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ABSTRACT

The nvidia Jetson Nano is a very popular system-on-module and
developer kit which brings high-performance specs in a small and
power-efficient embedded platform. Integrating a 128-core gpu and
a quad-core cpu, it provides enough capabilities to support computa-
tionally demanding applications such as AI inference, deep learning
and computer vision. While the Jetson Nano family supports a num-
ber of apis and libraries out of the box, comprehensive support of
OpenMP, one of the most popular apis, is not readily available. In
this work we present the implementation of an OpenMP infrastruc-
ture that is able to harness both the cpu and the gpu of a Jetson
Nano board using the offload facilities of the recent versions of the
OpenMP specifications. We discuss the compiler-side transforma-
tions of key constructs, the generation of cuda-based code as well
as how the runtime support is provided. We also provide experi-
mental results for a number of applications, exhibiting performance
comparable with their pure cuda versions.
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1 INTRODUCTION

Contemporary computing systems are characterized by hetero-
geneity, a feature found everywhere from low-budget PCs to high-
performance supercomputers. A typical desktop computer utilizes
a number of general-purpose cpu cores, along with a graphics pro-
cessing unit (gpu) which accelerates computer graphics workloads.
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In addition to gpus, other types of accelerators are also employed
widely in the world of high-performance computing, including
fpgas or digital signal processors, so as to accelerate specific fami-
lies of computations.

Striving mostly for low power, embedded systems are nowadays
able to provide significant computing capabilities. As the perfor-
mance requirements of applications tend to increase continuously,
embedded systems have also embraced heterogeneity. Some indica-
tive real-world examples are the TI Keystone II SoC [15], which
combines a dual-core arm cpu with TI C66x floating-point dsps,
the Parallella [1] with a arm-based cpu and a 16-core Epiphany
accelerator, as well as the nvidia Jetson family [19], which is based
on a multicore arm cpu and a manycore nvidia gpu.

Programming such systems can be a challenging task; it often
entails the utilization of lower-level apis, sometimes with steep
learning curves, and this is particularly pronounced in the case
of heterogeneous systems. Programming models such as OpenCL
[9] and cuda [18] are typical examples of platforms and apis that
are used to target a variety of accelerators and gpus; they provide
efficient albeit rather primitive mechanisms for an application to
exploit the hardware capabilities. Their requirement for different
code bases for the host cpu and the accelerator/gpu increases code
complexity and decreases portability.

Many works propose OpenMP as a promising higher-level pro-
gramming model, which promotes programmer productivity due to
its ease-of-use and maintainability. With the recent device offload-
ing features, OpenMP constitutes a suitable candidate for targeting
heterogeneous systems under a unified programming interface.
However, the devices for which OpenMP support is available still
remains rather limited.

In this work, we present the implementation of OpenMP for
the nvidia Jetson Nano 2GB embedded platform. The Jetson Nano
modules and boards are the smallest and most affordable members
of the Jetson family, but they are still powerful enough to support
compute-intensive applications. While they support a number of
apis and libraries out of the box, comprehensive support of OpenMP
is not readily available. We extend the lightweight ompi source-to-
source compiler [8] so as to target cuda-based gpus and exploit
both the arm cpu and the Maxwell gpu of the board. In particular,

• We present the first full-fledged OpenMP implementation for
the Jetson Nano 2GB with complete offloading capabilities.

• We discuss the way the OMPi compiler was extended to
translate OpenMP device constructs into equivalent cuda
code.

• We evaluate our implementation experimentally, using a
number of benchmarks and applications and compare its
performance to pure cuda code.
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The remainder of our paper is organized as follows: Section 2
gives an overview of the OpenMP api and its device model. In
Section 3, we present the actual implementation in the translator
of ompi compiler. Section 4 presents the Jetson Nano 2GB board
in detail, including its hardware facilities as well as the available
software tools; we also discuss the runtime library of ompi which
provides OpenMP support for the offloaded cuda kernels. Section 5
includes experimental results and, finally, Section 6 summarizes
and concludes this work.

