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INTRODUCTION

In a peer-to-peer (p2p) system, a large number of 
nodes share data with each other. The participation 

of nodes is highly dynamic; nodes may enter and 
leave the system at will. Since, it is not possible to 
maintain links with all nodes, for performance as 
well as for privacy and anonymity reasons, each 
node maintains links with a selected subset of other 
nodes, thus forming an overlay network. A message 

ABSTRACT

Maintaining multiple copies of data items is a commonly used mechanism for improving the performance 
and fault-tolerance of any distributed system. By placing copies of data items closer to their requesters, 
the response time of queries can be improved. An additional reason for replication is load balancing. 
For instance, by allocating many copies to popular data items, the query load can be evenly distributed 
among the servers that hold these copies. Similarly, by eliminating hotspots, replication can lead to a 
better distribution of the communication load over the network links. Besides performance-related rea-
sons, replication improves system availability, since the larger the number of copies of an item, the more 
site failures can be tolerated. In this chapter we survey replication methods applicable to p2p systems. 
Although there exist some general techniques, methodologies are distinguished according to the overlay 
organization (structured and unstructured) they are aimed at. After replicas are created and distributed, 
a major issue is their maintenance. We present strategies that have been proposed for keeping replicas 
up to date so as to achieve a desired level of consistency.
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between any two nodes in the p2p system is routed 
through this overlay network which is built on 
top of the physical one. Thus, two nodes that are 
neighbors in the overlay network may be many 
links apart in the physical network.

The overlay network is built to facilitate the 
operation of a p2p system. In data sharing p2p 
systems, a basic functionality is discovering the 
data of interest. A look-up query for data items 
may be posed at any node in the overlay. The 
query is then routed through the overlay to effi-
ciently discover the nodes that hold the requested 
data items. Such query routing must be achieved 
by contacting as “small” a number of nodes in 
the overlay as possible and by maintaining as 
“little” state information at each overlay node 
as possible.

There are two basic types of overlays: struc-
tured and unstructured ones. To assist lookup, 
structured overlays map (keys of) data items to 
nodes. In structured overlays, the mapping is 
usually done by hashing the key space of the data 
items to the id space of nodes. Thus, each node in 
the overlay maintains a partition of the data space. 
In structured overlays, lookup reduces to locat-
ing the node in the overlay that is responsible for 
the corresponding data partition. In unstructured 
overlays on the other hand, there is no correlation 
between nodes and data items.

There are a number of issues regarding the 
design of a structured p2p system. One design 
dimension refers to the geometry of the overlay, 
that is, its structural characteristics. Structured 
overlays usually follow a regulated topology, such 
as a ring, tree or grid. Then, upon entering the 
p2p system, each node takes a specific position 
in the overlay network. Another design choice is 
how data are mapped to nodes. The mapping must 
be fair so that nodes receive similar loads even 
when the data sets or the operations are skewed. 
All designs aim at supporting efficiently the basic 
operations of the overlay, that is, its construction, 
its incremental maintenance when nodes enter or 
leave the system, and its search. Efficiency must 

be achieved even in the case of high churn, where 
maintaining the overlay structure incurs a high 
cost. Most structured overlays guarantee lookup 
operations that are logarithmic in the number of 
nodes. Finally, overlays differ with respect to 
the range of different types of queries that they 
support.

In unstructured overlays, the topology is not a 
rigid one. Unstructured overlays are formed by the 
nodes as they join the system by either selecting 
randomly a node from a known list of participating 
peers or by following some loose rules regarding 
this selection. The resulting topology may have 
certain properties, however there is no assumption 
regarding the way the data space is mapped to the 
address space of the nodes in the overlay. To locate 
data of interest, a node queries its neighbors in 
the overlay, which in turn query their neighbors, 
and so on, until the query hits on a node holding 
the item. However, this procedure provides no 
guarantees on the complexity of search.

The topology of an unstructured overlay is 
built up over time in a decentralized manner as 
peers join and leave the system. In many existing 
systems, upon joining the network, a peer selects 
to connect to another peer essentially at random. 
In these systems, topologies often tend towards a 
power-law degree distribution, where some long-
lived peers have many connections, while most 
other peers have a few connections.

To improve performance of lookup, caching or 
replication1 of either data or search paths (or both) 
is possible. Besides improving search, replica-
tion may also assist in providing load balancing. 
Further, replication improves fault tolerance and 
the durability of data items.

Replication increases the number of copies 
for each shared piece of data in the system. By 
doing so, the probability that some or all the data 
is temporarily or permanently lost significantly 
decreases, thus the dependability of the system in 
terms of reliability and availability is increased. 
Additionally, by having more copies for popular 
data items, the load for routing and answering 
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queries can be evenly distributed among the servers 
that hold the copies. This way, the performance of 
query processing is increased in terms of through-
put and response time, since congestions in “hot” 
servers are avoided. Placing data closer to their 
requesters, as done by replication, also improves 
the performance of query processing.

Replication may also improve data recall. In 
structured overlays data recall is not an issue, con-
trary to unstructured overlays. While unstructured 
overlays which adopt flooding-based techniques 
are effective for locating popular data, they are 
poorly suited for locating rare data. Thus, by rep-
licating the rare data the probability of locating it 
during query processing increases, consequently 
increasing data recall. However, replication may 
affect data freshness. P2p systems consist of au-
tonomous peers that can arbitrarily delete or update 
their content, thus the replicated data can become 
stale if not updated properly. Updating replicas 
and cache entries in a p2p system mainly aims 
at providing soft-state guarantees. Hence, query 
processing might encounter out-of-date copies of 
data, thus failing to achieve result freshness.

The cost associated with replication includes the 
storage cost as well as the maintenance cost in the case 
of updates. Updates are either initiated by the owner 
of the copy that was modified (push-based updates) 
or by the holder of the copy (pull-based updates). 
Often entries are associated with a time-out value, 
whose expiration signals the removal of the entry, 
thus providing only soft-state consistency.

There are two main choices on what to repli-
cate: peers may replicate the data items themselves 
or their location information (index). There is an 
obvious difference in the required storage space 
among the two choices. Also, replicating indices 
does not improve reliability or availability since it 
does not lead to more physical copies. However, 
both the placement and the update mechanisms 
that have been proposed are applicable to both 
data and index/location replication. Thus we will 
treat the two cases as equivalent and shall not dif-
ferentiate between them in what follows.

The rest of this chapter is organized as follows. 
Replication in unstructured p2p systems is con-
sidered first, followed by replication in structured 
overlays. The results and techniques differ since 
unstructured p2p systems are treated in essence as 
“unknown” complex networks, while in structured 
p2p systems the topology is more or less known 
in advance and replication schemes may take 
advantage of it. Next, the problem of keeping the 
replicas up-to-date is considered where, again, 
we distinguish between the techniques used for 
the two types of overlay topology. A final section 
summarizes the chapter.

ReplICATION IN UNSTRUCTUReD 
p2p NeTwORkS

Unstructured topologies evolve in more or less 
unpredictable ways, as nodes leave and join 
the overlay at arbitrary positions. As a conse-
quence, they can be effectively modeled as a 
random graph, or Erdős-Rényi random graph. 
Such a graph with N nodes can be equivalently 
described in two ways: it is a graph where 
each of the possible N(N–1)/2 edges is present 
with some fixed probability p; or it is a graph 
selected uniformly at random among all pos-
sible graphs on N nodes and M edges. This is 
a simple but powerful model, where it can be 
shown that the degrees of participating nodes 
follow a Poisson distribution. However, real-
world networks have exhibited a behavior that 
is closer to power-law degree distributions: 
there are a few highly connected nodes and a 
large number of nodes with small degree. Thus 
power-law random graphs or simply power-law 
graphs have been quite popular as a model 
for p2p networks. Although many replication 
schemes do not depend on the particular model 
used for the p2p topology, the choice of this 
model has strong implications on the analysis 
of some replication objectives (e.g. determining 
an optimal number of replicas).
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Since in unstructured p2p systems there is no 
information on where the desired piece of data 
is placed, mostly “blind” search procedures are 
used and look-up queries get propagated through 
the network so as to locate peers offering the 
data. The usually employed blind search strate-
gies are flooding and random walks, along with 
their variations, and proposed methods for repli-
cation routinely depend on the particular search 
strategy used for locating items. In flooding, a 
node that receives a query message propagates 
it to all its neighbors, unless it knows about 
the item in question. Flooding usually results 
in fast responses but can easily overload the 
network with messages, a large percentage of 
which are unnecessary duplicates. In variations 
of flooding the query message is sent only to 
a selected subset of a peer’s neighbors, based 
on certain rules.

