoped
as private. The variable is scoped as lastprivate if it can be scoped private
and it is read before it is written after the parallel construct, and the
construct is either a parallel for/do or a parallel sections.

P3 If the variable is used in a reduction operation that can be recognized by
the compiler, then the variable is scoped as reduction with that particular
operation type.

If none of the above rules apply, the scope of the variable cannot be safely
determined. In order to guarantee correctness, Oracle Developer Studio then
serializes the parallel region.

A data race exists when two or more threads can access (i.e. read or write)
the same shared variable at the same time and at least one of them writes the
variable. Data race conditions can be eliminated by protecting the accesses to
the variable through synchronization constructs such as atomic, critical or
runtime library lock routines (omp_set_lock() and omp_unset_lock()), which
force an ordering on the accesses.

2.2 Example
An example of how the above rules work is given in Figure 1, where 4 variables
are auto-scoped as follows:

5



• Because the write of variable x in line 9 causes a data race, rule P1 fails
to apply. All threads write x before reading it, so according to rule P2, x
is scoped as private.

• Variable y is categorized as shared according to rule P1; it cannot be
involved in a data race since in lines 9 and 13 it is read but it is never
written.

• Regarding variable w rule P1 does not apply since the read in line 9 causes
a data race with the write in line 13. Rule P2 does not apply either
since all threads read w before one of them writes it. The usage of w does
not follow any reduction pattern and thus rule P3 is also not applicable.
Consequently w cannot be scoped.

• Variable z cannot be scoped either, since none of the rules applies; one
thread will write it in line 6 but, because of the nowait clause in line 4,
another one may read it at line 13 asynchronously, causing a data race.

3 Proposed addition of a fourth rule
We propose the following addition to the above rules:

P4 If in each thread participating in the parallel construct the variable is first
read before being written by the same thread, the variable is scoped as
firstprivate.

We note that a rule of similar spirit (albeit in the context of a task construct)
was given in the autoscoping algorithm of [6].

The logic behind the proposed rule is the following: since rules are applied
in strict order, reaching rule P4 means that rule P1 cannot be applied; thus
there is a data race around the variable in question and the variable cannot be
scoped as shared. Furthermore, in view of the fact that all threads initially read
its value, the variable should not be scoped as private (since private variables
are uninitialized). Rule P3 also failed to apply, hence the scoping of the variable
as firstprivate.

This new rule can scope successfully cases where the original three rules fail.
Let us revisit the example in Fig. 1, where variable w could not be scoped. Rules
P1–P3 do not apply; all threads read its value (line 9) before one of them writes
on it at line 13. Consequently, rule P4 applies and variable w is now scoped as
firstprivate.

4 Nested parallelism
In this section we show that autoscoping in a parallel region as implemented
in Oracle Developer Studio [2, 5] works as indented only if the region is not part
of a lexical nesting of multiple parallel regions. If this is not the case, special

6



1 int x;
2 #pragma omp parallel __auto(x) // R1
3 {
4 #pragma omp parallel __auto(x) // R2
5 {
6 x = 1;
7 }
8 }

Figure 2: First nested parallel region code sample

1 int y;
2 #pragma omp parallel __auto(y) // R3
3 {
4 #pragma omp parallel __auto(y) // R4
5 {
6 #pragma omp single
7 {
8 y = 2;
9 }

10 }
11 }

Figure 3: Second nested parallel region code sample

consideration is required so that the rules given in Section 2.1 scope variables
correctly.

Consider the code example in Figure 2, which includes a parallel region
(R2) nested within another parallel region (R1). The autoscoping results of
Oracle Developer Studio are as follows:

Variables autoscoped as PRIVATE in R1: x
...
Variables autoscoped as PRIVATE in R2: x
...

While this is not an erroneous scoping per se, it does not actually follow from
the given autoscoping rules. When autoscoping variable x in the inner region,
rule P1 does not apply because x is written by all threads in the (inner) team,
consequently rule P2 decides the variable should be scoped as private. Moving
to the outer region (R1), variable x is never written (since in R2 the threads
have privatized it) and rule P1 applies, so x should actually be autoscoped as
shared.

