
The original publication is available in Elsevier’s Parallel Computing, DOI:10.1016/j.parco.2022.102895
©2021. This author-generated manuscript version is made available under the CC-BY-NC-ND 4.0 license

Compiler-Assisted, Adaptive Runtime System for the Support of OpenMP in Embedded
Multicores

Spiros N. Agathosa, Vassilios V. Dimakopoulosb,∗, Ilias K. Kasmeridisb

aSwarm64 AS Zweigstelle Hive, Ullsteinstrasse 120, Neubau Turm C, Berlin, Germany
bDept. of Computer Science and Engineering, University of Ioannina, Ioannina, Greece

Abstract

The latest versions of OpenMP have introduced constructs for exploiting heterogeneous compute units alongside the main multicore
CPU. The offloaded program portions (kernels) may generate parallelism within the target device by employing standard OpenMP
constructs. However co-processors, especially embedded ones, often have limited resources to provide efficient OpenMP support.
Designing an OpenMP infrastructure for such devices is a challenge and a usual design decision is to support OpenMP only partially.

In this work, we present a novel solution to this problem. We propose a compiler-assisted, adaptive runtime system organization,
which generates application-specific support by implementing only the OpenMP functionality required each time. Full OpenMP
support is available if needed. However, in the usual scenario where kernels do not require complex OpenMP functionalities, our
method can lead to dramatically reduced executable sizes, which usually offer additional performance benefits. The mechanism
is based on preparatory compile-time kernel analysis which generates metrics regarding the OpenMP functionality present in each
kernel. These are then fed to a mapper module which, given a set of rules, decides what the optimal runtime configuration is.
Our proposal is demonstrated by a complete implementation on the popular Parallella-16 board, exhibiting consistently large size
savings and significant performance gains.

Keywords: compilers, embedded systems, multicores, OpenMP, offloading, runtime systems

1. Introduction

Contemporary systems, from plain PCs to high-performance
supercomputers are heterogeneous in nature. Desktop comput-
ers utilize multiple general-purpose cores in a socket, usually
combined with a multicore graphics processor (GPU). Simi-
larly, high-performance systems benefit from the combination
of multicore CPUs with specialized devices such as GPUs, DSPs
and FPGAs, in order to accelerate a broad range of applications
and also gain power savings. As a result, modern architectures
present a mix of different processor and memory hierarchies
within the same system. At the same time the building blocks
of all these systems are designed for different workload sce-
narios; multicore CPUs perform best in coarser grained tasks,
while accelerators reach their computational potential in large
scale data and fine grained vector processing.

Embedded systems provide computing capabilities to de-
vices that are small, portable, autonomous, while relying on
limited energy resources. As a response to the ever increasing
demand of end-user applications for computational power and
multitasking, embedded systems have also joined the hetero-
geneous paradigm trend. For example, Parallella [1] combines
a small number of ARM-based cores with a many-core copro-
cessor of up to 64 RISC cores. Another design example is the

∗Corresponding author
Email addresses: agathosspiros@gmail.com (Spiros N. Agathos),

dimako@cse.uoi.gr (Vassilios V. Dimakopoulos),
ikasmeridis@cse.uoi.gr (Ilias K. Kasmeridis)

NVidia Jetson Xavier platform which consists of 8 ARM cores
and 512-core Volta GPU and has been considered for automo-
tive applications [2].

However, in order to exploit the computation capabilities of
a heterogeneous system efficiently, significant programmer ef-
fort is required. The common case is to utilize low-level SDKs
in order to optimize portions of an application with respect to
the specific hardware unit features. This poses significant chal-
lenges, even for expert programmers. In the same line, pro-
gramming models such as OpenCL [3] and CUDA [4] provide
very efficient albeit rather primitive mechanisms for an appli-
cation to take advantage of the hardware capabilities of GPUs
and general purpose accelerators. In addition, requiring dif-
ferent code bases for the host CPU and the accelerator devices
increases code complexity and decreases portability.

One of the biggest challenges in the current era of multicore
computing proliferation is to provide a programming model that
enables the extraction of satisfactory performance while also
keeping programmer productivity at high levels. OpenMP has
proven to be an effective solution for parallel programming on
shared memory systems. It became quite popular mainly due
to the fact that it is a directive-based model which does not
change the base language (C/C++/Fortran), making it quite ac-
cessible to mainstream programmers. Starting with version 4.0,
OpenMP [5] has come to embrace platforms based on a het-
erogeneous collection of processors, co-processors and accel-
erators; it has been augmented with new directives which allow
offloading portions of the application code onto the processing

1

https://doi.org/10.1016/j.parco.2022.102895
https://creativecommons.org/licenses/by-nc-nd/4.0/

elements of an attached device. One important and desirable
characteristic of OpenMP is that the application blends the host
and the device code parts in a unified and seamless way.

The new device extensions allow full OpenMP functionality
within the regions of code executed by a selected device (also
known as kernels). This provides flexibility and ease of use
regarding parallelization expressiveness. However, it requires
an OpenMP infrastructure within the co-processor. In the gen-
eral case, implementing such an infrastructure is a non-trivial
task. Supporting the required functionality, which was orig-
inally designed for shared-memory multiprocessors, can be a
very difficult procedure due to limited resources. As a result,
common approaches are to either provide partial OpenMP sup-
port (i.e. handle a subset of the directives on the device side) or
implement full but simplified OpenMP facilities so as to avoid
consuming the limited amount of resources. For example, in
devices such as embedded multicores or multicore systems-on-
chip (MCSoC), the small amount of on-chip memory and hard-
ware synchronizers must accommodate both the OpenMP run-
time libraries and the application code/data. This holds even in
cases where particular application kernels do not make use of
all the provided OpenMP functionality.

In this paper we propose a novel runtime system (RTS) or-
ganization designed to work with an OpenMP infrastructure
which targets the aforementioned problems. Instead of hav-
ing a single monolithic OpenMP RTS for a given device, we
propose an adaptive RTS architecture which implements only
the features required by a particular application. More specifi-
cally, the compiler analyzes the kernels that are to be offloaded
to the device, and provides metrics which are later used to se-
lect a particular RTS configuration tailored to the needs of the
application. This way the user’s code implies the choice of an
appropriately optimized RTS which may result in reduced ex-
ecutable sizes and/or faster execution times. Our technique is
quite general and could be also utilized in the OpenMP runtime
system executing on the host.

To the best of our knowledge this is the first time an adap-
tive, application-specific OpenMP runtime system is proposed.
As such, we also present a concrete implementation of our ideas.
As a testbed platform, we use the popular Parallella-16 board,
a credit-card sized computer with two processors (a dual-core
host and a 16-core accelerator). The OMPi OpenMP compiler [6]
infrastructure was modified to analyze the kernels code and to
select optimized runtime library versions according to the re-
sults of the analysis. Our experimentation with a plethora of
application codes verified the benefits of our strategy, which in
some cases resulted in more than 30% size and 90% execution
time reductions.

The remainder of the paper is organized as follows: In Sec-
tion 2 we give an overview of related work as well as the mo-
tivation behind this work. In Section 3 we present some back-
ground material on OpenMP and the extensions for device sup-
port; we also discuss the difficulties induced when developing
an OpenMP RTS for devices. An overview of our adaptive RTS
proposal is presented in Section 4. A concrete implementation
is presented in Section 5. In particular Sections 5.1 and 5.2
present the kernel analysis procedure that produces a set of

metrics and the way these metrics are utilized by the “mapper”
module that provides the best RTS configuration. We then de-
scribe the prototype implementation of our methodology for the
Parallella-16 board (Section 6) and evaluate the space and time
efficiency of our proposal (Section 7). Section 8 summarizes
and concludes this work.

2. Related Work and Motivation

OpenMP was considered as a possible model for accelera-
tors or multicore embedded systems long before the introduc-
tion of its latest device extensions. In [7] Hanawa et al. eval-
uate the OpenMP model for the Renesas M32700, ARM/NEC
MPCore, and Waseda University RP1 multicore embedded sys-
tems. Sato, Nakajima, Ojima and Hotta [8] implement OpenMP
and report its performance on a dual M32R processor, which
runs Linux and supports fully the POSIX execution model. Liu
and Chaudhary [9] implement an OpenMP compiler for the
3SoC Cradle system, a system combining multiple RISC and
DSP-like cores. In [10] Woo-Chul and Soonhoi discuss an OpenMP
implementation that targets MPSoCs with physically shared mem-
ories, hardware semaphores, and no operating system. Chap-
man et al. [11] describe the goals of an OpenMP-based model
for different types of MPSoCs that take into account non-functional
characteristics such as deadlines, priorities, power constrains
etc. They also present the implementation of the worksharing
part of OpenMP on a multicore DSP processor. In [12] Bur-
gio, Tagliavini, Marongiu and Benini present an OpenMP task
implementation for a simulated embedded multicore platform
inspired by the STHORM architecture. Notice that all the above
works refer to older versions of OpenMP on a single processor.
That is, the multicore CPU plays the role of the host in recent
OpenMP terminology and as such, they do not address the het-
erogeneous host/device execution model.