1.1 Related Work

Using OpenMP for programming embedded systems or SoCs has
been considered in many works. For example, Mitra et al. [15]
discuss the implementation of the OpenMP 4.0 device model for
the Texas Instruments Keystone II SoC, where the device is a C66x
floating-point dsp; Agathos, Papadogiannakis and Dimakopoulos
[2] implement OpenMP 4.0, targeting the Epiphany accelerator of
the Parallella board, a cpu with 16 superscalar RISC cores; Kurth
et al. [12] present OpenMP offloading for a custom version of the
HERO [11] heterogeneous embedded platform.

The nvidia Jetson ecosystem has been quite popular in a variety
of applications. Focusing on the Jetson Nano family, [22] employs
Jetson Nano boards to evaluate existing parallel programming mod-
els for automotive workloads. Mohebbanaaz, Sai and Rajani Kumari
[16] use a single Jetson Nano board to implement and test a deep
learning model that detects cardiac arrhythmia. Vishwani et al. [21]
employ a Jetson Nano board to support face emotion recognition.

Supporting gpus through OpenMP has been the subject of many
works, even before the introduction of its device model. Early works
include [13] and [17] which propose mechanisms for translating
parallel regions and loops to equivalent cuda code. After the
OpenMP device model was added, Bertolli et al. [5], as well as
Yang and Huiyang [24] proposed thread coordination schemes for
kernels that contain multiple parallel regions. The integration of
[5] into the clang/llvm compiler is described in [6] and in [3] for
Power systems containing nvidia gpus.

2 OPENMP AND HETEROGENEITY

A key feature introduced in version 4.0 of OpenMP is its platform-
independent device model, enabling seamless programming of het-
erogeneous systems. This model was designed to allow program-
mers to utilize all available compute devices, aiming to increase the
performance and power efficiency of applications. One can simply
accelerate specific areas of code (kernels), by advising the compiler
to offload them to a device, which is connected to the host cpu. The
kernel execution, along with the data mapping between the cpu
and the device are orchestrated transparently by the compiler and
the runtime library.

An application is executed on the host processor until a target-
related construct is met, which can indicate that either a portion
of code is to be offloaded to a device, or a device data environment
must be created / modified. These constructs may contain a code
region or act as stand-alone directives. By the end of the construct
execution, control is returned to the cpu. Specifically, control flow
can be transferred to a device with the use of the target directive,
which contains a block of code. Data referenced inside the code

1 /* Host function that performs SAXPY on the device */

2 void saxpy_device(float a, float x[], float y[], int size)

3 {

4 #pragma omp target map(to: a,size ,x[0: size]) \

5 map(tofrom: y[0: size])

6 {

7 int i;

8 #pragma omp parallel for

9 for (i = 0; i < size; i++)

10 y[i] = a * x[i] + y[i];

11 }

12 }

Figure 1: Offloading code to a device.

block must be mapped to the device data environment, thus the
target directive is usually parameterized with map clauses which
specify the type of mapping that should be performed for each host
variable (alloc, to, from and tofrom mappings).

Fig. 1 shows a simple example, where saxpy_device is a host
function that performs SAXPY (Single-precision A*X plus Y) on the
device, given two input arrays x and y; the result is stored in y. The
device data environment includes variables a, x, size and y. The
first three are mapped as to, thus a copy of them will transferred
to the device. Variable y is mapped as tofrom, meaning that two
actions will take place; upon entering the target construct, the
compiler will transfer a copy of y to the device, and when the
construct execution is completed, there will be a transfer from the
device, back to the host. It should be noted that actual transfers
may not be needed if the host and the device physically share
memory. Finally, the parallel for directive triggers the creation
of a device-side thread team, to which the for loop iterations will
be distributed.