In some cases though, the scoping results may be inappropriate. Such an
example in shown in Fig. 3, where Oracle Developer Studio reports:

Variables autoscoped as SHARED in R3: y

7



...
Variables autoscoped as SHARED in R4: y
...

If we apply the autoscoping rules in the inner region (R4), variable y is only
written by one thread in a single region with an implied barrier at the end;
consequently there is no data race and rule P1 correctly scopes y as shared.
Scoping y in region R3 is more complicated. In line 4, every thread of the
parallel region R3 creates its own team. One thread from each team writes a
new value to y (line 8) without the teams being synchronized among them. As a
consequence, there is a data race around y among the different teams. Rule P1
does not apply and thus y should not be scoped as shared; it should be scoped
as private according to the next rule (P2).

From the above examples it should be obvious that scoping inner regions
should yield results that direct scoping decisions for outer regions. The auto-
scoping rules of Lin et al. [2] continue to be correct, but they should be applied
in a hierarchical/recursive way and utilize nested autoscoping outcomes.

4.1 Augmenting the rules in the presence of nesting
Let us symbolize by L the lexical nesting level of a parallel construct, that
is, the number of parallel constructs that surround it. For example, R3, the
first (outer) parallel construct in Fig. 3, has a nesting level of 0, while the
parallel construct enclosed within it (R4) has a nesting level of 1.

Definition. A read or write operation on a variable x is considered protected,
if it lies within a critical section of the program; otherwise it is considered plain
or unprotected.

Practically, a variable access is protected if it is within a single construct
without a nowait clause, within an unnamed critical construct or in a code
block delimited by explicit runtime locking/unlocking calls (omp_set_lock()
and omp_unset_lock()). In the first case, the single construct guarantees
that only one thread of the team will be operating on x; in the second case,
there is a global lock protecting all unnamed critical regions, so that mutual
exclusion is always guaranteed. The same holds for the third case assuming that
all threads use the same lock.

Autoscoping should be performed recursively, scoping the most internal re-
gion first and then moving to the outer regions. We derive necessary rules
for autoscoping to work correctly, augmenting the original rules of Section 2.1.
Consider a variable x in a parallel construct at nesting level L + 1, where
L ≥ 0. We propose the following rules:

NP1 If x is scoped as private, scoping at level L may ignore this parallel
construct.

NP2 If x is scoped as firstprivate, the parallel construct is considered equiv-
alent to a plain read operation on x in nesting level L.

8



NP3 If x is scoped as lastprivate, the parallel construct is considered equiv-
alent to a plain write operation on x in nesting level L.

NP4 If x is scoped as reduction, the parallel construct is considered equivalent
to a plain read followed by a plain write operation on x in nesting level L.

NP5 If x is scoped as shared, then a read (write) operation in level L + 1,
protected or not, is considered to be a plain read (write) operation in
nesting level L.

4.2 Explanation of the new rules
Rule NP1 should be clear; if x is scoped as private in nesting level L + 1,
uninitialized private copies of x are created for all threads at this level and
these copies get destroyed at the end of the parallel region, irrespectively of
the data-sharing attributes of variable x at level L.

For the rest of the rules, the idea is to summarize the whole nested region
with equivalent read/write operations on variable x, which can then be used to
scope x in level L. Rule NP2 works similarly to NP1; in this case however, the
private copies of the threads at level L+ 1 need to be initialized, hence a read
operation on variable x at level L is required.

If x is scoped as lastprivate at nesting level L + 1 (it must actually be a
parallel for or parallel sections construct), then upon the end of the
region, the last thread will use its privatized copy to define the value of x at
nesting level L. Consequently, the whole region in level L+1 can be considered
as a plain write operation in level L.

Finally, if x is a reduction variable, then private copies are made for each
thread at level L + 1 but at the end they are combined to update x at level L;
hence a read and a write operation in rule NP4.