During a random walk on the other hand, a 
contacted peer propagates the query to exactly 
one of its neighbors, selected uniformly at ran-
dom. Proposed variations bias the selection of 
the neighbor according to various criteria. This 
type of search is particularly efficient, especially 
in certain topologies, but usually results in slow 
responses. Things can be significantly improved if 
multiple random walkers are deployed simultane-
ously. It is a known fact that using random walks, 
the probability of visiting a node is proportional 
to its degree, i.e. random walks go through high-
degree nodes more frequently (since they are 
more easily reached due to their large number 
of neighbors).

To avoid high delays and an overwhelming 
number of messages, queries are allowed to 
propagate for a limited number of steps, which is 
the so-called time-to-live (TTL) parameter. The 
TTL value is included in every query message and 
gets decremented by 1 at each visited peer. Peers 
that observe a zero TTL value stop propagating 
the search any further. It should be obvious, that 
TTL-limited query propagation may result in 
unsuccessful searches.

In this section we present replication schemes 
for unstructured p2p networks. The section con-
sists of two parts. In the first part, we discuss 
theoretical results regarding the optimum number 
of replicas of each item in the system and practi-
cal ways of achieving this. In the second part, 
we examine methods for placing the generated 
replicas onto the p2p system nodes.

Number of Replicas

Assume that there are N peers participating in the 
network and m different data items to be shared 
among peers. Each peer on average has a storage 
capacity for storing ρ replicas of data items and 
the network has a total budget of R copies overall 
(R=Nρ). The query rate or popularity of item i, 
qi, is the probability that any arbitrary peer issues 
a request for item i.

The problem of determining what is the opti-
mal replica configuration is discussed by Cohen 
& Shenker (2002), for overlays that are modeled 
as Erdos-Renyi random graphs. Specifically, the 
authors deal with the problem of how many replicas 
of each data item should exist in the network so 
that the search overhead for locating the item is 
minimized, with the constraint of fixed storage 
capacity in the network. Given the query rates 
for each data item, the objective is determining 
which fraction pi of R should be allotted to each 
data item i, so that the expected search size (ESS), 
i.e. the number of peers probed during the search 
process is minimized.

Two natural ways of replicating data items, 
namely uniform and proportional replication, 
are shown to be suboptimal under the above as-
sumptions. In uniform replication (UR) the same 
number of replicas is created for each data item, 
regardless of its query rate. In proportional rep-
lication (PR) the number of replicas for each data 
item is proportional to the popularity of the item, 
so that p qi iµ . Although it seems natural to cre-
ate more replicas for more popular data items so 
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as to favor most common queries, this is done at 
the expense of rare ones. In fact, it can be shown 
that the ESS for a successful query is the same 
for both uniform and proportional replication 
strategies. The optimal configuration, proved to 
minimize the expected search size, is square-root 
replication (SR), where the number of replicas of 
each data item is proportional to the square root 

of its query rate, i.e. p q
i i
µ .

Since global knowledge is unavailable at each 
peer, the authors also consider ways of realizing 
square-root replication using simple distributed 
protocols. In one of the simplest, the number of 
copies created after a successful search is equal 
to the size of the search, i.e. the number of peers 
probed during search. At steady state, and under 
reasonable assumptions, this simple strategy can 
be shown to converge to SR. The only critical as-
sumption is that the fixed storage capacity of each 
node is managed through replacement policies that 
do not depend on the identity and the query rate 
of the stored items. As such, at a full node, the 
item that must be deleted so as to make room for 
another replica cannot be given by usage-based 
policies such as LRU or LFU but rather by poli-
cies like FIFO or random deletions.

Notice that although the idea is quite simple, 
the size of the search is normally not known. Lv, 
Cao, Cohen, Li & Shenker (2002) discuss two 
practical strategies that try to approximate the 
search size, namely owner and path replication. 
In owner replication, which is used in Gnutella 
(2003), when a search for a data item is suc-
cessful (only) the peer that initiated the search 
process stores a replica of the data item. In path 
replication, each query keeps track of the path 
it follows from the peer that issues the request 
to the peer that offers the data item. When the 
search succeeds, all peers in this path are forced 
to keep a replica of the data item. Clearly, path 
replication comes quite closer to approximating 
the search size and experimental results show that 
it comes close to achieving SR. Path replication 
is used on Freenet (Clarke et al, 2002) where all 

nodes along the search path are forced to create a 
replica using an insert message. Nodes keep both 
the item and a pointer to the original data holder 
of the file. The replacement policy used to man-
age the finite storage space at each node is LRU. 
Subsequent incoming requests of evicted files, 
however, can still be served for much longer since 
the node also holds a pointer to the original holder. 
It is worth noting that LRU was shown, through 
detailed simulations (Zhang, Goel, & Govindan, 
2004), to be responsible for deteriorating Freenet 
performance under heavy loads. By just altering 
the replacement policy so as to force local data 
clustering, the authors managed to achieve high 
percentages of successful queries and with small 
hop counts, even under heavy traffic.

Path replication works only for search strategies 
based on random walks. Even in such cases however, 
it may fail to discover the search size. If multiple 
walkers are used (Lv, Cao, Cohen, Li & Shenker, 
2002), only the successful ones will be used to create 
replicas while the others will be ignored, creating a 
number of replicas smaller than the total number of 
visited nodes. To closely approximate the number 
of probes, Leontiadis, Dimakopoulos & Pitoura 
(2006) propose the Pull-then-Push (PtP) strategy, 
where replica creation becomes a responsibility of 
the inquiring peers. PtP replication consists of two 
phases: the pull phase during which the requesting 
peer is trying to locate the desired data item and the 
push phase which begins after a successful search 
whereby the requesting peer transmits the data 
item and causes other peers to hold replicas of it. 
In order to achieve SR, the number of peers that are 
probed during the push phase should be equal to the 
number of peers that where probed during the pull 
phase. Therefore, it is essential that the same search 
strategy is used both for searching for the data item 
(pull) and the data item transmission (push) and 
with the same hop limit (TTL). Finally, every peer 
that is probed during the push phase is forced to 
hold a replica of the data item. PtP works for both 
flooding and random-walker based strategies and 
leads easily to SR.
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For Erdos-Renyi random graphs, if flooding-
based search is used and if the objective is to 
minimize the search time (as opposed to search 
size) then proportional replication is the optimal 
configuration as shown by Tewari & Kleinrock 
(2005). Search time is the shortest distance from 
the inquiring node where a replica of the queried 
item is found. Optimality is achieved under the 
assumption of an ideal “controlled” flooding strat-
egy where search stops immediately when the data 
item is located. A practical but slightly suboptimal 
search mechanism that approximates controlled 
flooding is the expanding rings method described 
in Lv, Cao, Cohen, Li & Shenker (2002). PR has 
additional benefits as well, e.g. the minimization of 
used network bandwidth (estimated as the average 
number of links traversed per download). Tewari 
& Kleinrock (2006) additionally consider practi-
cal ways of achieving PR. They basically follow 
owner replication (an inquiring node keeps a copy 
for itself), which should naturally lead to a number 
of replicas proportional to the request rates of data 
items. Again, a crucial factor is the replacement 
strategy used in managing each node’s fixed stor-
age space. Experimentally, all known strategies 
have good but not optimal performance, with LRU 
and LFU the better ones. Almost perfect PR can 
be achieved with a replacement strategy based 
on random evictions combined with additional 
replica creations even if the item is found in the 
inquiring node’s storage space.

placement of Replicas

The works in the previous section deal mostly with 
determining the optimum number of replicas and 
with ways to achieve this number, under certain 
assumptions and constraints. Another approach 
is to determine where/how to place the replicas 
(without striving for a particular number of them) 
so as to optimize some objective. For example, 
the objective may be the minimization of search 
size or the maximization of the percentage of 
successful searches.

Gia (Chawathe, Ratnasamy, Breslau, Lanham 
& Shenker, 2003) has been proposed as an improve-
ment of Gnutella to exploit peer heterogeneity and 
includes mechanisms that dynamically adapt the 
overlay topology and the search algorithms. The 
topology adaptation mechanism ensures that high-
capacity nodes are the ones that have high degree. 
Gia follows one-hop replication: an index of the 
content of every peer is replicated to its immediate 
neighbors. The rationale behind this is that since 
high-degree nodes are visited more frequently and 
high-degree nodes are the ones with high capacity, 
having them know the content of their neighbors 
will make them capable of providing answers to 
a greater number of queries.