The device data environment creation is a process that can be
initiated separately from the kernel execution. For variables which
are used across multiple target regions, the programmer can avoid
the repeated creations of data environments, by using the target
data directive. The unique feature of target data is the ability to
enclose multiple target constructs that can rely on a single data
environment, substantially reducing unnecessary data movements.

Additionally, OpenMP offers the stand-alone directives target
enter / exit data and target update. The former directives
trigger a mapping (unmapping) of variables to (from) the device
data environment, while the latter is used for keeping the device
data environment consistent with the host data environment; these
directives can appear at any point in the host code. Furthermore,
declare target and end declare target directives can be used
to mark global variables and function prototypes for access within
the offloaded kernels.

Last but not least, as can be seen in Fig. 1, a target region may
contain further OpenMP functionality. The support of OpenMP
directives inside a device is specific to the device runtime being
used during each kernel execution. Information about the structure
of the device runtime will be discussed later.

3 GPU SUPPORT IN THE OMPI COMPILER

The ompi compiler is an open-source, lightweight C infrastructure
for OpenMP. Its main components are a source-to-source translator
and a runtime system. The translator takes a C program that makes
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use of OpenMP directives (pragmas) and produces a multi-threaded
program designed for execution by the host; each directive gets
replaced by equivalent C code, along with appropriate calls to the
runtime system that implement the corresponding functionality.
The generated source file can then be compiled using the system
compiler and linked with the necessary libraries. If the applica-
tion contains target directives, ompi additionally generates kernel
sources for all supported devices. These sources are compiled to
obtain device-specific executables using the corresponding device
tools. The full compilation chain is depicted in Fig. 2.

ompi uses an abstract syntax tree (ast) to represent the user
program; most of its transformations operate directly on the ast.
Similarly to parallel and task directives, outlining is used when
a target directive is encountered. The relevant portion of the ast,
i.e. the body of the construct, is moved to a new function (kernel
function) and its ast node is replaced by necessary data movements
and code offloading runtime calls to/from the device in question.

Constructing the kernel function out of the body of the target
construct requires complex preparatory work. It can be relatively
straightforward if the device the kernel will be offloaded to con-
tains general-purpose processing units. In such a case, assuming a
standard C compiler is available for the device, the kernel function
is more or less a replica of the original construct body; code genera-
tion mostly involves outputting its syntax subtree as C source code.
ompi currently supports two general-purpose OpenMP devices: the
Epiphany accelerator [2] and a special one, which presents the
nodes of a compute cluster as multiple OpenMP devices where code
can be offloaded to using mpi as the communication substrate [10].
It is a completely different case, however, when targeting gpus,
because of their simd nature.

In order to support devices with non-general purpose processing
units, a series of extensions were implemented in the translator
part of ompi. The transformation phase of ompi was altered so as to
support multiple transformations of a given OpenMP node, one for
each different device. The resulting ast subtrees are then passed to
different translator modules, according to the targeted device.

The code generation works in a modular fashion, mapping each
OpenMP directive to a different internal transformation function.
These functions form the transformation set. Internally, ompi keeps
a default set for general-purpose devices and another one for gpus.
For cuda devices, we have implemented a cuda C module that
produces cuda C code for each kernel function of the gpu subtree.
Moreover, there also exists preliminary support for OpenCL devices,
offered by a corresponding OpenCL module.

Focusing on gpu-type devices, upon encountering a target di-
rective, ompi first constructs the subtree for the outlined kernel
function, as described previously. The compiler then derives the
call graph of the subtree, by discovering all called functions inside
the kernel. This step is required in order to inject all the necessary
function prototypes and definitions and embed additional necessary
wrapper functions. The final subtree is used to generate the kernel
file, which contains pure cuda C code.

3.1 Teams, Distribute and Combined Constructs

A typical use case for gpus is the offloading of computationally in-
tense loops. A target teams directive constructs a league of thread

teams to execute the attached block of code in the device. While
each team initially contains only one thread, the loop iterations can
be executed concurrently by the teams using a distribute con-
struct. A second level of parallelism is possible if within each team
a parallel or parallel for construct is used to enable multiple
threads within each team.