Rule NP5 is based on the following observation: even if a read or write
operation on a shared variable is protected between the threads of nesting level
L+ 1, it remains unprotected for nesting level L. For example, consider Fig. 3
again. If the parallel region in nesting level 0 (R3) produces n threads, there
will be n different teams executing at nesting level 1 (region R4). Variable y
is scoped as shared in nesting level 1. The write operation on y in line 8 is
enclosed in a single construct without a nowait clause and is thus protected
within a team. However because of the n concurrently executing level-1 teams,
those n writes on variable y are actually asynchronous accesses.

5 Implementation in the OMPi compiler
The OMPi compiler [4] is a lightweight OpenMP C infrastructure, consisting of
a source-to-source translator and a flexible, modular runtime system. It takes
an OpenMP program written in C and outputs an equivalent multithreaded
C program to be compiled using the system’s sequential compiler. OMPi is an
open source project and targets general-purpose SMPs and multicore platforms.

9



It provides a large portion of the OpenMP V4.5 functionalities, including full
support for device constructs.

To be able to compare with Oracle Studio, we have implemented both the
default(__auto) and the __auto() clauses as proposed in [2]. In addition,
autoscoping in OMPi can also be activated by the --scopecheck compilation
flag, even for programs that do not employ the above clauses. When the de-
veloper specifies this flag, the compiler auto-scopes all variables that do not
have predetermined data-sharing attributes, for every parallel construct met
(including combined parallel-worksharing ones). Before such a construct is
transformed, the following actions are performed:

• All data-sharing attribute and reduction clauses are temporarily ignored;
in essence all used variables become implicitly determined.

• All variables that do not have predetermined data-sharing attributes are
treated as if there is a default(__auto) clause present.

• Finally, the autoscoping results are compared against the given data-
sharing attribute clauses.

If a variable is scoped differently than what the developer explicitly specified, a
warning is issued along with a suggestion of what the correct clause would be
for the variable in question.

5.1 Data race detection
Based on the control flow graph (CFG) of the relevant code region, OMPi per-
forms typical static analysis in order to decide whether the auto-scoped variables
are subjected to data races or not, and categorize them according to the rules
presented in the previous sections.

Assuming the program is a correct OpenMP program, the data race detection
algorithm operates in CFG portions delimited by barriers (since, according to
the OpenMP specifications a barrier will be seen by all threads of the team).
After an implicit or explicit barrier is met, a new analysis phase begins up to
the next barrier, and so on until the end of the construct is reached.

For a given variable x, the race detection logic is summarized as follows:

• If x is subjected to an unprotected write operation, then it is subjected to
data race as well.

• If x is subjected to a read or a protected write operation, then it’s consid-
ered as suspicious for data race.

• All suspicious operations are checked in pairs, in case their asynchronous
combination causes a data race. If one of them is a write and they are
not both enclosed in atomic constructs, master constructs or identically-
named critical regions, then x is subjected to data race.

10



Based on the above, OMPi uses the rules of Sections 2.1, 3 and 4 to categorize
the variables. We note that in the current prototype the static analysis applied
has some limitations:

1. Pointers to variables are not tracked; any variable for which its memory
location is referenced, is left uncategorized.

2. Mutual exclusion through runtime locking functions is not yet recognized
as such; variable accesses between an omp_set_lock() and an omp_unset_lock()
calls are considered unprotected.

3. Array handling is restricted; an unprotected concurrent write operation
is always considered to cause a data race, unless it occurs within a for
worksharing loop and the index of the accessed element is the loop index.

While this functionality is not critical, and is used only for assisting the de-
veloper, we are currently improving the power and the accuracy of the imple-
mentation. For the shake of completeness, we report that we have evaluated
our implementation extensively with programs that do not employ nested paral-
lelism. Even with the above limitations, we report a successful scoping of 95% of
the variables appearing in all parallel regions of the NAS Parallel Benchmarks
3.0; a C version of the benchmarks has been employed [12]. Out of 420 variables
scoped in total, 9 of them were variables passed by reference and another 11
cases were accesses to array elements that resulted in false positive data races.