In order to provide a unified model for systems consisting
of a host and a set of attached devices, extensions to OpenMP
were proposed before the release of OpenMP V4.0. Cabrera,
Martorell, Gaydadjiev, Ayguadé and Jiménez-González in [13]
propose extensions to provide a high level API for executing
code on heterogeneous systems with FPGA-based accelerators.
They provide constructs for offloading tasks to any of the avail-
able accelerators, along with runtime optimizations which try to
hide the FPGA configuration time needed when a bitstream has
to be loaded. In [14] Agathos, Dimakopoulos, Mourelis and
Papadogiannakis present an implementation of OpenMP on the
STHORM accelerator. The innovative feature of their design is
the deployment of the OpenMP model both at the host and the
fabric (device) sides in a seamless way, providing an interface
similar to the current device model of OpenMP for offloading
and executing OpenMP kernels on the MPSoC. Other directive-
based approaches for offloading code onto attached devices in-
clude HMPP [15] and OmpSs [16]. It should be noted that in all
these works, with the exception of [14], the offloaded portions
of the code did not contain any OpenMP functionality.

OpenMP offloading is considered a significant high-level
programming abstraction for heterogeneous systems. Sommer,
Stock, Soliz-Vasquez and Kock [17] evaluate OpenMP, OpenCL

2

and CUDA and conclude that the high-level abstractions de-
fined by the OpenMP standard allow for a very good program-
mer productivity, maintainability and portability while yield-
ing competitive performance in benchmarks targeting hetero-
geneous embedded systems, with a bias towards automotive in-
dustry codes. OpenMP V4.5 is the main programming model in
the software stack of the HERO heterogeneous embedded plat-
form which is based on a hard ARM Cortex-A multicore host
processor and RISC-V based accelerator cores, implemented as
soft cores on an FPGA fabric [18]. OpenMP offloading con-
structs for heterogeneous systems are considered as an exten-
sion for the next version of the OmpSs model [19].

While OpenMP specifications have recently reached V5.1,
device support remains limited; the number of compilers adher-
ing to the standard (in various degrees) increases slowly [20],
but unfortunately there exists support for relatively few device
types. Details of the offload procedure in the Intel ICC com-
piler are given in [21]. Preliminary support for the OpenMP
target construct is also available in the ROSE compiler. Chun-
hua, Yonghong, de Supinski, Quinlan and Chapman [22] dis-
cuss their experiences on implementing a prototype called HOMP
on top of the ROSE compiler, which generates code for CUDA
devices. Bertolli et al. [23] propose a method to coordinate
threads in an NVIDIA GPU using a single kernel as opposed to
multiple kernels; they also discuss how their methods could be
implemented as part of the LLVM compiler implementation of
OpenMP V4.0. In [24] the authors present their implementation
of OpenMP V4.0 on a TI Keystone II, where they use the DSP
cores as devices to offload code to. Finally, Agathos, Papado-
giannakis and Dimakopoulos in [25] present the implementa-
tion of the OpenMP accelerator directives for the Parallella-16
board [1], a credit-card sized multicore system consisting of
a dual-core ARM host processor and a 16-core Epiphany co-
processor. All these works either propose a partial OpenMP im-
plementation or a monolithic full implementation, which may
consume the limited system resources. This is in contrast to our
proposal, where adaptive RTS configurations are utilized for dif-
ferent applications, based on compiler instrumentation.

2.1. Motivation
The motivation behind this work comes from [25], which

presents an OpenMP infrastructure for the Parallella-16 board
where the Epiphany accelerator is treated as an OpenMP device.
Supporting OpenMP on the device side entails a major effort
due to the constraints and limited resources of the Epiphany
chip. A full OpenMP runtime library was carefully designed
but due to the sheer volume of OpenMP features and their in-
herent complexity, compromises were necessary at every level.
For example, the implementation of tasking was necessarily as
simple as possible; it was based on a single shared queue so as
to minimize memory requirements and keep the queue in the
fast local memory of the accelerator cores. As a result, it may
not be the most performant configuration in high loads, while
at the same time it deprives other OpenMP data structures of
precious space. More details are given in Section 6.

One of our observations is that the majority of the kernels
we have run on the board have been loop-based; they do not

have any use for tasks. If all kernels were loop-based, there
would be no need to implement tasking at all. Instead one
would be able to utilize the memory space e.g. for supporting
larger application datasets. However this is entirely hypothet-
ical, since some applications do utilize tasking. To tackle this
issue, in the course of this work we conceived a rather unortho-
dox approach: create two different OpenMP runtime libraries
for the device, one that supports tasking and another one that
does not; the latter has a much smaller footprint, leaving more
space for application data. Generalizing the idea, we should
be able to implement any number of different runtime library
versions which provide different sets of OpenMP facilities.

Given such a set of libraries, the next problem is how to
choose which library version to use each time. Clearly, the
choice must be made by observing what OpenMP constructs
a kernel uses and then selecting the most appropriate library
version to accommodate them. In the next sections, we present
the details behind the concepts as well as the way they can be
implemented for any device, using static code analysis and a
general selector mechanism.

3. The OpenMP Device Model

One of the key features in the latest versions of the OpenMP
API [5] is the introduction of a state-of-the-art, platform-agnostic
model for heterogeneous parallel programming. Multiple de-
vices, as for example co-processors, graphical processors or
accelerators, can be utilized to reduce the execution time and
improve the energy efficiency of an application by utilizing the
new device directives. The programmer simply marks portions
of the (unified) source code to be offloaded to a particular de-
vice; the details of data and code allocations, mappings and
movements are orchestrated by the compiler. The OpenMP de-
vice model requires that the target devices are connected to a
host processor which is also considered a device. The program
execution follows a host-centric model; it starts executing at the
host side until one of the newly introduced constructs is met,
which may trigger the creation of data environments and the
execution of a specified portion of code on a given device.

In order to transfer data and control flow to a device, the
target directive is used which has an associated structured
block representing the code (kernel) to be offloaded and exe-
cuted directly on the device. During the execution of the kernel
the host task waits until the device finishes and returns back the
control. Each target directive may contain its own data en-
vironment, that is a set of variables accessible in some way by
both the host and the device, initialized when the kernel starts
and freed when the kernel ends its execution. A device data en-
vironment can be manipulated through map clauses which de-
termine how the specified variables are handled within the data
environment (alloc, from, to and tofrom map types).

Fig. 1 shows a simple example where host function dev add
can be called to perform array addition at a device. The target
region is executed on the device. Host variables x, y and n get
transferred to the device due to the map(to:) clause while
res will obtain its value from the device because of the map(

3

/* Host function that offloads to device */
void dev_vadd(int x[], int y[], int res[], int n)
{
#pragma omp target map(to: x[0:n], y[0:n], n)\

map(from: res[0:n])
{
int i;
#pragma omp parallel for
for (i = 0; i < n; i++)
res[i] = x[i] + y[i];

}
}

Figure 1: Adding two vectors on a device.

from:) clause. The [0:n] notation specifies that only a sec-
tion of n elements of the vectors are actually mapped, starting
form element 0. The array addition gets offloaded and exe-
cuted in parallel at the device, because of the parallel for
OpenMP directive, utilizing its processing cores. When the cal-
culation is completed, the value of res gets copied from the
device to the host memory. Actual data transfers may not be
needed if the host and the device share memory.

Data movements between the host and the devices may be
the cause of large delays during the launch or the completion of
the kernels. In order to avoid repetitive creation and deletion of
data environments, the target data directive allows the def-
inition of a data environment which persists among successive
kernel executions. Furthermore, the programmer can use the
target update directive between successive kernel offloads
to selectively update data values that reside in the host and the
device data environments. Finally, the declare target di-
rective specifies that the associated set of variables and func-
tions are mapped to a device. In essence, the declared vari-
ables are allocated in the global scope of the target device, and
their lifetime equals the program execution time. The code of
the declared functions is compiled to produce device bina-
ries accessible from the target regions.

3.1. OpenMP on the Device Side

A major characteristic regarding the kernels code is that
they can utilize arbitrary OpenMP functionality, with no re-
strictions whatsoever (except that they cannot offload code to
other devices). This implies that any code that adheres to V3.1
of the OpenMP specifications can potentially form a legal ker-
nel. The only requirement is that all the global variables and
functions accessed from within the kernel code must be de-
clared in a declare target directive and reside at file, name
space, or class scope. Thus, the constructs for dynamically cre-
ating a team of threads, sharing work among them (for loops,
sections), using explicit tasking, even employing nested par-
allelism, are all allowed within a target region. This flex-
ibility makes OpenMP a very powerful parallel programming
model for taking advantage of all available compute resources
of a heterogeneous system in an intuitive and efficient manner.
Ideally any OpenMP program originally written for a shared-
memory system, can easily offload some of its computationally
intensive parts onto specialized hardware.