OpenMP offers the convenient combined target teams distri-
bute parallel for construct, which is the recommended way to
target loops to gpus [7]. Given all the information in the com-
bined construct, the compiler performs the following transforma-
tion steps:

• The teams directive and its clauses are used to generate
a cuda grid that consists of a number of cuda blocks. In
particular, the num_teams and num_threads clauses are used
to specify the exact number of blocks and threads in each
block that will execute the kernel, respectively. In addition,
the programmer can make use of the thread_limit clause
to specify an upper limit for the number of threads to be
created.

• The iterations are initially distributed to the team masters.
Eachmaster thread receives its own iteration subspace, called
chunk and additionally distributes it to the rest of the team
members. Finally, all members execute their iterations, in-
cluding the master threads.
In practice, both distribution phases are executed by all gpu
threads and there is no distinction between the team mas-
ter and the team members. In the first distribution phase,
each thread initially retrieves the chunk destined for the
team master with a call to the runtime library function
get_distribute_chunk. Then, all threads proceed to the
next distribution phase and perform a call to get_static_
chunk, get_dynamic_chunk or get_guided_chunk, accord-
ing to the declared loop scheduling clause. The aforemen-
tioned functions belong to the device library and work in
conjunction with the distributed chunk, returning the actual
iterations subset meant for the calling thread.

3.2 Handling Standalone Parallel Regions

Having separate, non-combined parallel regions within the ker-
nel code presents a major difficulty because the fork-join execution
model of OpenMP does not match with the simd nature of gpus
computation units; this has been an important subject of research
[5, 6, 24]. For cuda version 3.5 and above, a possible solution is to
utilize dynamic parallelism. This feature allows the creation of child
kernels by threads already executing a kernel. Although dynamic
parallelism is an elegant solution and may allow for cleaner code,
it is generally accepted that it can introduce considerable runtime
overheads.

Two solutions were proposed by Bertolli et al. [5]; if-master,
which involves guarding the sequential portions of a kernel using
an if-condition and control-loop with inspector/executor model, which
is based on a state machine that consists of sequential states and
parallel region states. Another proposal is the the master-worker
scheme [24], which incorporates master threads to execute sequen-
tial regions and activates worker threads to handle parallel regions.
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Figure 2: ompi compilation chain

#pragma omp target map(tofrom: x[:96])

{

int i = 2;

#pragma omp parallel num_threads (96)

{

x[omp_get_thread_num ()] = i+1;

}

printf(" x[0] = %d\n", x[0]);

printf("x[95] = %d\n", x[95]);

}

(a) A target region with a parallel construct.

1 {

2 int _mw_thrid = omp_get_thread_num ();

3 int _mw_nthr = omp_get_num_threads ();

4 if (cudadev_in_masterwarp(_mw_thrid)) { /* master warp */

5 if (! cudadev_is_masterthr(_mw_thrid))

6 return ((void *) 0); /* 31 threads of master warp */

7
8 int i = 2;

9 /* #pragma omp parallel num_threads (96) */

10 {

11 __shared__ struct vars_st {

12 int (*i);

13 int (*x)[96];

14 } vars;

15
16 /* Shared memory */

17 vars.i = (int (*)) cudadev_push_shmem (&i, sizeof(i));

18 /* Device memory */

19 vars.x = (int (*) [96]) cudadev_getaddr (&(*x));

20
21 /* thrFunc0 contains the body of the parallel region */

22 cudadev_register_parallel(thrFunc0 , vars , 96);

23 cudadev_pop_shmem (&i, sizeof(i));

24 }

25
26 printf(" x[0] = %d\n", (*x)[0]);

27 printf("x[95] = %d\n", (*x)[95]);

28
29 cudadev_exit_target (); /* End of target directive */

30 }

31 else { /* worker warps */

32 cudadev_workerfunc(_mw_thrid);

33 }

34 }

(b) Produced kernel code.