Jia, Pei, Li & You (2005) compare various 
mechanisms for the problem of replica placement 
in power-law networks. They consider replication 
of location information (i.e. not the actual data) 
so as to maximize the overall performance of 
search queries. The spread mechanisms consid-
ered are flooding, percolation-based (randomized) 
flooding, random walks and high-degree random 
walks (HDRW). The later is a variation of random 
walks where a visited peer selects the next peer 
randomly among its highest-degree neighbors. By 
spreading location information along an HDRW, 
more information reaches high-degree nodes more 
quickly. As a result, because it is well known that 
search queries gravitate towards the high-degree 
nodes in the network, potentially more searches 
will be resolved successfully and quickly. This was 
confirmed through simulations which showed that 
for the same message overhead, spreading replicas 
by HDRW results in better search performance 
than the other mechanisms, under both flooding-
based and random walk-based search.

Morselli, Bhattacharjee, Marsh & Srinivasan 
(2005) propose LMS (Local Minima Search), a 
search method and replication protocol. Assum-
ing that both peers and data items obtain ids uni-
formly at random from a given large set (so as to 
guarantee uniqueness with high probability), the 
replication mechanism tries to replicate an item 
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with id i to peers with id ‘close’ to i. Such a node 
is called a local minimum for item i in that its id 
is closest to i among the ids of all peers in the 
node’s h-hop neighborhood, where h is a given 
parameter. A random walk is used first, followed 
by a deterministic walk that progresses towards the 
closest local minimum node by selecting at each 
step the neighbor with the smallest distance from 
i. When this random local minimum is reached, a 
replica is created if there is not one there already; 
otherwise, the process is repeated with a random 
walker of double length. For locating the item, 
the same procedure is used. A local minimum 
that receives the query replies with the replica 
or with a failure message depending on whether 
it stores the item or not. To improve success rate 
and response time, multiple such walkers can 
be utilized. The protocol can achieve quite high 
query success probabilities but at the expense of 

a possibly large number of replicas ( O n / dh( ) , 
where dh  is the minimum size of an h-hop neigh-
borhood), which can be a problem if the storage 
space in each peer is limited.

Maximization of the probability of success is 
also the subject of the work by Sozio, Neumann 
& Weikum (2008). They consider the problem of 
replica placement in arbitrary networks that are 
searched by random walks. Given the peer capaci-
ties and the query rates qij, i.e. the fraction of all 
queries (issued in the whole network) for data item 
i by peer j, the problem of finding an assignment of 
replicas to peers so as to maximize the probability 
of a successful query is shown to be related to the 
multi-knapsack problem, where there is a set of 
bins with given capacities and a set of elements 
each with size and profit and the aim is to find a 
feasible packing that maximizes the profit. The 
problem can be tackled by good approximation 
algorithms, which however are centralized. The 
authors present P2R2, a distributed algorithm to 
solve the problem, which is based on each peer 
j keeping a special counter for each data item i, 
rij . The counter rij  is incremented for each query 

about i that passes through node j and is unsuc-
cessful or is satisfied by a peer with larger id. This 
requires that certain information is piggybacked 
on the query messages and that random walks are 
always unfolded to their maximum length even 
if the item is located at some step earlier than the 
expiration of TTL. P2R2 leads to a probability of 
query success which is within a factor of 2 from 
the optimal.

Summary of Replication in 
Unstructured p2p Systems

Replication methods that are applicable to un-
structured p2p systems provide answers to the 
questions of how many replicas are created for 
each data item, according to which optimization 
criteria, and where those replicas are placed. Table 
1 summarizes how replication methods described 
above deal with each of these issues.

ReplICATION IN STRUCTUReD 
p2p NeTwORkS

In structured peer-to-peer networks, data items 
are stored at specific nodes of the overlay. The 
mapping of data items to overlay nodes is in gen-
eral achieved through appropriate hash functions 
that support a hash table interface with primitives 
put(key, value) and get(key), where key is the iden-
tity of a data item (for instance, the file name). In 
addition, the nodes in the overlay are organized in 
rigid topologies, such as a multidimensional ring, 
grid or an n-dimensional cube. This way, items 
can be located efficiently. The routing messages 
for locating an item follow a deterministic path 
from the requester to the owner of the item.

Ideally, hashing should be such that peer are 
responsible for roughly the same number of data 
items. The common underlying assumption for 
achieving this is that data keys, and in some cases 
node identifiers, are randomly chosen. However, 
due to skeweness in the data population, this is 
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not always the case. Furthermore, even when the 
data items are evenly distributed among the peers 
of the overlay, non-uniform query workloads may 
lead to an uneven workload distribution among 
the peers, resulting in potentially overloading the 
peers that maintain popular items. Thus, replica-
tion techniques are central in achieving both data 
and workload balance in structured peer-to-peer 
systems. Furthermore, as in unstructured p2p 
systems, replication is used to handle peer failures 
and departures and increase availability. Scal-
ability and performance are also central goals of 
replication in this context as well.

Most structured p2p systems provide search time 
logarithmic to the number of nodes in the overlay. 
Enhancing the basic structured overlays with 
replication can lead to achieving constant search 
time in most cases. Since the search path followed 
for locating an item is deterministic, this can be 
achieved by proactively placing replicas of each 
item on appropriate nodes on its search path.

Another common mechanism for implement-
ing replication in DHT-based p2p systems is based 
on replicating each data item at the k neighbors of 

the node holding it. Nodes close to each other on 
the overlay are not likely to be physically close 
to each other, since the id of a node is based on a 
hash of its IP address. This provides the desired 
independence of failures. Besides availability, 
these replicas can be used to improve query la-
tency; they allow choosing among the k replica 
holders the one that has the lowest reported latency. 
Fetching from the lowest-latency replica has also 
the desired side-effect of spreading the load of 
serving a lookup over the replicas.

An alternative mechanism for realizing replica-
tion in DHTs is by using multiple hash functions. 
By doing so, a data item is mapped and stored at 
more than one node. This results in increasing 
availability as well as in improving load balanc-
ing. Furthermore, latency may be improved by 
selecting at each routing step the neighborhood 
or route that is closest either to the query or to 
the current node.

Finally, caching in DHTs is based on placing 
copies on the lookup path, similar to path replica-
tion in unstructured p2p systems or to the requestor 
of an item similar to owner replication.

Table 1. Summary of replication methods for unstructured p2p systems 

How many Where/How What Goal

Sqaure-root Replication 
(Cohen et al, 2002)

Proportional to the square root of 
the query rate of each data item - Data items Minimum expected 

search size

Owner Replication 
(Lv et al, 2002)

Proportional to the query rate of 
each data item Only to the requesting peer Data items Minimum expected 

search size

Path Replication 
(Lv et al, 2002)

Proportional to the number of 
probes for locating the item

Along the path from the 
requesting peer to the 
provider peer

Data items Minimum expected 
search size

Pull-then-Push Replication 
(Leontiadis et al, 2006)

Proportional to the number of 
probes for locating the item - Data items Minimum expected 

search size

Proportional Replication 
(Tewari et al, 2005)

Proportional to the query rate of 
each data item - Data items Minimum expected 

search time

Gia (Chawathe et al, 2003) Equal to the degree of each node 1-hop neighborhood Location informa-
tion

Maximum success 
rate

HDRW  (Jia et al, 2005) Proportional to the number of 
probes for locating the item

Along a degree-biased 
search path

Location informa-
tion

Good success rate 
and search size

LMS (Morselli et al, 2005) - At peers considered as local 
minima for a data item Data items Good success rate 

and search size

P2R2 (Sozio et al, 2008) - At peers resulting in greatest 
success rate for a data item Data items Maximum success 

rate



597

Data Replication in P2P Systems

Replication in Representative 
Structured p2p Systems

CHORD

Chord (Stoica, Morris, Karger, Kaashoek & 
Balakrishnan, 2001) is a popular DHT-based 
p2p system. The Chord protocol uses a variant 
of consistent hashing to assign to each node and 
data key an m-bit identifier. The identifier of a 
node is chosen by hashing its IP address, while 
the identifier of an item is produced by hashing its 
key. Identifiers are ordered in an identifier circle 
modulo 2m. A data item with key i is assigned to 
the first node whose identifier is equal to or fol-
lows i in the circular space. This node is called 
the successor of i.