To make all the above possible, the attached devices are ef-
fectively required to provide complete OpenMP support. How-
ever, OpenMP was originally designed for shared-memory mul-
tiprocessors, i.e. systems with abundant resources such as large
amounts of shared memory, supported by caches and sophis-
ticated cache coherency protocols, high bandwidth intercon-
nects and a large set of hardware-assisted synchronization prim-
itives. Moreover, they are equipped with an operating sys-
tem accompanied with optimized low-level libraries such as
POSIX threads, for manipulating the execution units of the sys-
tem. On the other hand, embedded or attached accelerators have
different architectures and are designed to serve different pur-
poses. For example, the organization of some accelerators aims
at streaming applications or may be better suited to speed up
matrix-based computations. Co-processors are synonymous to
hardware diversity; each product is equipped with specialized
hardware modules and targets a specific class of applications.

With some notable exceptions such as the Xeon Phi accel-
erator [21], a common characteristic of the various types of
co-processors is that they offer a limited amount of resources.
Hence, the challenges posed when designing an OpenMP run-
time support system (RTS) for such devices depend on these
resource limitations. The typical absence of a POSIX-like in-
terface for manipulating threads may add design difficulties or
considerable offloading costs regarding dynamic or nested par-
allelism. As is evident in [26, 27], supporting efficiently just
the tasking primitives of OpenMP at the device side of an em-
bedded accelerator is a major undertaking. Arguably, one of
the most important limitations is the size of the available mem-
ory; small private or shared memories at the co-processor cores
impose restrictions on the kernel executable size and/or the ac-
tual application data. This is particularly pronounced in the ab-
sence of a fast global memory; the kernel code has to include
the OpenMP RTS, further limiting the available memory space.
The Epiphany accelerator used in the Parallella-16 [1] is an ex-
ample of an embedded accelerator with severely limited mem-
ory resources; each core is equipped with just 32KiB of fast
local memory. While it can also access a larger 32MiB mem-
ory shared with the host processor, its access times are almost
an order of magnitude larger.

There are two approaches for supporting OpenMP on a de-
vice with limited resources:

• Partial support: Partial support of the constructs is a prag-
matic solution that works in practical situations [24, 22,
11, 26, 27]. For example, there is no point in trying to im-
plement an optimized tasking infrastructure for a GPGPU
which lacks fine grain synchronization primitives. Of
course, partial support minimizes the expressiveness of
the programming environment. The application code may
have to be redesigned to match the availability of OpenMP
constructs, a fact that also reduces code portability and
re-usability.

• Full support: Some works choose to support OpenMP
fully on the device side. This strategy provides a pow-
erful tool for developing parallel applications based on a
high level hardware abstraction. Nevertheless, the design

4

Figure 2: Overview of the proposed system for adaptive, kernel-specific
OpenMP RTSs

of a complete OpenMP RTS is not a trivial task. Further-
more, the hardware limitations may lead to poor perfor-
mance for some of the OpenMP constructs [25, 23, 22].

4. Proposed System

In this work we propose a general methodology which can
be utilized to offer flexible and adaptive OpenMP runtime sup-
port. The main idea is to depart from the common practice of
having a fixed runtime library to support OpenMP on the device
side; customized, adaptive runtime libraries should be selected,
tailored to the requirements of the kernels. The goal is the de-
velopment of an RTS organization which implements only the
OpenMP features required by each particular application. That
is, it results in an application-specific RTS configuration. For
this to work, compiler assistance is required in order to deter-
mine the actual needs of every kernel. This is indeed possible
because of a key observation: all kernel code must lie within a
single source file. This enables a compiler to analyze the be-
havior of a kernel with respect to OpenMP constructs, through
detailed interprocedural analysis. Thus, it can decide exactly
what constructs are used, their nesting levels, the types of em-
ployed loop schedules, etc.

The proposed mechanism is shown in Fig. 2. The applica-
tion code is fed to the compiler which performs the necessary
transformations. Out of the unified application program, code
generation produces code for the host, while target regions
result in code (kernels) to be executed on the devices. Along
with each kernel, a set of metrics gathered during its analysis
are output. The metrics are then passed to a “mapper” module.
The latter is responsible for choosing the most efficient runtime
configuration for the given kernel metrics, out of a set of avail-
able runtime library alternatives.

In order for the above to work, knowledge about the kernel
characteristics is necessary, so as to determine the level of re-
quired OpenMP support. Consequently, the first phase of the
mechanism consists of detailed kernel analysis. An OpenMP
kernel is a block of code enclosed lexically within a target
construct. The actual kernel region additionally includes any
code in called routines. Such routines are defined within declare

target constructs and are offloaded with the kernel. The
compiler has thus access to the whole kernel region and can
employ inter-procedural analysis in order to analyze the entire
dynamic extend of the kernel.

The compiler can build the call graph of each kernel and
visit each of the called routines. The compiler can then extract
information about the employed OpenMP constructs (if any),
and thus determine the actual OpenMP functionality that is nec-
essary for the execution of each particular kernel. More of-
ten than not, a given kernel will not require the entire OpenMP
functionality but a rather small portion of it. Given this infor-
mation, the offloaded kernel can be accompanied by a suitable
subset of the OpenMP runtime library, potentially decreasing
the total offloaded footprint. We leave the discussion of what
the analysis options are for later, where an actual implementa-
tion of the proposed mechanism is presented in detail.

The kernel analysis performed by the compiler should re-
sult in a set of metrics that quantify the exact usage of OpenMP
constructs within a particular kernel. Given the analysis results,
the second phase of the mechanism chooses the most appropri-
ate device runtime flavor, i.e. the RTS library alternative which
is to be linked with the kernel code and provide the required
OpenMP support. For example, an ideal case would be the
existence of a flavor that supports just the needed constructs,
nothing more, offering the smallest possible footprint, and thus
benefit co-processor cases with small amounts of local memory.

In practice the RTS flavors could be a fixed set of pre-compiled
libraries, selected to address specific classes of applications, as
derived from typical use-case scenarios. Another possibility is
to have on-the-fly parameterizable libraries. Because the de-
fault values of the runtime parameters may not suit all applica-
tions, tuning some parameters according to kernel characteris-
tics and building different library variants can be proven bene-
ficial.

The module that brings it all together, and is responsible
for collecting the compiler analysis results and selecting the
runtime flavor to employ is the mapper. The mapper should
choose the most appropriate flavor so as to minimize the of-
fered OpenMP functionality while at same time cover all kernel
OpenMP requirements.

The above outline the general ideas behind our proposal. In
the next section we present a full implementation of the mecha-
nism. We discuss in detail both kernel analysis issues as well as
the challenges in providing the envisaged mapper functionality.

5. Implementation in the OMPi Compiler

The OMPi compiler [6] is a lightweight OpenMP C infras-
tructure, composed of a source-to-source translator and a mod-
ular RTS. OMPi is an open source project and targets general-
purpose SMPs and multicore platforms. It adheres to OpenMP
V3.1 specifications, while also supporting a number of V4.5
features including all the target-related device ones.

The compilation process for an accelerator-assisted program
is shown in Fig. 3. The compiler takes as input C code with
OpenMP directives, and after the pre-processing and transfor-
mation steps, it outputs a multi-threaded C file for executing

5

Figure 3: OMPi compilation chain

on the host and another set of intermediate files, one for each
kernel (i.e. one for each target region in the user program).
Every intermediate file has been augmented with calls to the
RTS of the corresponding device. In the last stage, the inter-
mediate files are compiled with the appropriate system com-
piler in order to provide the final executables. To implement
the proposed mechanism, this last stage is where the mapper
module was incorporated. The intermediate files must carry the
deduced metrics so as to guide the mapper. We modified the
compiler and equipped it with new kernel analysis capabilities
in order to derive the desired metrics, as described next.

5.1. Kernel Analysis

The analysis of the kernels is done at a high level, before the
actual code transformations. The whole program is represented
by an abstract syntax tree. Upon encountering an OpenMP
target node, the compiler analyzes its body and follows the
chain of routine calls (if any) in order to discover the OpenMP
functionality required by this particular kernel. To avoid vis-
iting a routine multiple times (since it may be called by mul-
tiple kernels), all routines defined within declare target
regions are analyzed before any other program transformations.
The compiler constructs the call graph and traverses it; for each
visited function f , the following are the metrics currently gath-
ered:

• The total number of OpenMP constructs

• The number of parallel constructs (N(f)
p).

• The number of for, sections and single constructs.

• The number of constructs with nowait clauses (N(f)
nw).

• The number of ordered, atomic directives.

• The number of reduction clauses (N(f)
red).

• The number of task constructs (N(f)
t).

• The number of explicit barrier directives.

• The types of loop schedules employed, through schedule
clauses.

• The number of OpenMP ICV modifying clauses and rou-
tines.

• The maximum level of parallelism (L(f)
p).

All the metrics except the last one count the constructs encoun-
tered in the function f itself. The parallelism nesting level is
determined from the function and all the functions called by it
as follows: If a function g is called by f at nesting level l f→g,
then the nested parallelism level for this particular call is given
by l f→g + L(g)

p . The maximum parallelism level observed for
function f is given by:

L(f)
p = max

g called by f

{
l f→g + L(g)

p

}
.

Consequently, if for example L(f)
p = 1, there may be no need to

add support for nested parallelism to a kernel that calls function
f . If the compiler detects recursion, this particular metric is
disabled.

For the whole kernel K, the metrics are summed over all
kernel functions. For example, the total number of parallel re-
gions is given by:

Np =
∑
f∈K

N(f)
p .