6 A concrete example: Mandelbrot set calcula-
tion

In addition to various synthetic codes like the ones in Figs. 1–3, we demonstrate
the applicability of the proposed rules using a concrete application. The code
in Fig. 4 is a portion of a parallelized application that creates a Mandelbrot
fractal image using the so-called optimized escape time algorithm. The image
is represented by a two-dimensional array of integer-valued pixels with the pro-
vided dimensions (width×height) and it is passed as a pointer to a vector of
consecutive elements in function mandel. The algorithm iterates over each row
of pixels (i-loop) and for each row, it iterates over its columns (j-loop). The
iterations are independent of each other as the calculation of the value of each
pixel requires only the position (x, y) of the pixel. While parallelizing the outer
i-loop with an appropriate schedule yields satisfactory speedups, parallelizing
the inner j-loop may improve performance due to the high imbalance of the
work of the outer loop iterations.

We used both OMPi and Oracle Studio to scope the involved variables au-
tomatically. For regions R1 and R2, OMPi produces the following autoscoping
output:

[OMPi INFO] parallel region @line 11:

11



1 void mandel(int *array, int width, int height) {
2 int n, iter, maxiters=400;
3 double x, y, u, v, u2, v2;
4 double scale_real = 3.5/width, scale_imag = 3.5/height;
5

6 ...
7 y = -1.75 - scale_imag;
8

9 // R1
10 #pragma omp parallel for auto(x,y,u,v,u2,v2,iter,array,\
11 height,scale_imag,width,scale_real,maxiters)
12 for (int i = 0; i < height; i++) {
13 y += scale_imag;
14 x = -2.25 - scale_real;
15

16 // R2
17 #pragma omp parallel for auto(x,y,u,v,u2,v2,iter,array,\
18 height,scale_imag,width,scale_real,maxiters)
19 for (int j = 0; j < width; j++) {
20 x += scale_real;
21 u=v=u2=v2=0.0;
22 for (iter=0; (u2+v2<4.0 && iter<maxiters); iter++) {
23 v = 2 * v * u + y;
24 u = u2 - v2 + x;
25 u2 = u*u;
26 v2 = v*v;
27 }
28 if (iter == maxiters)
29 iter = 0;
30 array[i*width + j] = iter;
31 }
32 }
33 ...
34 }

Figure 4: Portion of a parallelized Mandelbrot set application.

12



scoped as shared: height, array, scale_imag, width, scale_real,
maxiters, x

scoped as private: iter, v2, u2, v, u
scoped as firstprivate: y
(13 autoscoped)

[OMPi INFO] parallel region @line 18:
scoped as shared: y , array, height, scale_imag, width, scale_real,

maxiters
scoped as private: iter, v2, u2, v, u
scoped as firstprivate: x
(13 autoscoped)

On the other hand, Oracle Studio outputs the following:
Variables autoscoped as SHARED in R1: width, scale_real, maxiters, array,

height, scale_imag
Variables autoscoped as PRIVATE in R1: v2, iter, x , y , u, v, u2
...
Variables autoscoped as SHARED in R2: width, scale_real, maxiters, y ,

array, height, scale_imag
Variables autoscoped as PRIVATE in R2: v2, iter, x , u, v, u2

We observe the following:

1. OMPi scopes variable x as firstprivate in R2, by applying the newly
introduced rule P4. Oracle Studio scopes wrongly x as private, which
will lead to an uninitialized read in line 24.

2. OMPi scopes x as shared in R1, by using nested rule NP2, since the
privatization of x in R2 is treated as a plain read operation; therefore x
is not a subjected to a data race in R1. Oracle Studio on the other hand,
privatizes x in R1, effectively contradicting rule P1.

3. Both compilers scope y as shared in R2, since it is only read and not
subjected to data races. However, OMPi scopes y as firstprivate in
R1, using P4, while Oracle Studio scopes it as private. This will cause
an uninitialized read at line 13, resulting in an undefined value for y.