Each Chord node maintains two sets of neigh-
bors, its successors and its fingers. The successor 
nodes immediately follow the node in the iden-
tifier space, while the finger nodes are spaced 
exponentially around the identifier space. Each 
node has a constant number of successors and at 
most m fingers. The i-th finger of the node with 
identifier p is the first node that succeeds p by at 
least 2i−1 on the identifier circle, where 1 ≤ i ≤ m. 
The first finger node is the immediate successor 
of p, where i = 1. For a Chord network with N 
nodes, the number of routing hops for a lookup is 
O(log N), while each node only needs to maintain 
pointers to O(log N) neighbors.

The core Chord system does not provide for 
replication or caching. Instead, the replication 
mechanisms are left as a responsibility of the 
higher layer applications that use Chord. A typical 
method for an application to replicate data items 
in Chord is by using multiple hash functions to 
store each data item under distinct Chord keys. 
Furthermore, an application can store replicas of a 
data item with key i at the k nodes succeeding the 
successor of i. This is facilitated by the successor-
list mechanism supported by Chord. In Chord, each 
node maintains a successor-list with its r nearest 
successors on the Chord ring. When a node notices 

that its successor has failed, it replaces it with the 
first live entry in its successor list. The fact that a 
Chord node keeps track of its successors means 
that it can notify the application when successor 
nodes fail or recover and thus when the applica-
tion should propagate new replicas.

CAN

The Content Addressable Network (CAN) (Ratna-
samy, Francis, Handley, Karp & Shenker, 2001) 
is another popular DHT-based structured p2p 
network. It uses a virtual d-dimensional Carte-
sian coordinate space or d-torus to store (key, 
value) pairs. Upon entering the system, each 
node is assigned a zone of this space. The key 
of each data item is mapped onto a point in the 
coordinate space using a uniform hash function. 
Then, the item is stored at the node that owns the 
zone within which the point lies. Each CAN node 
maintains a coordinate routing table that holds the 
IP address and virtual coordinate zone of each of 
its immediate neighbors in the coordinate space. 
In a d-dimensional coordinate space, two nodes 
are neighbors if their coordinates overlap along 
d–1 dimensions. Each node routes a message for 
an item with key i towards its neighbors whose 
coordinates are closer to that of i. Intuitively, 
routing works by following the straight line path 
through the Cartesian space from source to des-
tination coordinates.

CAN supports a variety of replication mecha-
nisms. A node that is overloaded with requests for 
a specific data item can replicate the data key at 
each of its neighboring nodes. The key of a popular 
data item is thus eventually replicated within a 
region surrounding the original storage node. A 
node holding a replica of a requested data key may, 
with a certain probability, choose to either satisfy 
the request or forward it. The second mechanism 
is based on the observation that each node can 
maintain multiple, independent coordinate spaces 
and be responsible for a different zone in each 
coordinate space. Each such coordinate space is a 
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called a reality. For a CAN with r realities, a single 
node is assigned r coordinate zones and holds r 
independent neighbor sets. This form of replica-
tion improves data availability. Multiple realities 
also improve routing fault tolerance, because if 
routing fails in on one reality, messages can con-
tinue to be routed using the remaining realities. It 
also provides for neighbor selection. To forward 
a message, a node can check all its neighbors 
on each reality and forwards the message to the 
neighbor whose coordinates are the closest to the 
destination. Thus, using multiple realities reduces 
the path length and hence the overall CAN path 
latency. Yet another replication mechanism for 
improved data availability is to use k different hash 
functions to map a single key onto k points in the 
coordinate space. In this case, a (key, value) pair 
becomes unavailable only if all k distinct nodes 
become simultaneously unavailable. In addition, 
queries for a particular hash table entry could be 
sent to all k nodes in parallel thereby reducing 
the average query latency. Instead of querying 
all k nodes, a node may choose to retrieve an 
entry from that node which is closest to it in the 
coordinate space. Finally, with zone overloading, 
a zone may be assigned to more than one node. 
Each node maintains a copy of all items mapped 
to the zone to increase availability.

In addition to replication, CAN also supports 
caching. A CAN peer maintains a cache of the 
data keys it has recently accessed. Thus, before 
forwarding a request for a data key towards its 
destination, a peer first checks whether the re-
quested data key is in its own cache and if so, it 
can itself satisfy the request without forwarding 
it any further.

PAST

Pastry (Rowstron & Druschel, 2001a) is a peer-
to-peer routing substrate for supporting a variety 
of applications. In Pastry, each node is assigned 
a quasi-random 128-bit node identifier (nodeId). 
The nodeId is used to indicate the position of the 

node in a circular identifier space, which ranges 
from 0 to 2128 - 1. Both nodeIds and data keys 
are treated as a sequence of digits with base 2b. 
Pastry routes messages to the node whose nodeId 
is numerically closest to the given key.

To support routing, each node maintains a 
routing table, a neighborhood set and a leaf set. 
The routing table of each node p is organized 
into log

2bN  rows with 2b-1 entries each. The 2b-1 
entries at row i of the routing table refer to those 
nodes whose nodeId has the same first i digits 
with the nodeID of p, but a different i + 1 th digit. 
Each such entry contains the IP address of one 
of the potentially many such nodes, usually the 
one physically closest to p. If no such node is 
known, the routing table entry is left empty. The 
leaf set includes the set of nodes with the L/2 nu-
merically closest larger nodeIds to p, and the L/2 
nodes with numerically closest smaller nodeIds 
to p. Lastly, the neighborhood set contains the 
nodeIds and IP addresses of the M nodes that are 
physically closest to p. This set is not normally 
used for routing, but it is used for maintaining 
physical locality properties. Typical values of L 
and M are 2b or 2b+1.

Given a message, each node p first checks 
whether the key falls within the range of node-
Ids covered by its leaf set. If so, the message is 
forwarded directly to this node. Otherwise, the 
routing table is used to forward the message to a 
node that shares a common prefix with the key by 
at least one more digit (or b bits) than the current 
node p. If no such node is known, the message 
is forwarded to a node whose nodeId shares a 
prefix that is as long as the one shared with p, but 
is numerically closer to the key than the nodeId 
of p, by using the leaf set.

In Pastry, replication is not implemented di-
rectly. Instead, Pastry provides to the applications 
built on top of it the functionalities necessary for 
implementing replication. In particular, applica-
tions can use the information maintained in the 
routing table and the leaf and neighborhood sets 
to decide where to place replicas. Further, Pastry 
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provides mechanisms for handling peer failures, 
such as periodically exchanged keep-alive mes-
sages.

In particular, PAST (Rowstron & Druschel, 
2001b) is a p2p file storage system that relies on 
Pastry to provide routing file queries, multiple 
replicas of files, and caching for additional copies 
of popular files. For improved availability, PAST 
creates k replicas of each file and places them to k 
different peers whose nodeId is numerically closest 
to the 128 most-significant-bits of the identifier of 
the file (fileId) among all live nodes, where k is the 
replication factor. Since by the way identifiers are 
assigned to nodes, there is no correlation between 
these identifiers and the geographic location, 
network connectivity, ownership or jurisdiction 
of the nodes, the k nodes selected for storing the 
replicas are highly likely to be diverse in all these 
aspects and thus unlikely to conspire or be subject 
to correlated failures or threats.

For maintaining good system-wide storage 
utilization, PAST uses replica and file diversion. 
Replica diversion is achieved by allowing a peer 
that is not one of the k numerically closest peers 
to the fileId of a file to maintain a replica of it, 
if it is in the leafset of one of those k peers. This 
improves utilization within the nodes in the leaf 
set. File diversion is performed when the entire 
leaf set of a node is reaching capacity. A file is 
diverted to a different part of the identifier space 
by choosing a different salt in the generation of 
its fileId.

Replication in PAST aims mainly at improving 
fault-tolerance and partly at balancing the query 
load or reducing latency. Creating additional cop-
ies for popular files is achieved through caching. 
PAST uses a form of path replication: copies of 
files are cached along the search path for the file. 
In caching a file, however, PAST also considers 
the storage available at a node. A file is cached at 
a node only if its size is less than some fraction c 
of the current cache size of the node.

Kademlia

Kademlia (Maymounkov & Mazieres, 2002) is a 
distributed DHT-based p2p system that employs 
160-bit identifiers for both participating nodes and 
file keys. Every node maintains information about 
(key, value) pairs “close” to itself. The distance 
between two objects (keys or nodes) in the 160-
bit key space is measured as the bitwise XOR of 
their ids interpreted as an integer.