Figure 3: An example of the code generated by the master /

worker transformation scheme

ompi currently follows themaster/worker scheme, which is based
on the producer-consumer pattern. A simplified example of how
it works is shown in Fig. 3. This pattern is based on the fact that

the threads of a cuda block are scheduled in batches of 32 threads,
each batch called a warp. The compiler wraps the body of the target
directive in Fig. 3a with code that divides the executing warps to
one master warp and several worker warps, which contain worker
threads. Only a single thread of the master warp is labeled asmaster ;
the remaining threads of the master warp are deactivated, i.e. return
from the kernel function.

The responsibility of the master thread is to execute any sequen-
tial code and, additionally, assign the execution of parallel regions
to worker threads. Worker threads operate within an infinite loop
and are only terminated when reaching the end of a target re-
gion. While all kernels are launched with a fixed number of worker
threads (96), a subset of them participate in a parallel region if
there exists a num_threads clause; the rest of the threads remain
inactive until the participating threads finish their execution.

This scheme is based on two named ptx isa barriers, B1 and B2.
B1 is used for synchronization of the master thread with all worker
threads, before and after the execution of a parallel region, while
B2 only involves threads that actually participate in the execution
of the region. Initially, all worker threads block performing a syn-
chronization call to B1. Whenever the master thread encounters a
parallel region, it registers the thread function to be executed along
with the necessary pointers to shared/global variables (registra-
tion phase) and then arrives at B1, waking up the blocked workers.
Upon completion of the parallel region, a call to B2 takes place
and afterwards, B1 is utilized again by all threads, implying the
termination of the region.

The entire master thread functionality regarding parallel regions,
is implemented in the cudadev_register_parallel runtime li-
brary function (line 22 in Fig. 3b). Worker threads execute only the
cudadev_workerfunc call (line 32). Variables declared as shared
for a specific parallel region, need to reside in the shared memory
of each block being executed. For this purpose, we have imple-
mented a shared memory stack, along with two basic functions:
cudadev_push_shmem pushes a variable to the shared memory and
returns a pointer to the newly allocated memory space (line 17),
while cudadev_pop_shmem pops a variable from the stack, i.e. deal-
locates the previously allocated space (line 23). When reaching the
end of the target region, a call to cudadev_exit_target by the
master thread (line 29) terminates all the worker threads.

3.3 Kernel Binaries

A notable difference between ompi and other compilers is that it
does not embed the kernel files into the final executable. Instead,
each kernel is output to an independent file. All kernel files are pure
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cuda C sources, which are ready for separate compilation with the
available cuda tools. The external tools are invoked by specific
scripts, accompanied with the generated code. Moreover, through
these tools, ompi can instruct the nvcc compiler to produce any of
two types of binaries, ptx or cubin, depending on the options used
during ompi configuration.

In ptx mode, kernel files are translated to the intermediate ptx
(Parallel Thread Execution) format and the final step of their com-
pilation is handled at runtime just before the actual offloading. This
process is called jit (just-in-time) compilation and tends to produce
lighter kernel binaries. Moreover, it utilizes disk caching, a cuda
feature that aims to eliminate repetitive compilations of the same
kernels. ptx files are gpu-architecture agnostic.

The cubinmode performs all the compilation steps and produces
larger binaries, called cubins. Each cubin contains machine code
for a single targeted cuda architecture. While also slower, cubin
mode does not depend on jit compilation and thus reduces runtime
overheads. For this reason ompi uses the cubin mode by default.
The actions of locating the binaries, loading them and offloading to
the gpu are all carried by the runtime library of ompi.