The only exception is the highest level of parallelism where the
maximum over all functions is kept:

Lp = max
f∈K

L(f)
p .

To maximize performance, OMPi allows overlapping work-
sharing regions whereby each thread of a team may proceed
independently to a following worksharing region, as long as
the previous one contains a nowait clause. The mechanism
is quite complex [28] and requires handling sizable data struc-
tures. If Nnw = 0, there is no need to implement it; a simple
blocking barrier would be enough to support all worksharing
regions.

As another example of the potential these metrics provide,
if there are no parallel constructs in the kernel code (Np = 0),
most of the required OpenMP functionality is rather trivial and
could be provided by a very small library. If, at the extreme
case, there exist no OpenMP constructs, there is no need for an
OpenMP RTS at all at the device side.

Regarding the example in Fig 1, the target region only
generates a single level of parallelism, with the threads sharing
the iterations of a for loop. Consequently, the derived metrics
are as follows: Np = 1, Lp = 1 and Nfor = 1.

The gathered metrics are used at every encounter of a target
tree node during code transformations. Before actually trans-
forming the construct, its body is analyzed in a similar way
as above, and the metrics are combined with the precomputed
ones for every function called from the kernel. The final set
of metrics is stored in a table and the compiler proceeds to the
transformation of the kernel body. During code generation, the
computed metrics for each target construct are embedded
into the corresponding kernel file as C language comments, for
passing them to the mapper. All metrics get enlisted following

6

Start

OpenMP?
Only

Parallel?

Only Parallel +

Reduction?

Explicit

tasks?

nowait

regions?

only

single?

NoOMP Full

NoNo

Yes

No

Yes No

ParallelOnly ParallelReduction

Yes Yes

Yes
SingleTasksBlockingOnly

No

Yes

No

Figure 4: Decision flowchart example

a simple key-value format, one metric per line. The mapper
gathers the metrics simply by parsing the top-section comment
block of the kernel code.

5.2. Mapper
As shown in Fig. 2, the mapper has a central role in the

proposed mechanism. In particular, for each kernel, the mapper
must:

• Collect the metrics which resulted from the kernel analy-
sis performed by the compiler.

• Include information about the set of available runtime fla-
vors for each device.

• Decide which flavor is the most appropriate for the given
kernel, and a specific device.

In other words, given a kernel and a device, the mapper must
map the metrics to the best available runtime flavor.

Because different devices may have different sets of run-
time flavors with different levels of OpenMP support, a single
set of rules does not always give the optimum mapping. Hence,
we chose to design a general mapper module that can instructed
how to make the optimum flavor choice based on the analysis
metrics, for each distinct device. For each device, the mapper
must be aware of the set of available flavors. In addition, it
must be able to make an intelligent decision among them for
each kernel. In our system, the device developer decides how
to find the best runtime flavor based on the kernel metrics. The
decision process is encoded as a set of rules which check spe-
cific metrics and wind up to the correct optimal choice. The
mapper, consequently, is given a set of decision rules; it chains
them using the compiler metrics until it reaches a final flavor
decision.

The selection process can be represented by a flowchart
such as the one given in Fig. 4 (details below). Decision nodes
(diamonds) query some kernel metric and based on its value,
transfer to other nodes, until a flavor node is reached (rectan-
gle) and that specific flavor is chosen as the most appropriate.

In order for the device developer to specify the decision
rules and the mapper to utilize them, we designed a custom
language for rule files, called MAL. Its syntax is simple and
generic, allowing decisions based on exported metrics. The

The available runtime flavors
flavors = [

NoOMP, ParallelOnly, ParallelReduction,
BlockingOnly, SingleTasks, Full

],
Decision nodes
nodes = [

checkomp = { has(openmp),
true: checktasks,
false: NoOMP },

checktasks = { num(tasks),
> 0: checknowait,
= 0: checkparall },

checknowait = { has(nowait),
true: Full,
false: checksingle },

checksingle = { hasonly(tasks,single),
true: SingleTasks,
false: BlockingOnly },

checkparall = { hasonly(parallel),
true: ParallelOnly,
false: checkreduct },

checkreduct = { hasonly(parallel,reduction),
true: ParallelReduction,
false: Full }

]

Figure 5: A MAL rule file for the flowchart in Fig. 4.

syntax of a MAL rule file is quite familiar, similar to JSON or
Python lists and dictionaries. The file consists of two sections.
The first one, flavors, is a list of all the available runtime
flavors for the device in question. The second section, nodes,
is a list of rules that process the gathered metrics and represent
the decision logic. Specifically, each rule follows a dictionary
syntax and consists of:

1. A query statement related to a specific metric. Available
queries are: has, hasonly and num. Queries are in
the form of one-parameter functions. A has (hasonly)
query checks whether (only) the specified metric exists
in the analysis results; hence the outcome can be either
true or false. For a num query, the outcome is an
integer representing the value of the specified metric.

2. A set of adjacent (follow-up) rules, conditioned on the
result of the query statement. The condition is either the
truth status of the has/hasonly query or a comparison
which involves a relational operator and an integer for
num queries. The outcome of the query is compared to
the integer through the relational operator and if the con-
dition holds, the corresponding follow-up rule is sched-
uled to be checked next.

The MAL grammar is given in the Appendix but can be eas-
ily understood through the example rule file in Fig. 5 which rep-
resents the decision flowchart of Fig. 4. Anything after a hash
(#) is considered a comment and the rest of the line is ignored.

In the example, there exist 6 different runtime flavors, named
NoOMP, Full, BlockingOnly, SingleTasks, ParallelReduction
and ParallelOnly. The first should be utilized if a kernel makes
no use of OpenMP functionality while the second one is for
kernels which embed complex OpenMP constructs. A common
case is to only utilize a parallel construct with or without

7

Figure 6: Modified OMPi compilation chain with integrated mapper

reduction clauses, giving rise to the last two optimized fla-
vors. The SingleTasks flavor tries to capture task-based paral-
lelism where a single thread creates all the tasks, while BlockingOnly
fits the rest of the cases.

The flavors are shown as green rectangles in Fig. 4 and are
declared in the top flavors section in the rule file (Fig. 5).
The decision logic is given in the nodes section of the rule file
and correspond to the diamond nodes in the flowchart. The
starting node is the first one listed, hence the decision pro-
cess always begins with the checkomp node. The node con-
sists of a query statement (has(openmp)) which queries the
“openmp” analysis metric that indicates whether the kernel uti-
lizes OpenMP at all. If the outcome is true, the next node to be
visited is node checktasks; otherwise the next node is NoOMP
which happens to be a flavor node, terminating the decision pro-
cess and promoting it as the most suitable flavor.

If the checktasks node is visited, the query num(task)
checks how many task regions are present in the kernel; if
none exists, there is a transfer to the checkparall node which
may lead to lighter runtime flavors. For example, if parallel
is the only OpenMP construct present, then a flavor that pro-
vides support only for creating a team of threads is the optimal
choice (ParallelOnly).

The MAL grammar, is simple enough to allow for recursive-
descent parsing. After a MAL rule file for a specific device gets
parsed, it is stored internally as a graph using an adjacency list
representation. This internal graph is traversed every time the
mapper has to decide on the most suitable flavor for a kernel
that targets this particular device.

The implementation of the mapper has been integrated within
the OMPi compilation chain, as is shown in Fig. 6. Following
the architecture shown in Fig. 2, in order to deploy the mapper
module it was necessary to modify the last stage in the OMPi
compilation chain. In particular, the intermediate kernel files
are fed to the mapper before given to the device compiler. The
mapper extracts the embedded metrics and uses them to tra-
verse the decision rules for each kernel. It is then able to select
the most appropriate runtime flavor; this flavor is given to the
device linker to link against the kernel file.

6. A Case Study: The Epiphany Accelerator

As a concrete demonstration of the proposed compiler-assisted,
adaptive runtime architecture, we used the well known Parallella-
16 [1], a popular 18-core credit card-sized board equipped with
two processing modules; the main CPU, a dual-core ARM Cor-
tex A9 with 32KiB L1 cache per core and 512KiB shared L2
cache (built within a Zynq 7010 SoC), and an Epiphany-III 16-
core CPU which is used as a co-processor. The former runs
Linux and uses virtual addresses while the latter does not have
an OS and uses a flat, unprotected memory map. The Epiphany-
III has a peak performance of approximately 25 GFLOPS (single-
precision) with a maximum power dissipation of less than 2
Watt. The ARM and the Epiphany use a 32MiB portion of the
system RAM as shared memory which is physically addressable
by both of them.

A closer look at the architecture of the Epiphany reveals a
64 × 64 mesh interconnect, so in theory systems up to 4096
cores are possible. In Epiphany-III the chip is pinned on a
4 × 4 submesh of the virtual 64 × 64 mesh. The chip has four
eLINKs that may be used to interconnect it with other chips. In
the Parallella-16 board version, the west eLINK is inactive and
the east eLINK is connected to the Zynq host. Each Epiphany
core (eCORE) is a 32-bit superscalar RISC processor, capable of
performing single-precision floating point operations, and owns
1MiB of the total address space (that is the maximum physical
memory that can be integrated by design), which is addressable
by all cores. However, in the current version, each core comes
with just 32KiB of local scratchpad memory; in addition it is
equipped with two DMA engines. All memories are available
through regular load/store instructions by all eCOREs.