Each Kademlia node maintains a routing table 
that consists of 160 buckets. The ith bucket of a 
node contains up to k entries pointing to nodes 
in distance between 2i and 2i+1. The buckets are 
kept constantly updated, as for every received 
message the node either enters the sender’s id in 
the tail of the appropriate bucket (possibly dis-
carding another entry) or rearranges the entries 
in the bucket (by refreshing its contact with the 
least recently seen node).

Lookup is implemented by contacting nodes 
that have ids close to the id of the requested item. 
In particular, the inquiring node selects some of the 
closest nodes from its routing table and queries them, 
learning about other nodes even closer to the id in 
question, and so on. The end result is that within O(log 
N) steps (with high probability) the node forms a list 
of the k closest nodes to the requested id.

Replication in Kademlia exploits the lookup 
procedure. To store a (key, value) pair, a Kademlia 
node first locates the k closet nodes to the key, as 
described above. Then, it sends them a STORE 
message, creating k replicas of the item. Replicas 
are additionally created dynamically: after each 
successful search, a replica is placed in the closest 
node to the key that did not contain the item. The 
reason behind this is the unidirectionality property 
of the XOR distance metric which ensures that 
all searches for an item converge along the same 
path, no matter where they originate from; placing 
replicas on the lookup path leads to faster searches, 
avoiding at the same time hot spots. To ensure the 
freshness of replicas, Kademlia requires periodic 
re-publishing of the (key, value) pairs.
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P-Grid

P-Grid (Aberer, Cudré-Mauroux, Datta, Des-
potovic, Hauswirth, Punceva & Schmidt, 2003; 
Aberer, Datta, Hauswirth & Schmidt, 2005) is a 
p2p data management system based on building 
a virtual distributed trie. Data keys are composed 
by a number of bits. The data key space is recur-
sively bisected so that the resulting partitions 
carry approximately the same load. One or more 
peers are associated with each partition. Each 
partition is uniquely identified by a bit sequence. 
The bit sequence of a partition is called the path 
of the peer associated with the partitions. These 
bit sequences induce a trie structure which is used 
to implement prefix routing by resolving a key 
lookup a bit at a time. Each peer maintains for 
each bit position of its path one or more randomly 
selected references to a peer that has a path with 
the opposite bit at this position.

P-Grid implements two forms of replication for 
fault-tolerance. First, multiple peers are associated 
with the same key space. This is called structural 
replication. Then, multiple references are kept 
in the routing tables, thus providing alternative 
access paths.

General Replication Strategies

Selective Placement to Reduce Latency

Beehive (Ramasubramanian & Sirer, 2004) is a 
general replication framework that operates on 
top of any DHT that uses prefix-routing, such as 
Chord. In such systems, routing is performed by 
successively matching a prefix of the data identifier 
against node identifiers. In general, at each routing 
step, the query reaches a node that has one more 
matching prefix with the query than the previous 
node on the path. A query traveling k hops reaches 
a node that has k matching prefixes. The central 
observation behind Beehive is that the length of 
the average query path will be reduced by one 
hop when a data item is proactively replicated 

at all nodes logically preceding that node on all 
query paths. For example, replicating the object 
at all nodes one hop prior to their successor node 
decreases the lookup latency by one hop. This can 
be applied iteratively to disseminate items widely 
throughout the system. Replicating an item at all 
nodes k hops or lesser from the successor node 
will reduce the lookup latency by k hops.

Beehive controls the extent of replication in 
the system by assigning a replication level to 
each item. An item at level i is replicated on all 
peers that have at least i matching prefixes with 
the item. Queries to data items replicated at level 
i incur a lookup latency of at most i hops. Data 
items stored only at their successor peers are at 
level log(N), while items replicated at level 0 are 
cached at all the peers in the system. The goal is 
to find the minimal replication level for each item 
such that the average lookup performance for the 
system is a constant C number of hops. Naturally, 
the optimal strategy involves replicating more 
popular items at lower levels (on more peers) and 
less popular items at higher levels. An analytical 
model provides Beehive with closed-form optimal 
solutions indicating the appropriate levels of rep-
lication for each item. In addition, a monitoring 
protocol based on local measurements and limited 
aggregation estimates the relative item popularity 
and the global properties of the query distribution. 
These estimates are used, independently and in 
a distributed fashion, as inputs to the analytical 
model which yields the locally desired level of 
replication for each item. Finally, a replication 
protocol proactively makes copies of the items 
around the network.

PopCache (Rao, Chen, Fu & Bu, 2007) is 
based on the observation that in structured p2p 
system, each node can be seen as the root of a tree. 
In particular, each node p can be treated as the 
root of a k-ary tree with its k direct neighbors of 
p connected by k links as the first level children, 
the neighbors of neighbors of p added with k2 
links as the second-level children and so on until 
level logk(N), where N is the number of nodes. 
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Let us denote with Tp the tree having node p as 
its root. The search from some node to p is the 
process of greedily approaching the root p along 
the bottom-up path of Tp. For each data item i, 
PopCache utilizes the tree Tp that is rooted at 
the node p responsible for item i. Assume that 
we want to create a total of m copies for i. First, 
k replicas of i are placed on the first level of Tp, 
then k2 copies of i are placed on the second level 
and so on, until all m replicas are created. For 
deriving the optimal number of copies per item, 
two optimization criteria are considered (a) given 
a maximum number of copies, how to minimize 
the average latency per query (MAX PREF), and 
(b) given a targeted threshold how to minimize 
the number of replicas (MIN COST). The first 
criterion is similar to that use in unstructured 
p2p systems, however, in this case, the optimal 
number of copies per item follows a different 
proportional principle.

Range Queries

HotRoD (Pitoura, Ntarmos & Triantafillou, 2006) 
uses replication over Chord to provide fair load 
distribution in the case of range queries. The key of 
this implementation is the use a locality-preserving 
hash function that preserves the ordering of data by 
mapping consecutive data values to neighboring 
peers. A range query is pipelined through those 
peers that store ranges of entries that overlap 
with the query range. HotRoD detects overloaded 
peers and distributes their access load among 
other, under-loaded ones, through replication. In 
particular, each peer keeps track of the number 
of times, it was accessed during a time interval 
T, and the average low and high bounds of the 
ranges of the queries it has processed during this 
interval. A peer is characterized as overloaded 
or hot, if this number exceeds a system-defined 
threshold. When a hot peer is detected, replication 
is initiated. Instead of replicating the content of 
a single peer, HotRoD replicates arcs of peers, 
where an arc consists of successive neighbors that 

correspond to a certain range. This range is defined 
by the average low and high bounds of the range 
of the queries processed by the hot peer during the 
time interval T. Replication is achieved by using a 
multi-rotational hash function to randomly place 
the replicated arcs on the ring.

Sahin, Gupta, Agrawal & El Abbadi (2004) 
propose an extension of CAN for caching the 
results of range queries. In particular, the authors 
consider a 2-dimensionsal CAN. Each range query 
[low, high] is hashed at the point (low, high) in 
the virtual hash space.

Load Balancing

The LAR protocol (Gopalakrishnan, Silaghi, Bhat-
tacharjee & Keleher, 2004) primarily addresses 
replication for load balancing of both the routing 
load as well as the load of the server holding the 
item and serving the request. Instead of creat-
ing replicas on all peers on a source-destination 
path as in path replication, the protocol relies on 
individual server load measurements to precisely 
choose replication points. The routing process is 
augmented with lightweight hints that shortcut the 
original routing and direct queries towards new 
replicas. Zhu, Zhang, Li & Huang (2007) propose 
a load prediction algorithm for estimating the load 
at each peer as well as multiple load thresholds 
for appropriately adjusting the number of replicas 
according to the load status of each node.

Alqaralleh, Wag, Zhou & Zomaya (2007) study 
three replica placements algorithms that can be 
implemented on top of any prefix-based DHT 
overlay. They were tested on top of FreePastry. 
The first algorithm, called CDN-QueryStat, places 
replicas on peers where queries frequently come 
from. In the second proposed algorithm, termed 
CDN-Rand, a peer randomly selects another peer 
from the id space. Thus, this algorithm tends to 
distribute replicas uniformly across the network. 
The third algorithm, CDN-PR, is a priority based 
approach that tries to minimize the number of 
peers that store replicas. The motivation is to re-
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duce the overhead of maintaining load statistics. 
Peers are initially selected to hold replicas as in 
CDN-QueryStat. A new peer is chosen to hold 
replicas only if the previously selected peers get 
saturated with copies. Load balancing is applied, 
when the access frequency exceed a threshold. 
Then, a procedure is activated for replica creation 
and query forwarding.