4 JETSON NANO 2GB AND OPENMP

The Jetson Nano family consists of a module and two development
boards, and is a very popular embedded platform that has been em-
ployed for a wide range of computationally intensive applications
(e.g. [4, 23, 14]). In what follows, we will ignore the module, since its
features are identical to one of the development boards. Apart from
its standard I/O connectivity, a major strength of Jetson Nano is its
combination of low power consumption (5W) with significant pro-
cessing capabilities. In particular, it consists of two computational
devices: a quad-core armA57 host processor running at a frequency
of 1.43 GHz and a 128-core nvidiaMaxwell gpu supporting cuda
architecture version 5.3. The main difference between the original
Jetson Nano and the Jetson Nano 2GB board, which is the one used
in this work, lies in the amount of main memory available (4GB in
the former, 2GB in the latter).

4.1 Available Offloading Options

Currently, cuda C and related apis constitute the main way of
utilizing both the cpu and the gpu of a Jetson Nano board. Code
written in cuda C is translated by the nvcc driver to a host file and
a device (kernel) file. The host file embeds cuda runtime api calls to
load and execute the kernel file on the device, and can be linkedwith
the rest of the application files. Alternatively, a programmer may
use plain C host code and utilize cuda runtime api calls to manually
orchestrate the kernel compilation and offloading process. Either
way can be an efficient, albeit rather lower-level programming style
for a heterogeneous system.

The standard compilers included in the JetPack sdk (gcc and
nvcc) provide OpenMP support but only for the host arm cpu; they
cannot offload code to the gpu. Porting recent versions of gcc or
other mainstream compilers, is almost impossible due to the limited
resources of the board. We managed to build gcc version 11 from
its sources but offloading could not be made to work. Although
there has been some report that clang/llvm can be built using

specialized scripts for the 4GB Jetson Nano board, we did not have
any success with our 2GB models.

Recently, the nvc/nvc++ compiler bundled in the nvidia HPC
toolkit implements most OpenMP offloading facilities. However,
these features are only available for devices with cuda architecture
version greater than 7.0, effectively excluding the less powerful Jet-
son families of boards (the cuda architecture is 5.3 for the Nano’s
gpu and 6.2 for the TX2). Conclusively, OpenMP offloading is cur-
rently unavailable.

Our work presents the first full-fledged OpenMP implementa-
tion which supports the host cpu, while also offering offloading
capabilities targeting the Maxwell gpu. Moreover, what we con-
sider important is the lightweight nature of ompi, which bases its
compilation chain only on the standard toolkit of the Jetson Nano
platform.

4.2 OpenMP Offloading in ompi

Regarding devices, the runtime system of ompi is organized as a
collection of modules, each one implementing support for a par-
ticular device class; multiple devices (of the same type) may be
served by one module. Modules consist of two parts: the host part
and the device part. The former enables the host cpu to access any
of the available module’s devices through a fixed interface and is
loaded on demand as a plugin (shared library). The device part
provides OpenMP and other runtime support within the device, for
the offloaded code.

To support a new device, one has to create a module that imple-
ments ompi’s interface for communication with devices. For the
Jetson Nano board, we created a new cudadev module; although
we target the Maxwell gpu of the board, the module has been de-
signed to be quite general so that it can be adapted to support other
cuda-based gpus as well.

4.2.1 The host part of the cudadev module. The host part is re-
sponsible for discovering and establishing a communication path
with the device so as to be able control it, transfer data and of-
fload code. While all devices are discovered during the application
startup phase, the cudadev module adheres to ompi’s lazy approach
to actual device initialization: a device is fully initialized only when
the first kernel is about to be offloaded to this particular device.
During initialization, all the hardware characteristics of the gpu are
obtained and stored in relevant data structures. In addition, a pri-
mary cuda context is created. Once the device has been initialized,
the host part of the module offers functions to allocate/deallocate
memory in the device as well as transfer data to/from the device.
For all the above functionality, the module employs lower-level
cuda driver api calls.

A central operation of the cudadev module is kernel launch,
which consists of three phases:

(1) The loading phase, which locates the kernel function in the
corresponding kernel file and creates a cuda kernel function.
If the kernel binary is in ptx format, there exists a prelimi-
nary step of just-in-time ptx compilation and linking with
the cudadev device library. If ompi operates in cubin mode,
there is neither jit compilation nor linking with the device
library needed; everything was handled at compile time.
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(2) The parameter preparation phase, responsible for passing
the correct parameters to the kernel that is to be launched,
maintaining a mapping of these parameters to their corre-
sponding host addresses.