7 Conclusions
Auto-scoping is a powerful facility to help with the parallelization of sequential
code using OpenMP. Whether it is used as a compromise between manual and
automatic parallelization or as a safeguard during development, autoscoping
can ease the burden of the OpenMP programmer. Autoscoping was originally
suggested and implemented for parallel and combined parallel-worksharing
regions, and later for task regions as well as other models with similar con-
structs. Focusing on the former, in this work we extend the original rules that

13



guide the autoscoping procedure. Our extensions generalize its application and
guarantee its correctness in cases where there exist lexical nestings involving the
above regions. Finally, we discuss their implementation in the context of the
OMPi source-to-source OpenMP compiler. As part of our current and future
work, we focus on autoscoping for task and target OpenMP constructs.

References
[1] OpenMP ARB, OpenMP Application Program Interface V5.2 (Nov. 2021).

[2] Y. Lin, C. Terboven, D. a. Mey and N. Copty, Automatic scoping of vari-
ables in parallel regions of an OpenMP program, in WOMPAT ’04, 5th
Workshop on OpenMP Applications and Tools ed. B. M. Chapman (Berlin,
Heidelberg, 2004) 83–97.

[3] M. Süß and C. Leopold, Common mistakes in OpenMP and how to avoid
them, in Proc. IWOMP 2006, 2nd International Workshop on OpenMP
(Reims, France, 2006) 312–323.

[4] V. V. Dimakopoulos, E. Leontiadis and G. Tzoumas, A portable C compiler
for OpenMP V.2.0, in Proc. of EWOMP 2003, the 5th European Workshop
on OpenMP (Aachen, Germany, 2003) 5–11.

[5] Oracle, Oracle Developer Studio 12.6: OpenMP API User’s Guide (June
2017).

[6] S. Royuela, A. Duran, C. Liao and D. J. Quinlan, Auto-scoping for
OpenMP tasks Proc. IWOMP’12, 8th International Workshop on OpenMP,
(Berlin, Heidelberg, 2012) p. 29–43.

[7] C.-K. Wang and P.-S. Chen, Automatic scoping of task clauses for the
OpenMP tasking model, The Journal of Supercomputing 71(3) (2015) 808–
823.

[8] A. Munera, S. Royuela, R. Ferrer, R. Peñacoba and E. Quiñones, Static
analysis to enhance programmability and performance in OmpSs-2, in Proc.
ISC High Performance 2020 International Workshops (Cham, 2020) 19–33.

[9] C. Liao, D. J. Quinlan, J. J. Willcock and T. Panas, Semantic-aware auto-
matic parallelization of modern applications using high-level abstractions,
International Journal of Parallel Programming 38(5–6) (2010) 361–378.

[10] T. G. Mattson, Y. H. He and A. E. Koniges, The OpenMP Common Core:
Making OpenMP Simple Again (MIT Press, Cambridge, Massachusetts,
2019).

[11] M. Voss, E. Chiu, P. M. Y. Chow, C. Wong and K. Yuen, An evaluation
of auto-scoping in OpenMP, in Proc. WOMPAT ’04, 5th Workshop on
OpenMP Applications and Tools (Berlin, Heidelberg, 2004) 98–109.

14



[12] M. Popov, C. Akel, F. Conti, W. Jalby and P. De Oliveira Cas-
tro, Pcere: Fine-grained parallel benchmark decomposition for scala-
bility prediction, in Proc. 2015 IEEE International Parallel and Dis-
tributed Processing Symposium (Hyderabad, India, 2015) 1151–1160. Avail-
able at: https://github.com/benchmark-subsetting/NPB3.0-omp-C
(accessed May 2022).

15

https://github.com/benchmark-subsetting/NPB3.0-omp-C

	Introduction
	OpenMP data sharing attributes and autoscoping
	Autoscoping in parallel regions
	Example

	Proposed addition of a fourth rule
	Nested parallelism
	Augmenting the rules in the presence of nesting
	Explanation of the new rules

	Implementation in the OMPi compiler
	Data race detection

	A concrete example: Mandelbrot set calculation
	Conclusions