Datta. Schmidt & Aberer (2007) propose using 
the query redundancy, that is, the existence of mul-
tiple search paths, to achieve better load balancing 
of both the routing load and the answering load of 
the server holding the item. They show through 
simulation, using the P-Grid topology, that, just 
replicating items and then routing to any of the 
replicas results in high statistical variation of the 
query and answering load. Proportional replication 
was used. To address this imbalance, they propose 
exploiting the redundant routing table entries 
used for fault tolerance. To choose among the 
available peers at each routing step, a cumulative 
load measure was used where answering queries 
weighted more than forwarding ones.

P2P-Based Storage and Caching

Dabek, Kaashoek, Karger, Moris & Stoica (2001) 
have proposed CFS, a storage layer based on a 
DHT that consists of two layers, namely the DHash 
(a distributed hash table) and Chord layers. The 
DHash layer performs block fetches for the client 
and distributes the blocks of each file among the 
servers. It uses the Chord distributed lookup sys-
tem to locate the servers responsible for a block. 
CFS provides distinct mechanisms for replication 
and caching. Both caching and replication are 
performed at the level of a file block. CFS places 
the replica of a block at the r servers immediately 
after the successor of the block on the Chord ring. 
The placement of block replicas makes it easy for 
a client to select the replica likely to be the fastest 
to download. CFS also caches blocks to avoid 
overloading servers that hold popular data items. 
A block is cached at all peers on the search path 

after each successful look-up. Cached blocks are 
replaced in a least-recently-used order. This has 
the effect of preserving the cached copies close to 
the successor. In addition, it expands and contracts 
the degree of caching for each block according 
to its popularity.

Squirrel (Iyer, Rowstron & Druschel, 2002) 
is a decentralized p2p system that exploits re-
sources from many desktop machines to achieve 
the functionality and performance of a dedicated 
web cache without requiring any additional hard-
ware. Squirrel is built over the routing substrate 
of Pastry and uses its functionality for locating 
an object stored at the distributed client caches. It 
adopts two approaches to create copies: a home-
store and a directory approach. In the home-store 
approach, Squirrel stores objects both at client 
caches and at their home peer. In the directory ap-
proach, the home peer remembers a small number 
of peers (up to k) that have recently accessed a 
certain object and keeps pointers to these peers. 
Then, each request is redirected to a randomly 
chosen peer among these (called the delegate), 
which is expected to have a copy of the object 
locally cached. Comparing these approaches in 
practice, the home-store method achieves better 
load balancing than the directory one, since popu-
lar objects are associated with rapidly changing 
directories.

Multiple Mappings

The “power of two choices” (Byers, Considine 
& Mitzenmacher, 2003) proposes a strategy for 
replica placement for Chord based on multiple 
hash functions. Each object is hashed using d (d 
≥ 2) hash functions to multiple ids and placed on 
the least loaded peer among candidates. To locate 
an item, instead of applying all d hash functions, 
the peers responsible for the item are connected 
with each other through redirection pointers. Using 
the redirection pointers, each request received by 
other peers (candidates) is redirected to the host-
ing peer. Although, using two or more choices for 
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placement improves load balancing, it still forces 
a static placement of the data items, which may 
lead to poor performance when the popularity of 
items changes over time. One way of addressing 
this issue is to use the re-direction pointers among 
the peers and allow items to choose a different peer 
for placing its replica by periodically re-inserting 
the items, if their previous choice has become more 
heavily loaded. The redirection pointers can also 
be used to facilitate a wide range of load balanc-
ing methods that react more quickly than periodic 
re-insertion, such as allowing an under-utilized 
peer to perform load-stealing or an overloaded 
one to attempt load shedding.

Symmetric Replication (Ghodsi, Alima & 
Haridi, 2005) can be applied to any structured 
peer-to-peer system. The basic idea is to associate 
each identifier in the system with f other identi-
fiers. If identifier i is associated with identifier r, 
any item with identifier i should be stored at the 
peers responsible for identifiers i and r. Similarly, 
any item with identifier r should also be stored 
at the peers responsible for the identifiers i and 
r. Thus, effectively an identifier space of size N 
is partitioned into N/f equivalence classes such 
that identifiers in an equivalence class are all 
associated with each other. To replicate items 
with symmetric replication, the peer responsible 
for identifier i stores all f items with an identifier 
associated with i. For example, if the identifier 0 
is associated with the identifiers 0, 5, 10, 15, any 
peer responsible for any of the items 0, 5, 10, or 
15 has to store all of the items 0, 5, 10, and 15. 
Hence, if we are interested in retrieving item 0, we 
can ask the peer responsible for any of the items 
0, 5, 10, 15. To implement symmetric replication, 
each peer in the system augments its routing table 
to contain for each routing entry f entries, one for 
each of the replicas of the routing entry. Symmet-
ric replication can be used to send out multiple 
concurrent requests for an item and then picking 
the first response that arrives. The advantage of 
this is twofold. First, it enhances performance. 
Second, it provides fault tolerance in an end-to-

end fashion, since the failure of a peer along the 
search path does not require repeating the request 
as it is likely that another one of the concurrent 
requests succeeds. It can also be used to achieve 
proximity neighbor selection in the following way. 
To route a message to the peer responsible for 
identifier i, each message in the routing process 
is augmented with a parameter r that specifies 
which of the f replicas of i is currently searched 
for. A peer that receives the request for a replica 
of i can calculate its distance to all of the f replicas 
and choose among the f peers the one that has a 
shorter distance to each respective replica of i. 
Then, it updates the parameter r in the outgoing 
message to reflect the new selection.

Locating Replicas

The Replica Location Service (P-RLS) (Cai, Cher-
venak & Frank, 2004) relies on Chord to build a 
mechanism for locating replicas. Each mapping 
from logical names (i.e., keys) to physical loca-
tions (i.e., replicas) is stored at the root peer of the 
mapping. P-RLS uses successor replication: the 
root peer replicates the mappings to its k succes-
sor peers in the Chord ring for successor routing 
reliability, where k is the replication factor. As a 
peer joins to network, it will take over some of 
the mappings and replicas from its successor peer. 
When a peer leaves the system, its predecessor 
will detect its departure, make another peer the 
new successor, and replicate mappings on the 
new successor peer adaptively. To avoid unnec-
essary replication of mappings, each mapping is 
associated with an expiration time. Besides fault 
tolerance, successor replication improves data 
load balance. In Chord, the number of mappings 
stored at each node is determined by the distance 
of the node to its immediate predecessor in the 
circular space, i.e. the “owned region” of the 
node. With adaptive replication with replication 
factor k, besides storing the nodes belonging to 
its own region, each node also replicates the map-
pings belonging to its k predecessors. Therefore, 
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the number of mappings stored on each node is 
determined by the sum of k+1 continuous owned 
regions before the node. If the node identifiers 
are generated randomly, there is no dependency 
among these continuous owned regions. Thus, 
intuitively, when the replication factor k increases, 
the sum of k+1 owned region is distributed more 
normally. To improve query load balance, P-RLS 
also proposes predecessor replication: replicating 
mappings at the predecessors of the root node. 
When a predecessor receives a query to the root 
node, it resolves it locally using its own replica 
of the mapping without forwarding the request to 
the root node, thus alleviating hotspots.

To reduce the number of replicas as well as 
the delay and bandwidth consumption for update 
propagation, Chen, Katz & Kubiatowicz, (2002) 
propose organizing the replicas on an application-
level multicast tree, called replica dissemination 
tree (or d-tree) build on top of the overlay network, 
in their case, Tapestry. Each peer in the d-tree 
maintains state information only for its parent and 
its direct children. Two algorithms are proposed for 
dynamic replica placement. In the first algorithm, 
called naive placement, a peer stores a replica on 
the parent server of the requestor peer or on the 
overlay path server that is as close to the asked 
peer as possible. The second scheme, called smart 
placement, chooses as parent the peer with the 
lowest load among candidates. If more than one 
of them meets the requirements, then the replica 
is placed on the overlay path server that is as far 
from the requestor as possible.

Caching State

EpiChord (Leong, Liskov & Demaine, 2006) is a 
DHT similar to Chord. Instead of maintaining a 
finger table per node, EpiChord keeps a cache per 
node with a list of k successor and k predecessor 
node. Nodes populate their caches mainly from 
observing network look-up traffic, and cache 
entries are flushed from the cache after a fixed 
lifetime. In particular, each node updates its cache 

based on information returned by queries and adds 
an entry to the cache each time it is queried by a 
node not already in the cache. To lookup an entry, 
an EpiChord node initiates a number of parallel 
lookups to the successors and predecessors nodes 
in its cache. In addition, nodes communicate 
with their immediate successor and predecessor 
periodically, exchanging their entire successor 
and predecessor lists.