(3) The launch phase, which performs the actual kernel launch.
In this phase the cuda grid and block dimensions of the
launching kernel are set. Then, it performs a call to cuLaun-
chKernel function, using the parameter set, the loaded cuda
kernel function and the required dimensions.

4.2.2 The device part of the cudadev module. The device part (de-
vice runtime library) contains the implementation for the OpenMP
functionality employed inside the offloaded kernels; it gets linked
with a compiled kernel file and is offloaded along with it. The opera-
tions of the most important OpenMP facilities, currently supported
by the device part, are outlined below:

• Parallel regions; As already mentioned, cudadev supports
both standalone parallel constructs, as well as combined
constructs, where parallel is combined with a target di-
rective, such as target teams distribute parallel for.
In the non-combined case, ompi initiates kernels with a fixed
number of 128 threads, since the Jetson Nano gpu has a total
of 128 cores in its streaming multiprocessor. All warps but
one (the master warp) are masked out in the sequential re-
gions of the kernel. A subset of the remaining 3worker warps
operate in a parallel region; the subset size is determined by
the number of threads requested by the application, other-
wise all 96 cores are employed. Threads are synchronized
before and after the execution of a parallel region. Combined
parallel directives do not utilize the master/worker scheme
at all; the number of threads requested by the programmer
equals the number of launched threads, all of which execute
the enclosed parallel region.

• Worksharing; all schedules are supported (static, dynamic,
and guided) for for loops; the static schedule is also sup-
ported for distribute directives. sections directives are
implemented using locks; the library keeps track of the re-
maining sections using a counter initialized to the number
of sections. The thread that reaches a section first acquires a
lock and reduces the counter until the latter becomes 0. To
avoid warp divergence, each section is assigned to threads
from different warps. All single regions are executed by the
master thread, using a logic similar to the if-master scheme.
All threads are synchronized after the execution of work-
sharing regions, unless a nowait clause was used.

• Synchronization; In cuda, threads within a warp operate
in lockstep. Providing an efficient locking mechanism is
non-trivial mostly because of the warp divergence that takes
place when threads belonging to the same warp take dif-
ferent execution paths. We implement locks through busy-
spinning with atomic compare and swap (cas) instructions
on a global control variable; it gets the value of 1 by the
thread that acquires the lock, while the rest of the threads
wait until the variable becomes 0 and the lock is released.
OpenMP critical regions utilize the implemented locking
mechanism; the compiler generates the lock/unlock calls
before/after the region.

• Barriers; Our implementation is based on named barriers. An
encountered barrier construct is translated to a bar.sync
ptx instruction, allowing a total of 16 barriers to be utilized
by a single block. A restriction of the bar.sync instruction is
that it can only accept, as an argument, a number of threads
that is a multiple of the warp size (𝑊 = 32). If a subset of
threads participating in a parallel region contains 𝑁 threads,
and 𝑁 does not satisfy this restriction, cudadev performs
a barrier synchronization for 𝑋 =𝑊

⌈
𝑁
𝑊

⌉
threads. Eventu-

ally, cuda will skip threads that did not call the function
containing the barrier, i.e. the inactive threads that do not
participate in the parallel region. In this way, any subset of 𝑁
threads participating in a parallel region can be synchronized
independently of the remaining 𝑋 − 𝑁 inactive threads.

5 EXPERIMENTAL RESULTS

In this section we report performance tests, comparing existing
cuda applications to equivalent OpenMP ones, compiled with our
compiler. The board we experimented with comes with JetPack
version 4.6, based on the cuda Toolkit version 10.2. The available
compilers for the C language in Jetson Linux are gcc, which pro-
duces only host executables and nvcc, provided by the cuda toolkit.