6.1. The Full RTS

OMPi was the first compiler to support the Epiphany accel-
erator as an OpenMP device [25]. The RTS in [25] consists of
two parts; the first is executed at the host space and is used
for controlling and accessing the Epiphany device. The second
part is executed by the Epiphany cores and provides support of
OpenMP within the device side. The communication between
the two parts occurs through the shared memory portion of the
system RAM. The eCOREs do not execute any operating system
and there is no provision for creating and handling dynamic
parallelism within the Epiphany chip.

The original RTS was carefully designed so as to minimize
its memory footprint, while supporting OpenMP fully (albeit
inefficiently, using the much slower shared memory region for
key structures). The limited local memory of the device cores
makes it impossible to fit sophisticated OpenMP RTS structures
alongside the application data. The coordination among the par-
ticipating eCOREs occurs through structures stored in the local
memory of a team’s master core. The synchronization mech-
anisms (locks and barriers) are customized versions of those
provided by the native libraries. The tasking infrastructure is
based on a simple blocking shared queue which is also stored
in the local memory of the team’s master eCORE, for speed. On
the other hand, the corresponding data environments for each

8

Data structures Size in bytes
EECB data 1440 (1 active region)
Essential 48
Worksharing ≥ 80
No-wait regions 8 + 64 × (# active regions)
Loops 32

Static loops 4
Ordered 28

Sections 4
Tasking data 1312
Task descriptor 72 per task

ICV data 32
Reductions 16 per eCORE

Critical 16 per eCORE

User defined locks 176 per eCORE

Nested parallelism 88(+1088 in SM) per level

Table 1: Data sizes in the original RTS

task are stored in the slower shared memory area, due to space
requirements.

The above RTS was used as a basis for the design of a set
of adjustable RTSs, each one specialized for a certain type of
kernels. For the rest of the text we will refer to the original
RTS as the Full RTS. It is built as a Linux static library, and is
linked with each offloaded kernel. It is organized as a collec-
tion of largely independent routines so that the system linker
can attach only the necessary ones with each kernel. However,
the complex relations between the internal data structures and
the routines usually force the linker to include sizable portions
of the library. As a result, the Full RTS has a relatively large
footprint, even when it accompanies an effectively empty ker-
nel [25]. Furthermore, because dynamic memory allocation
is not supported at the eCORE level, the RTS must reserve in
advance enough local space to cover the worst case. Conse-
quently, the actual local memory left for pure application data
is well below the 32 KiB available.

The original runtime support for the Epiphany was designed
to provide full OpenMP support, under the constraint of the
limited memory resources. The first step towards designing a
set of adjustable RTSs was to analyze the original runtime and
understand the impact each component has. The purpose of this
procedure was to discover in detail the size of all different data
structures and the corresponding functionalities they support.
The result of this analysis guided the design of distinct RTSs,
specialized to different kernel scenarios.

In Table 1 we present the sizes of the most important run-
time data structures. Notice that these represent only the eCORE-
resident parts; additional data structures are kept in the (slower)
shared memory and are of no interest here. The RTS of OMPi
utilizes two fundamental descriptors: the thread and the task
descriptor. The former is named EECB (execution entity con-
trol block) and holds all the information needed by an OpenMP
thread to execute a code region and to coordinate with sibling
or child threads. The later holds the data required for the exe-
cution of a specified task. As seen in Table 1, the sizes of these
entities have the biggest impact on the total footprint of the RTS.

Not all those data are actually needed for the execution of
every kernel. The instinctive idea is to trim down these struc-
tures to save local memory, while at the same time satisfy the
real needs of a kernel. The essential data require 48 bytes per
EECB while the data for worksharing constructs are 80 bytes. A
closer look at each worksharing construct reveals that the loop
construct occupies almost half of the space. A performance-
oriented but memory-consuming feature of the original run-
time, is the ability to allow multiple active worksharing regions,
whereby each thread of a team may proceed independently to
a following worksharing region, as long as the previous one
contains a nowait clause. If up to n overlapping regions are
supported, an additional n × 64 bytes per EECB are necessary.

The space needed for a task descriptor is 72 bytes. In the
current RTS all the task-related structures of all eCOREs must be
stored in the EECB data structure of the master eCORE. Because
all eCOREs are eligible as team masters, the same space must
be provided in all eCOREs. This results in a total 1312 bytes per
EECB for the whole tasking mechanism, and demonstrates the
potential for reducing the memory footprint in the case where
an application does not use explicit tasking. The size of the
necessary internal control variables (ICVs) is measured to be 32
bytes per task. If the kernel does not modify any of their values
(e.g. there are no calls to omp set xxx() routines), then it
could be possible for the RTS to use only one copy of the ICVs
for all tasks. In such a case, up to 12256 bytes could be saved
in total (in the local memories of all 16 eCOREs).

Synchronization between the eCOREs is relatively cheap,
since 16 bytes per core are needed for the reduction and
critical constructs. Due to lack of dynamic memory alloca-
tion, the original runtime pre-allocates space for 8 user-defined
locks. This mechanism requires 176 bytes in the local memory
of each eCORE, even if a kernel uses no locks at all. Finally,
considering parallelism levels, the data needed for each sup-
ported nesting level occupies a significant amount of memory.
Each additional level needs 88 extra bytes in the local memory
(plus more than 1KiB on the shared memory).

We should make two important observations at this point.
First, except for the data structures, there is the corresponding
code that handles them, so removing unnecessary data struc-
tures has the beneficial side-effect of decreasing the size of the
library code. Second, slimmer code usually means faster code.
Although in this section we concentrated on minimizing the li-
brary sizes, we also expect to have some performance gains for
free. Additional performance gains are possible by redesigning
the employed algorithms. For example, if the tasking subsys-
tem is removed from the equation, a significantly faster barrier
implementation is possible, which avoids polling for tasks to
execute.

6.2. Implementation of Runtime Flavors
Our strategy for implementing the proposed mechanism was

to create different library flavors, aiming to minimize the library
footprint. In particular, based on detailed analysis of the run-
time organization, we identified three parts that contribute the
most because of both the size of the involved routines and the
size of the required data structures:

9

• Dynamic parallelism. A substantial amount of data and
routines are needed in order to support dynamic paral-
lelism within a kernel. In particular, beyond the data
structures needed for controlling parallel team members,
extra room is necessary for communicating with the host
processor. Furthermore, the thread synchronization mech-
anisms, especially the barrier, consume additional mem-
ory space. All this becomes more than doubled if a sec-
ond level of parallelism is to be supported. Supporting
more than two levels is pointless.

• Worksharing. The common OpenMP worksharing con-
structs (single, for, sections) can have different
combinations of reduction, schedule, collapse,
nowait and ordered clauses. Supporting all of them
requires data structures with a large memory footprint.
In practice, typical applications do not utilize all possible
variations. As a result, supporting specific combinations
of the above constructs and clauses may potentially ben-
efit some kernel cases.

• Tasking. The tasking infrastructure for the Epiphany is
the module with the largest memory requirements. The
required functionalities include fine grain synchroniza-
tion, so most of the runtime data must be stored in lo-
cal memories; in particular they are stored in the local
memory of the team’s master eCORE. This means that
the local memory of one eCORE hosts the tasking data of
all eCOREs. Because all eCOREs are candidates for team
masters, preallocated tasking structures must be present
in the local memories of all eCOREs. Furthermore, bar-
rier synchronization is charged with task execution duties
which impact overall performance.

Based on the above analysis of the original RTS, we de-
signed and implemented a set of new runtime flavors. Each
flavor is a modified version of the original, trimmed to support
a limited number of constructs. For each flavor we removed the
unnecessary internal data structures and modified all routines
respectively. The total set of the RTSs is as follows:

(1) NoOMP. This RTS does not support any OpenMP directives
within the kernel; eCOREs execute sequential code.

(2) ParallelOnly. This RTS provides the mechanism for an eCORE
to form and deform a parallel team. No other OpenMP
functionality is supported.

(3) ParReduction. This is an extension of the previous one, and
implements the reduction clause.

(4) ParAtomic. This RTS extends (2) and allows only the atomic
synchronization construct between the eCOREs of a parallel
team.

(5) ParCritical. This RTS extends (2) by allowing only the
critical synchronization construct between the eCOREs
of a parallel team.

(6) ForStatic. This is the ParallelOnly RTS where the team
members can also utilize the for worksharing construct.
Only the static schedule is supported. No other work-
sharing constructs are offered.

(7) ForOrdered. This extends the previous one by adding the
ability to utilize the ordered clause of the for directive.

(8) ForWSOnly. This is the ForOrdered RTS where the team
members can utilize any of the three loop schedules (static,
dynamic, guided) as well as the ordered clause.

(9) SingleOnly. Here we extend the ParallelOnly flavor by sup-
porting only the single worksharing construct.