Summary of Replication in 
Structured p2p Systems

Approaches to replication differ on what is repli-
cated. Replication may involve either replicating 
the item itself or its index (i.e. its location). In 
few cases, the routing table or information about 
neighbors is also replicated.

There are various methods for achieving repli-
cation in structured p2p systems. A very common 
approach is to place a number of replicas at the 
immediate neighbors of a node such as the suc-
cessor nodes in CHORD, the nodes in the leafset 
in PAST or the peers at the neighboring zones 
in CAN. Such replicas are easily locatable. The 
primary reason for this form of replication is fault 
tolerance. Another approach is to use multiple hash 
functions to map an item to more than one node. 
Besides availability, applying multiple hash func-
tions allows the employment of multiple search 
paths for an item and thus improves query latency 
and path fault tolerance. Path or owner replication 
can also be used to improve search for popular 
items. Finally, to achieve load balancing various 
approaches base their decision to create replicas 
purely on the load of each peer. Other approaches 
include: making more than one node responsible 
for the same identifier space (such as with zone 
overloading in CAN or structural relaxation in 
P-Grid), building multiple overlays (such as with 
multiple realities in CAN) or building a replica 
tree on top of the overlay (such as in d-tree).

The number of replicas created is either fixed 
for all items as a general replication factor of the 
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system (for instance k successors or nearest peers in 
the identifier space) or varies for each item or node 
depending on the current system parameters such 

as the item popularity or the load at the servers.
Table 2 summarizes the various replication 

approaches in structured p2p networks.

Table 2. Summary of replication strategies in structured p2p systems 

How many Where/How What Goal

Applications built on top of 
Chord (Stoica et al, 2001) k successors Multiple hash functions, or 

At the successors of an item Data items or keys Failure recovery 
Load balance

CAN (Ratnasamy et al, 2001) varies

Neighbor replication 
Multiple realities 
Multiple hash functions 
Zone overloading 
Caching (i.e. owner replication)

Data items/index 
entries

Response time 
Availability 
Neighbor selection 
Load balancing

PAST (Rowstron et al, 2001b)
k nearest identifiers

At the k peers whose identifier is 
numerically closest to the identifier 
of the file

Files Fault tolerance

Caching (path replication) Files Query load balance

Kademlia (Maymounkov & 
Mazieres, 2002)

k replicas plus 1 new 
per successful lookup

k closest nodes to the key and 1 to 
next-to--last node on the lookup path <key, value> pairs Handle failures and improve 

latency

P-Grid (Aberer et al, 2005) - Multiple peers per key space 
Multiple route paths

Data keys 
Routing

Load balancing 
Fault tolerance

Beehive (Ramasubramanian et 
al, 2004)

k per item where 
k depends on item 
popularity

At all peers k hops before the suc-
cessor of the item Data items Achieves lookup of a con-

stant number of C hops

PopCache (Rao et al, 2007)

Such that to achieve 
optimal average search 
(MAX PERF) or a tar-
geted lookup threshold 
(MIN COST)

On the k-tree induced by the k neigh-
bors of each node Data items Query latency

HotRoD (Pitoura et al, 2006) Arcs of peers Multi-rotational locality-preserving 
hash function

Popular data items on 
arcs of peers

Load balance for range 
queries

LAR {Gopalakrishnan et al, 
2004) adaptive Load measurements by individual 

peers
Data items/index 
entries Data and query balance

CDN (Alqaralleh et al, 2007) adaptive
Frequently query peers, or at random 
peers or such that to minimize the 
number of peers holding replicas

Data items
Performance 
Load balancing 
Replica maintenance cost

CFS (Dabek et al, 2001) varies Caching 
Replication at the successor File Blocks Load balancing 

Performance

Squirrel (Iyer et al, 2002) up to k pointers Caching

Data items (home-
store) or Pointers to 
their location (direc-
tory)

Query latency 
Fault tolerance

Power of two choices (Byers et 
al, 2002) d hash functions Multiple hash functions Data items Load balance

Symmetric Replication (Ghodsi 
et al, 2005) f nodes Equivalence classes of related 

identifiers Data items
Response time 
Neighbor selection 
Fault tolerance

P-RLS (Cai et al, 2004) k successors and /or 
predecessors

At the successors
Mappings

Failure recovery, 
Data balance

At the predecessors Query balance

d_tree (Chen et al, 2002) varies On a multicast tree built on top of 
the p2p overlay Data items

Reduce storage 
Query latency 
Improve update efficiency

EpiChord 
(Leong et al, 2006) varies Caching during lookup Routing state (prede-

cessor and successors)
Query latency 
Reduce state per node
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UpDATeS

Replication introduces the overhead of maintain-
ing the replicas of each data item up-to-date. A 
replica management protocol decides where (i.e. 
at which copies) updates take place, when updates 
propagate to other replicas and how the propaga-
tion of updates is achieved.

According to the where aspect, replication 
strategies can be classified broadly as single master 
or primary copy and multi-master or group. Single 
master or primary copy replication is the simplest 
approach in which each replicated item is owned 
by a single peer (or owner). The copy held by the 
owner is called the primary copy. All copies can 
be read but any update to an item must be first 
applied to its primary copy and then propagated 
to the other copies. The advantage of primary 
copy replication is its simplicity. However, the 
owner of an item may be a potential bottleneck 
as well as a single point of failure. The multi-
master or group approach allows multiple peers 
to hold primary copies of the same data item. All 
replicas are regarded as equally authoritative. The 
multi-master approach avoids bottlenecks and 
single points of failures, however, it increases 
communication costs and system complexity, 
since it requires concurrent updates at different 
replicas to be coordinated and reconciled to solve 
any potential replica divergences.

In terms of the when aspect, update propagation 
strategies can be implemented either synchronous-
ly or asynchronously. A synchronous propagation 
mechanism updates all replicas before a transac-
tion commits. With the asynchronous strategy, 
only a subset of the replicas is updated.

Regarding the how aspect, most replication 
management techniques in p2p networks use a 
combination of push and pull methods to propa-
gate updates as follows. The initiator of an update 
pushes the new value of its copy to a number of 
other peers in the system. A peer that holds a copy 
pulls other peers to be informed of any potential 
updates. Most update propagation mechanisms 

in p2p systems are probabilistic in the sense that 
they ensure that an update will eventually reach 
all copies of an item with a certain probability. 
The propagation of an update may involve a no-
tification that the item has been updated, a state 
transfer where the actual new value of the modified 
data is transferred or an operation transfer where 
the update operation is propagated. Choosing a 
propagation method depends on the amount of 
data, bandwidth availability and various system- 
and application- related characteristics.

Finally, the consistency of replicas refers to the 
allowable divergence among the various copies 
of an item. Strong consistency does not allow any 
such divergence and guarantees that each read 
returns the most current value of an item. Weak 
consistency allows various levels of divergence 
among copies as well as reads that may return 
stale values of an item.

To address scalability and dynamicity, most 
update replication mechanisms in p2p systems 
support multi-master schemes, probabilistic up-
date propagation and weak consistency.

Individual peer Techniques

Before proceeding to describe update mechanisms 
for unstructured and structured p2p systems, we 
review some techniques that can be followed by 
individual peers in order to achieve a desired level 
of confidence or consistency for the items they 
are interested in.

Vecchio & Son (2005) adapt the traditional 
quorum consensus schemes to a dynamic p2p 
environment by letting each peer choose its own 
quorum level. In effect, each peer decides on the 
level of confidence of the item it accesses. This 
way, there is a tradeoff between the incurred 
message overhead and the achieved consistency 
levels; the higher the quorum values the higher the 
message overhead and the lower the possibility 
of accessing stale data.

The Controlled Update Propagation (CUP) 
protocol (Roussopoulos & Baker, 2003) allows 
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individual peers to receive and propagate updates 
only when they have a payoff to do so. Each peer 
registers with its neighbors for receiving updates 
only for the items it is interested in. Correspond-
ingly, it propagates any received updates of an 
item i only to the neighbors that have registered 
their interest for i. A node decides whether it is 
interested in receiving updates for item i based 
on the “profit” it will have; receiving an update is 
justified if it will save the node the cost of handling 
queries, i.e. if the node receives frequently queries 
for item i then keeping an up-to-date replica of 
i will allow it to answer these queries immedi-
ately, avoiding the overhead of propagating the 
queries further. Clearly, these policies favor the 
popular items since these items generate queries 
most often.