For our study we used the Unibench suite [20]. Unibench con-
tains a remake of the Polybench-ACC benchmark suite, withmost of
the benchmarks modified so as to use OpenMP target-related con-
structs to offload compute kernels, instead of pure cuda. The suite
consists of a large collection of kernel, stencil and solver applications.
Kernels are mini applications that perform basic calculations, while
solvers are based on more complex code. Stencils are methods that
calculate the value of an array cell according to its neighbourhood.
For each application, the suite provides a sequential implementa-
tion along with its cuda and OpenMP equivalents. We report here
performance results from a selected set of one stencil application,
four kernel applications, as well as one solver application: 3dconv,
bicg, atax, mvt, gemm and gramschmidt, which perform a variety of
operations on matrices and vectors. They were obtained from the
linear-algebra and stencils categories of the Polybench suite
and represent typical gpu workloads. We get similar results with
the rest of the applications in the suite.

The matrix sizes of all applications were parametrizable and
for our purposes here we used three basic configurations: Appli-
cations gemm and gramschmidt use 128, 256, 1024 and 2048, as
sizes for all dimensions of used matrices and vectors, while bicg,
atax and mvt work on larger array sizes, 1024, 2048, 4096 and 8192.
Triple-nested for-loops in 3dconv use the third configuration which
represents smaller problem sizes, of the order of 32, 64, 128, 256 and
384. Moreover, all applications use 32 × 8 threads, except for the
gramschmidt application which is fixed to use 256× 1 threads, and
the 3dconv applicationwhich uses 2×4×32 threads. All OpenMP ap-
plication equivalents make use of the recommended target teams
distribute parallel for directive. The values we used for the
num_teams and num_threads clauses matched the problem size. In-
ternally, ompi maps these values to two dimensions, so as to match
the block and grid dimensions of the equivalent cuda applications.

Some modifications were necessary for the OpenMP version of
the applications, to better optimize the execution of the kernels. In
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Figure 4: Application execution times using the cuda runtime api and the ompi cudadev module
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particular, we used the collapse clause to merge perfectly nested
loops and we inserted proper num_teams and num_threads clauses
to all target-related constructs.

The results are given in Fig. 4. Each plot contains timing results
for the pure cuda version and the OpenMP equivalent, which was
compiled using ompi. The 𝑥-axis is the problem size (the dimension
of the involved matrices/vectors), while in the 𝑦-axis execution
time is given in seconds. There was negligible variation among
runs, so the execution time is reported as a simple average of 10
runs. We measure kernel execution time, plus any required memory
operations.

Overall, the performance attained by our implementation proved
quite satisfactory. For all applications, ompi follows closely the
performance of pure cuda, as is evident in the plots. We only found
one notable discrepancy that we have not managed yet to explain;
it occurs in the gemm application and only for the largest problem
size (2048), where the OpenMP executable is about 18% slower. We
are currently investigating this phenomenon.

6 CONCLUSION

We present the first OpenMP implementation on the Jetson Nano
2GB developer kit that offers offloading capabilities for the Maxwell
gpu of the board. The implementation is based on the ompi OpenMP
compiler which has been extended to target cuda-based devices.
The transformation and code generation phases have been adapted
to produce cuda C kernel sources out of OpenMP target regions;
these kernels then get compiled and linked using only the base
nvidia tool chain. The runtime module utilizes the cuda driver api
to handle memory allocations, data transfers and kernel launches,
while the device library part provides OpenMP support for each
offloaded kernel. We have experimented extensively with various
benchmark and application suites that showcase the efficiency of
our implementation, which matches closely the performance of
pure cuda code. We are currently generalizing our runtime system
to support other nvidia gpus. In addition, we work on further
extending ompi to target OpenCL devices.

This work is open-source software and is available as part of the
latest release of the ompi OpenMP compiler, which can be found in
https://paragroup.cse.uoi.gr/wpsite/software/ompi/.
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