(10) NoTasks. We developed this RTS for kernels with no explicit
tasks. The rest of the OpenMP functionality (e.g. workshar-
ing, synchronization, etc) is present.

(11) BlockingOnly. This is an almost complete OpenMP RTS but
the support for nowait worksharing regions is disabled so
as to reduce the footprint of the related structures.

(12) NoTasksBO. We added a variation of the BlockingOnly fla-
vor where the tasking support has been removed.

(13) TasksNoICVs. This RTS provides support for teams of eCOREs
that can create explicit tasks. It is assumed that per-task
ICVs are kept unmodified and thus can be omitted from the
task descriptor of all but the initial task.

(14) TasksICVs. This RTS extends the previous one by support-
ing per-task ICVs; each task descriptor has a private copy of
the ICVs which is inherited from the parent task, and which
the task is allowed to modify using the appropriate routines.

(15) Full. This is the original RTS.

The above set does not cover all possible use cases, i.e. it
does not include all possible combinations of OpenMP con-
structs. Instead it was guided by common sense for support-
ing usual application scenarios. In any case, our goal here is
to prove the potential of the proposed mechanism, and not to
derive all possible runtime flavors for all possible kernels.

Furthermore, the RTS routines were carefully re-implemented
to offer only the required support. Barrier routines constitute a
characteristic example; in a complete OpenMP runtime system
a barrier has to synchronize team threads and also act as a task
scheduling point. In all flavors but BlockingOnly, TasksNoICVs,
TasksICVs and Full there is no tasking support and consequently
barriers were simplified to handle only thread synchronization.

The mapper imports the set of metrics provided by the com-
piler and uses them in order to choose the most appropriate RTS
flavor to be linked with a kernel. Fig. 7 shows the complete
decision flowchart for the 15 flavors. Without going into great
detail, here is a quick overview of the decision making pro-
cess: RTS (1) is chosen to accompany kernels which do not in-
clude OpenMP constructs. Based on the tasking metrics, RTSs
(11) and (13) through (15) are used when tasks are present; the
actual choice depends on the type of worksharing regions ob-
served and whether per task ICVs are needed. If no explicit
tasks are used RTSs (2)-(10) and (12) are candidates. The de-
cision is driven by the presence of parallel, reduction,
critical, atomic and worksharing constructs.

The flowchart of Fig. 7 was coded as a rule file using MAL.
The rule file contains the 15 flavors and 16 decision nodes cor-
responding to the diamond nodes of the flowchart. All in all,
this resulted in 200 lines of code, which were used to automate
the mapper decisions for every compiled kernel.

10

Figure 7: The full decision flowchart of the case study.

7. Evaluation

To evaluate our proposed method, we used the Parallella-
16 SKU-A101020 board, which comes with standard periph-
eral ports such as USB, Ethernet, HDMI, GPIO, etc. and is
equipped with a dual-core ARM Cortex A9, which is the host
and an Epiphany-III 16-core co-processor, considered as our
device. All common programming tools are available for the
ARM host processor. For the Epiphany, a Software Develop-
ment Kit is available (eSDK), which includes a C compiler and
runtime libraries for both the host (eHAL) and the co-processor
(eLIB). We used eSDK V5.13.9.10 which includes the GCC and
E-GCC compilers for the host and the Epiphany executables re-
spectively.

For our experiments we use as a reference the Full RTS (15)
with the default parameters, and compare it with the optimized
RTSs resulting from the combination of the kernel analysis and
the mapper selection. The kernels were compiled with “-O3
-funroll-loops” flags and we used the e-size eSDK tool to
examine the produced ELF object files.

The first set of tests included a modified version of the EPCC
microbenchmark suite [29] where their basic routines are off-
loaded through target directives. These benchmarks are in-
tended for measuring the execution time overheads of specific
constructs. In this study we additionally utilized them to ex-
hibit possible size benefits of the produced kernel object files.
We present a representative sample of results pertaining to the
following benchmarks: barrier, for with static sched-
ule, critical, single, forwith the ordered clause, and
locks.

Next, we implemented four simple applications. The first
one is the scenario of a kernel which does not include any OpenMP
functionality at all. In practice, this is an empty kernel contain-
ing only one assignment instruction. The second application is
the iterative computation of π = 3.14159, based on the trape-
zoid rule with 2,000,000 intervals, and using an OpenMP kernel
which spawns a parallel team of 16 threads. The other two ap-
plications are task-based, taken from the Barcelona OpenMP
Tasks Suite [30], One is the NQueens application which com-
putes all solutions of the N-queens placement problem on an
N × N chessboard, so that none of the queens threatens any
other. Due to the severe memory limitations of the Epiphany,
we considered the manual cut-off version of the benchmark,
where the nested production of tasks stops at a given depth. We
present the results for N = 12 queens, and a cut-off value of 2,
where a total of 144 tasks are produced. The last one is the Sort
application which sorts an 1D array by splitting its elements
in halves, recursively sorting each part and then merging them
with a parallel merge algorithm. The application uses parallel
tasks and resorts to sequential sorting when the number of pro-
cessed elements becomes too small. Here we consider an array
of 1,048,576 random integers using a cutoff value of 2048.

Our experimentation concluded with two more complex ap-
plications. The first one is the well-known Conway’s Game of
Life which is one of the available Parallella-16 code examples.
The original code is rather simplistic and refers to a 4 × 4 field
of cells. We implemented a more sophisticated version, which
is based on an 16 × C field, parallelized with OpenMP. The
program code is offloaded as a target region, with the ini-
tial field array residing in shared memory. Each core starts by

11

Application Computed metrics
Mandelbrot Np = 1,Nb = 1, Lp = 1
Pi calculation Np = 1,Nred = 1, Lp = 1
Game of Life Np = 1,N f = 1,Nb = 4, Lp = 1
NQueens Np = 1,Nt = 1, Lp = 1
Sort Np = 1,Nt = 9,Nsingle = 1, Lp = 1

Table 2: Kernel analysis

bringing its assigned field row along with the next and the pre-
vious one, to its local memory for speed. From then on, it op-
erates exclusively on local data. At the end of each round each
core updates the data of the appropriate neighbors, taking ad-
vantage of Epiphany’s fast interconnection network for on-chip
remote writes. The value of C (the number of columns) depends
on the available local space. For the Full RTS we were able to
fit fields with C = 184 columns which is the value used in our
experiments. However, it is worth noting that from the size re-
ductions possible when optimized runtimes are employed, we
managed to experiment with fields of up to C = 950 columns.

The last experiment included the Mandelbrot deep zoom ap-
plication which calculates a Mandelbrot set and zooms in and
out up to 10500× at six predefined points. Each image frame
is written directly to the frame buffer of the Parallella-16 board
(with a resolution of 1024×768), resulting in an impressive col-
orful video. The full traversal generates 204 frames per zoom
point. The source code for this application is provided as an ex-
ample included with the eSDK, as a way to exhibit the real time
performance possibilities of the Epiphany chip. We have devel-
oped a parallel version of the code using OpenMP [25], where
the kernel statically distributes the calculation among the de-
vice’s 16 cores. Each core calculates the colors for a region of
the image and writes the values to the frame buffer. At the end
of each frame, all cores are synchronized through an OpenMP
barrier.

We summarize the kernel metrics reported by the compiler
for the 4 applications in Table 2. All of them contain a single
level of parallelism (Lp = 1) resulting from one parallel
region (Np = 1). The NQueens and Sort applications are the
only ones to utilize tasking (Nt ≥ 1).

Table 2 does not include the the EPCC microbenchmarks
since each one of them contains a parallel region (Np = 1)
plus an additional OpenMP construct (which the microbench-
mark measures) and a single level of parallelism (Lp = 1). The
ordered one contains an additional for region (N f = 1).

7.1. Size Results
In Table 3 we present the sizes in bytes of the resulting ob-

ject files when our mechanism is employed. Each application
is linked with an appropriate optimized RTS as selected by the
mapper. For comparison we show the corresponding sizes with-
out applying our mechanism (i.e. the Full RTS is linked with the
kernels). The last column represents the reduction percentage
with respect to Full RTS. A quick glance reveals significant
improvements in all cases.

For the special case of a kernel with no OpenMP directives
the mapper utilized the NoOMP RTS, listed as (1) in Section 6.2

Application Full RTS Optimized RTS Reduction
Empty kernel 8648 2252 (NoOMP) 73.96%
Mandelbrot 13724 9620 (ParallelOnly) 29.90%
Pi calculation 12744 8864 (ParReduction) 30.45%
Game of Life 15412 11320 (ForStatic) 26.55%
NQueens 20908 19148 (TasksNoICVs) 8.42%
Sort 18308 16408 (BlockingOnly) 10.38%
EPCC-barrier 12316 8268 (ParallelOnly) 32.87%
EPCC-for-static 14744 10992 (ForStatic) 25.45%
EPCC-critical 13184 9420 (ParCritical) 28.55%
EPCC-single 12768 8944 (SingleOnly) 29.95%
EPCC-ordered 14704 10992 (ForOrdered) 25.24%
EPCC-locks 12932 8716 (ParallelOnly) 32.60%

Table 3: Executable kernel sizes (bytes)

and the savings were almost 6 KiB, freeing precious space in lo-
cal memories for the eCOREs to fit more application data. For
the case of the Mandelbrot application, the chosen RTS was the
ParallelOnly one, which provides only functionalities for cre-
ating and synchronizing a parallel team. This resulted in object
file smaller by 4 KiB.

The kernel for the calculation of π creates a team of eCOREs
that share evenly the workload. The code utilizes the reduction
clause to combine the partial results. Therefore, the mapper se-
lected the ParReduction RTS, which resulted in a savings of 3.5
KiB. The Game of Life creates a parallel team of threads which
share iterations of a static for loop, hence the ForStatic fla-
vor was chosen as optimal, and 4 KiB smaller size is needed
for the object file. The NQueens application utilizes only the
parallel and task directives. In addition, no OpenMP in-
ternal control variables are modified in the user code. Conse-
quently, the TasksNoICVs runtime library was linked with the
kernel. Sort requires the BlockingOnly flavor since it also uses
a single construct. For the EPCC-based kernels the mapper
employed the RTSs (2), (5) through (7) and (9) according to
kernel directives; the final result exhibits savings in excess of 3
KiB.

For completeness, we note that the eSDK versions of the
Empty kernel and the Mandelbrot application gave object files
with sizes 2248 and 4728 bytes, respectively. Obviously, one
cannot compare these with what an OpenMP compiler produces,
since the lower-level eSDK API lacks most of the functionality
provided by OpenMP. However, we consider important the fact
that when OpenMP is not utilized in a kernel of the applica-
tion, OMPi does not introduce any bloat to the executable (just
6 bytes). Furthermore, the productivity benefits should be clear.
For example, while the eSDK version of the Mandelbrot appli-
cation requires separate host and Epiphany programs with a to-
tal of 301 lines of code, the OpenMP program lies in a single
file with 198 lines.

7.1.1. Timing Results
Following the size results, we compare the execution per-

formance of the optimized kernels with that obtained when the
Full RTS is employed. Starting with the OpenMP overheads,
in Table 4 we present timing results for the EPCC microbench-
marks. As mentioned previously, we modified the original suite

12

Kernel Full RTS Optimized RTS Reduction
EPCC-for-static 58.43 6.55 88.79%
EPCC-critical 2.17 1.55 28.57%
EPCC-single 45.61 1.96 95.70%
EPCC-ordered 4.70 4.66 0.85%
EPCC-barrier 15.17 2.28 84.97%

Table 4: EPCC overheads (µsec)

Kernel Full RTS Optimized RTS Reduction
Empty Kernel 0.25 0.21 16%
Mandelbrot 30.05 30.00 0.16%
Pi calculation 0.27 0.26 3.7%
Game of Life 2.08 1.37 34.16%
NQueens (tasks) 1.82 1.81 0.6%
Sort (tasks) 0.51 0.50 2%

Table 5: Application kernels execution times (sec)

by having their basic routines offloaded through target di-
rectives. Time measurements were taken from the host side,
after carefully subtracting any offloading costs. These timings,
shown in microseconds, corroborate our intuition on the per-
formance benefits of the specialized RTSs. Improvements up to
95% are observed. The noticeable cases are those of single,
for with static schedule and barrier. The reason is
mostly the optimized barrier; in contrast to the Full RTS, the
runtimes chosen by the mapper contain barriers with no task-
ing extensions. We get borderline improvements in the case of
for with an ordered clause, because in both scenarios the
loop iterations are executed in a serial manner and the eCOREs
perform their synchronization through a shared variable, stored
in the (slow) shared memory.

The execution times regarding the other applications are
given in Table 5. Notice that a 0.1 sec delay is always present
due to the way the Parallella-16 handles execution on the Epiphany,
and is a performance burden that any offloaded kernels must
bare (even eSDK-based ones). The 16% reduction in the empty
kernel running time is due to the significantly smaller size of the
RTS linked in the kernel executable, which has to be distributed
to the eCORE(s). Regarding the Mandelbrot application, most
of the execution time is spent on actual calculations, and the
OpenMP overheads constitute a rather negligible quantity. Nev-
ertheless, the optimized RTS results offers some minimal speed
gains. The same holds for the NQueens and the Sort kernels. In
addition, accesses to the shared memory area which stores the
tasks data environments have an impact to the total execution
time.

Finally, a significant improvement of 3.7% is observed in
the kernel that calculates π and an even more impressive reduc-
tion of 34.16% in the Game of Life. The reason behind this is
that the optimized runtime does not support tasks. Therefore, it
utilizes the lighter barrier which has no tasking extensions. In
fact, the barrier flavors are the only algorithmic optimization we
implemented in the various RTSs. We expect to get even better
performance if other portions of the OpenMP infrastructure are
redesigned from scratch, specialized for each different RTS.

We also report that the eSDK version of the Mandelbrot ap-
plication runs in 26.76 sec; it is approximately 11% faster than
our version. We consider this very encouraging, considering
that the original is a hand-optimized, bare-metal code, while we
only have a general-purpose OpenMP infrastructure prototype
which still has room for optimizations.

8. Conclusions and Future Work

In this work we present a novel compiler-assisted, adaptive
RTS organization that is able to produce specialized and opti-
mized OpenMP support for offloading devices, tailored to the
needs of each particular application.

The general idea is to build multiple device runtime libraries
(flavors), each offering different levels of OpenMP function-
ality support. For a given application, the compiler performs
a detailed inter-procedural analysis of all target kernel re-
gions and calculates a set of metrics characterizing the kernel
behaviors with respect to OpenMP functionality. These met-
rics are fed to a mapper mechanism which decides on the most
appropriate runtime library flavor to employ. As a result, each
kernel offloaded to a device is accompanied by an optimized,
kernel-specific runtime library that is able to provide exactly
the OpenMP features required. This results in size-optimized
executables, with clear potential for serious performance bene-
fits.

Given the set of metrics that profile the application and are
obtained by compile-time analysis, the mapper has the ability
to automatically select among different runtime libraries using
a set of device-specific decision rules which an implementer
provides for a device. To this end, we introduce a custom lan-
guage (MAL) which is able to capture the logic of a decision
flow diagram using a concise syntax.

We have implemented our ideas on the Parallella-16 board,
in the context of the OMPi compiler. Our experiments show
dramatic decrease in both kernel sizes and execution times, as
compared to the original, monolithic RTS.

The proposed mechanism is quite general and applicable
to any OpenMP device. We are mainly working in three di-
rections: (a) expanding the expressiveness of MAL, (b) adding
support for more devices (especially GPUs), and (c) examining
the possibility of parameterized flavors, whereby parts of a fla-
vor can be tuned at compile time. We finally plan to expand
our compiler analysis to support the ideas of [27, 31] in order
to further optimize the requirements of the tasking subsystem.

Appendix A. MAL Grammar

In this Appendix we provide the full grammar of the Map-
per language for rule files (MAL), in Backus-Naur form (BNF).

〈S〉 ::= 〈flavor-list〉 ‘,’ 〈node-list〉

〈flavor-list〉 ::= flavors ‘=’ ‘[’ 〈flavor〉 ‘]’

〈flavor〉 ::= 〈name〉 ‘,’ 〈flavor〉
| 〈name〉

〈node-list〉 ::= nodes ‘=’ ‘[’ 〈nodes〉 ‘]’

13

〈nodes〉 ::= 〈node〉 ‘,’ 〈nodes〉
| 〈node〉

〈node〉 ::= 〈name〉 ‘=’ ‘{’ 〈node-body〉 ‘}’

〈node-body〉 ::= 〈bool-query〉 ‘,’ 〈bool-adj-list〉
| num ‘(’ 〈metric〉 ‘)’ ‘,’ 〈num-adj-list〉

〈bool-query〉 ::= has ‘(’ 〈metric-list〉 ‘)’ | hasonly ‘(’ 〈metric-list〉
‘)’

〈bool-adj-list〉 ::= 〈bool-edge〉 ‘,’ 〈bool-edge〉

〈bool-edge〉 ::= 〈boolean〉 ‘:’ 〈name〉

〈num-adj-list〉 ::= 〈num-edge〉 ‘,’ 〈num-adj-list〉
| 〈num-edge〉

〈num-edge〉 ::= 〈relop〉 integer ‘:’ 〈name〉

〈name〉 ::= ‘"’ charstr ‘"’ | charstr

〈metric-list〉 ::= 〈metric〉 ‘,’ 〈metric-list〉 | 〈metric〉

〈metric〉 ::= charstr

〈boolean〉 ::= true | false

〈relop〉 ::= ‘>’ | ‘<’ | ‘=’ | ‘>=’ | ‘<=’ | ‘!=’

A “charstr” is any string which contains alphanumeric char-
acters, “-” or “ ”, and is used for the names of flavors, nodes
and metrics. The metrics currently exported by the compiler
and recognized by MAL are given in the following table.

Metric name Quantity measured
parallel number of parallel constructs
max par lev maximum level of parallelism
single number of single constructs
for number of for constructs
schedstatic number of for constructs with static schedule
scheddynamic number of for constructs with dynamic schedule
schedguided number of for constructs with guided schedule
sections number of sections constructs
tasks number of task constructs
reduction number of constructs with a reduction schedule
ordered number of for constructs with the ordered clause
uncritical number of unnamed critical constructs
criticals number of named critical constructs
atomic number of atomic constructs
nowait number of constructs with a nowait clause
hasextraicvs true if ICVs-changing functions are called
haslocks true if user-defined locks are present
openmp true if OpenMP functionality is present

References

[1] Adapteva, Parallella Reference Manual (Sept. 2014).
[2] L. Sommer, A. Koch, OpenMP device offloading for embedded hetero-

geneous platforms - work-in-progress, in: Proc. EMSOFT 2020, Interna-
tional Conference on Embedded Software, 2020, pp. 4–6.

[3] Khronos OpenCL Working Group, The OpenCL 3.0 Specification (Sept.
2020).

[4] D. B. Kirk, W.-m. W. Hwu, Programming Massively Parallel Processors:
A Hands-on Approach, 3rd ed., Morgan Kaufmann, MA 02139, USA,
2017.

[5] OpenMP ARB, OpenMP Application Program Interface V5.1 (Nov.
2020).

[6] V. V. Dimakopoulos, E. Leontiadis, G. Tzoumas, A portable C compiler
for OpenMP V.2.0, in: Proc. EWOMP 2003, the 5th European Workshop
on OpenMP, Aachen, Germany, 2003, pp. 5–11.

[7] T. Hanawa, M. Sato, J. Lee, T. Imada, H. Kimura, T. Boku, Evaluation
of multicore processors for embedded Systems by parallel benchmark
program using OpenMP, in: Proc. IWOMP ’09, 5th Int’l Workshop on
OpenMP, Dresden, Germany, 2009, pp. 15–27.

[8] M. Sato, Y. Nakajima, Y. Ojima, Y. Hotta, OpenMP implementation and
performance on embedded Renesas M32R chip multiprocessor, in: Proc.
EWOMP ’04, 6th European Workshop on OpenMP, 2004, pp. 37–42.

[9] F. Liu, V. Chaudhary, A practical OpenMP compiler for system on chips,
in: Proc. WOMPAT 2003, Workshop on OpenMP Applications and Tools,
Vol. 2716, Torondo, Canada, 2003, pp. 54–68.

[10] W.-C. Jeun, S. Ha, Effective OpenMP implementation and translation
for multiprocessor system-on-chip without using OS, in: Proc. ASP-DAC
’07, 12th Asia and South Pacific Design Automation Conf., Yokohama,
Japan, 2007, pp. 44–49.

[11] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A. Shrivastava, A. Gath-
erer, Implementing OpenMP on a high performance embedded multicore
MPSoC, in: Proc. IPDPS ’09, IEEE Int’l Symposium on Parallel and Dis-
tributed Processing, Rome, Italy, 2009, pp. 1–8.

[12] P. Burgio, G. Tagliavini, A. Marongiu, L. Benini, Enabling fine-grained
OpenMP tasking on tightly-coupled shared memory clusters, in: Proc.
DATE 13, Design Automation and Test in Europe, Grenoble, France,
2013.

[13] D. Cabrera, X. Martorell, G. Gaydadjiev, E. Ayguadé, D. Jiménez-
González, OpenMP extensions for FPGA accelerators, in: Proc.
SAMOS’09, 9th Int’l Conf. on Embedded Computer Systems: Architec-
tures, MOdeling and Simulation, Samos, Greece, 2009, pp. 17–24.

[14] S. N. Agathos, V. V. Dimakopoulos, A. Mourelis, A. Papadogiannakis,
Deploying OpenMP on an embedded multicore accelerator, in: Proc.
SAMOS’13, 13th Int’l Conf. on Embedded Computer Systems: Archi-
tectures, MOdeling and Simulation, Samos, Greece, 2013, pp. 180–187.

[15] R. Dolbeau, S. Bihan, F. Bodin, HMPP: A hybrid multi-core parallel
programming environment, in: Proc. GPGPU 2007, Workshop on Gen-
eral Purpose Processing Using Graphics Processing Units, Boston, USA,
2007.

[16] A. Fernández, V. Beltran, X. Martorell, R. M. Badia, E. Ayguadé,
J. Labarta, Task-based programming with OmpSs and its application, in:
Proc. Euro-Par 2014 International Workshop, Revised Selected Papers,
Part II, Porto, Portugal, 2014, pp. 602–613.

[17] L. Sommer, F. Stock, L. Solis-Vasquez, A. Koch, Using parallel program-
ming models for automotive workloads on heterogeneous systems – a
case study, in: Proc. PDP 2020, 28th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing, Västers, Sweden,
2020, pp. 17–21.

[18] A. Kurth, A. Capotondi, P. Vogel, L. Benini, A. Marongiu, HERO: An
open-source research platform for HW/SW exploration of heterogeneous
manycore systems, in: Proc. ANDARE ’18, 2nd Workshop on Autotuning
and Adaptivity Approaches for Energy Efficient HPC Systems, 2018.

[19] A. J. Peña, X. Martorell, OmpSs+OpenACC/OpenMP interoperability,
Tech. Rep. EPEEC Project, Deliverable 3.1 (March 2019).

[20] J. M. Diaz, K. Friedline, S. Pophale, O. Hernandez, D. E. Bernholdt,
S. Chandrasekaran, Analysis of OpenMP 4.5 offloading in implementa-
tions: Correctness and overhead, Parallel Computing 89 (2019) 102546.

[21] C. J. Newburn et al, Offload compiler runtime for the Intel Xeon Phi co-
processor, in: Proc. of IPDPS Workshops, 27th IEEE Int’l Parallel and
Distributed Processing Symposium, Boston, USA, 2013, pp. 1213–1225.

[22] L. Chunhua, Y. Yonghong, B. R. de Supinski, D. J. Quinlan, B. M. Chap-
man, Early experiences with the OpenMP accelerator model., in: Proc.
IWOMP 2013, 9th Int’l Workshop on OpenMP, Canberra, Australia,
2013, pp. 84–98.

[23] C. Bertolli et al, Coordinating GPU threads for OpenMP 4.0 in LLVM,
in: Proc. LLVM-HPC ’14, LLVM Compiler Infrastructure in HPC, New
Orleans, Louisiana, 2014, pp. 12–21. doi:10.1109/LLVM-HPC.
2014.10.

[24] G. Mitra, E. Stotzer, A. Jayaraj, A. P. Rendell, Implementation and opti-
mization of the OpenMP accelerator model for the TI Keystone II archi-
tecture, in: Proc. of IWOMP 2014, the 10th Int’l Workshop on OpenMP,
Salvador, Brazil, 2014, pp. 202–214.

[25] S. N. Agathos, A. Papadogiannakis, V. V. Dimakopoulos, Targeting the
Parallella, in: Proc. Euro-Par 2015, 21st Int’l European Conf. on Parallel
and Distributed Computing, Vienna, Austria, 2015, pp. 662–674.

[26] G. Tagliavini, D. Cesarini, A. Marongiu, Unleashing fine-grained paral-
lelism on embedded many-core accelerators with lightweight OpenMP
tasking, IEEE Transactions on Parallel and Distributed Systems 29 (9)
(2018) 2150–2163.

[27] A. Munera, S. Royuela, E. Quiñones, Towards a qualifiable OpenMP

14

https://doi.org/10.1109/LLVM-HPC.2014.10
https://doi.org/10.1109/LLVM-HPC.2014.10

framework for embedded systems, in: Proc. 2020 Design, Automation
Test in Europe Conference Exhibition (DATE), 2020, pp. 903–908.

[28] G. Philos, V. Dimakopoulos, P. Hadjidoukas, A runtime architecture for
ubiquitous support of OpenMP, in: Proc. ISPDC 2008, 7th Int’l Sympo-
sium on Parallel and Distributed Computing, Krakow, Poland, 2008, pp.
189–196.

[29] M. J. Bull, Measuring synchronisation and scheduling overheads in
OpenMP, in: Proc. EWOMP ’99, the 1st European Workshop on
OpenMP, Lund, Sweden, 1999, pp. 99–105.

[30] A. Duran, X. Teruel, R. Ferrer, X. Martorell, E. Ayguadé, Barcelona
OpenMP Tasks Suite: A set of benchmarks targeting the exploitation of
task parallelism in OpenMP, in: Proc. ICPP ’09, Vienna, Austria, 2009,
pp. 124–131.

[31] V. Kumar, A. Sbı̂rlea, A. Jayaraj, Z. Budimlić, D. Majeti, V. Sarkar, Het-
erogeneous work-stealing across CPU and DSP cores, in: Proc. 2015
IEEE High Performance Extreme Computing Conference (HPEC), 2015,
pp. 1–6.

15

	Introduction
	Related Work and Motivation
	Motivation

	The OpenMP Device Model
	OpenMP on the Device Side

	Proposed System
	Implementation in the OMPi Compiler
	Kernel Analysis
	Mapper

	A Case Study: The Epiphany Accelerator
	The Full RTS
	Implementation of Runtime Flavors

	Evaluation
	Size Results
	Timing Results

	Conclusions and Future Work
	MAL Grammar