Susarla & Carter (2005) let each peer express 
their consistency requirements as a vector of 
options along five different dimensions, on a 
per-access basis. They argue that different classes 
of distributed applications, such as file access, 
database and directory services, and real-time 
collaborative groupware, have a broad and di-
verse set of requirements with regards to replica 
handling. These requirements are classified along 
the following five, mostly orthogonal, dimensions: 
(1) concurrency - the degree to which conflicting 
accesses can be allowed, (2) replica synchroniza-
tion - the degree to which replica divergence can 
be tolerated (termed coherence or timeliness) and 
the types of inter-dependencies among updates that 
must be preserved upon replica synchronization 
(termed consistency), (3) failure handling - how 
data access is handled when some replicas become 
unreachable or have poor connectivity (4) update 
visibility - the time at which modifications to lo-
cal data are made visible globally, and (5) view 
isolation - the time at which remote updates are 
made visible locally. To cater for such diverse 
requirements with regards to replica updates, the 
composable consistency model is proposed along 
with an outline of its implementation in Swarm, 
a wide area p2p middleware file service. Swarm 

allows applications to specify the level for each 
of the five requirements at every search. Swarm 
assumes that there is a master server, termed cus-
todian, per file that coordinates the consistency 
management protocols for the file. There can be 
more than one custodian per file for fault tolerance. 
Consistency is achieved through a combination 
of push and pull operations.

Updates in Unstructured 
p2p Networks

As mentioned above, the consistency mechanisms 
that have been proposed use a push-based and/or a 
pull-based propagation algorithm. One more pos-
sibility can be found in the work of Demers et al 
(1987), who have applied the theory of epidemics 
to the problem of update propagation in a distrib-
uted environment, proposing a number of generic 
methods. The first method the authors examine is 
direct mail, where the owner of a data item contacts 
(`mails’) all the other peers at every update. This 
approach, although simple, can be overwhelming 
in a p2p network with a large number of nodes. 
In the anti-entropy method each peer regularly 
chooses a neighbor and by exchanging their con-
tent resolves any differences between them (if a 
newer version of an item is found, it updates its 
own replica). A peer can either push its content to 
the other peer letting it check for inconsistencies, 
or pull content, or even push and pull content at 
the same time. Another update spreading algorithm 
considered is rumor mongering: at first all peers 
are considered ‘ignorant’ when an update is out 
and the update becomes a ‘hot rumor’. If a peer 
knows of such a rumor, it periodically chooses 
another peer and tries to communicate the rumor. 
If the peer sees that the rumor is no longer hot 
(i.e. most of the peers it contacts already know 
it), it stops propagating it any further.

If the direct mail method is to be used, a natural 
plan would be to know (most of) the peers that 
hold a replica of the particular data item (statefull 
replication) so as to only contact those upon an 
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update. A mechanism like this is assumed by Datta, 
Hauswirth & Aberer (2003). The authors study the 
performance of a generic hybrid push-pull consis-
tency maintenance protocol for p2p environments 
where peers join and leave the network at a very 
high rate. At the push phase, the owner sends the 
updated item, along with its version number, to the 
peers that hold replicas. This requires knowledge 
of who holds replicas of what, but the update is 
not communicated through direct mail; it is rather 
propagated with a randomized flooding among the 
affected peers. The owner performs a selective 
push of its updates to a subset of the peers that 
will be affected by it (because they have a replica 
of the updated data item); each peer that receives 
the update also propagates it to a subset of affected 
peers it knows, and so on. To reduce the overhead, 
each message contains a partial list of the peers 
that have already been contacted. The method 
is accompanied by a pull phase that takes place 
whenever a peer is reconnected to the network 
after a disconnection or has not received updates 
for a long time (in the spirit of the anti-entropy 
method); during this pull phase, it contacts online 
peers with replicas of the items it stores, for their 
latest versions.

UPTReC – update propagation thought rep-
lica chain (Wang, Das, Kumar & Shen, 2007) 
– exploits similar pull and push mechanisms to 
scatter updates in decentralized and unstructured 
p2p systems. The peers that hold the replicas 
of an item i form a logical bi-directional chain, 
where each peer maintains information about 
the k closest peers in the chain in each direction. 
Peers may join (when a new replica is created) 
or leave (when removing a replica) by pushing 
messages at appropriate directions in the chain. 
Updates are similarly propagated by pushing 
messages at both directions, informing up to 2k 
nodes; at each direction the furthest known peer 
undertakes the responsibility of reaching the next 
bunch of k nodes in the chain and so on. Nodes 
that reconnect after a disconnection pull in order 
to synchronize. Maintaining such a chain for every 

item reduces the message overhead on updates 
while also providing better consistency levels 
than Datta, Hauswirth & Aberer (2003), as shown 
experimentally.

Wang, Kumar, Das & Shen (2006) consider 
multi-master replication where all replica holders 
(termed “replica peers” – RPs) are allowed to up-
date the item. In particular, a subset of RPs become 
“virtual servers” (VRPs) for the data item. The set 
of VRPs changes dynamically over time, based 
on node availability. Any replica peer updating 
the item contacts a VRP to undertake the update 
coordination. This “master” VRP first enters an 
agreement phase with the other VRPs in order to 
commit the update. When agreement is achieved, 
the master VRP obtains the updated item from the 
replica peer and pushes it to the remaining VRPs 
and to a partial list of the other RPs. Among the 
other RPs, the update propagation is implemented 
using a combination of push and pull, where some 
RPs are only pushing while the others are only 
pulling. The protocol achieves one-copy serializ-
ability, i.e. the concurrent execution of updates on 
a replicated item has the same effect as a serial 
execution on a non-replicated item.

Update propagation in the last three methods 
occurs strictly among the interested peers; al-
though this seems efficient in terms of overheads 
and consistency levels, it nevertheless incurs the 
extra state overhead of keeping track of all peers 
holding a replica of the data item, which could be 
prohibitive in an unstructured and dynamic p2p 
network. Three update propagation policies (two 
based on push and pull techniques and a hybrid 
one that combines the push and pull policies) are 
proposed by Lan, Liu, Shenoy & Ramamritham 
(2003) for practical networks. The authors assume 
a master-copy schema where the owner of the 
data item always has the most up to date version 
and all peers that hold a replica need to be kept 
consistent; the overlay network is unstructured 
and the owners do not know who/where replica 
holders are. To achieve consistency, each data 
item is associated with a version number which 
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is incremented by the owner every time an update 
occurs. In the push-based policy, the owner of a 
data item broadcasts an invalidation message when 
a data item is modified. The invalidation message 
is propagated through the network using a flood-
ing algorithm, limited to a predefined number of 
hops (TTL). When a peer receives an invalidation 
message, it checks its cache. If it holds a replica 
of the data item and the stored version is smaller 
than the received version number, it invalidates 
the replica in its cache. In the proposed pull-based 
policy, a peer polls the owner of an item it holds in 
its cache to determine if the replica is stale or not. 
An adaptive polling policy is used to determine 
how frequently the peer should poll. It is based 
on a time-to-refresh (TTR) value associated with 
each item in the cache, which indicates when the 
next pull for the item should occur. The TTR is 
increased by an additive amount C (TTR = TTR+C) 
if the peer finds out that a data item has not been 
modified between two successive polls, otherwise 
TTR is reduced by a multiplicative factor D (TTR 
= TTR/D). A hybrid push and pull approach can 
also be used to combine both techniques. In this 
hybrid scheme, the owner propagates invalida-
tion messages using a limited push. In addition, 
a peer that holds a replica may pull adaptively 
to make sure that the replica is valid. TTR can 
be further tuned by a factor that depends on the 
degree of a peer; the intuition behind this is that 
highly connected nodes should poll less frequently 
since they are potentially easier to reach by the 
owner push.

An alternative hybrid push/pull update propa-
gation policy, PtPU, is proposed by Leontiadis, 
Dimakopoulos & Pitoura (2006). It is assumed that 
for the creation of replicas in the p2p network the 
Pull-then-Push algorithm was used where a peer 
that requests an item, after a successful search 
(pull phase) enters a push phase where it transmits 
replicas of the item using the same algorithm as 
in the pull phase. Given this replica creation ap-
proach, each peer that holds a data item is charac-
terized as owner if it is allowed to apply updates, 

responsible if it has requested the data item and 
has forced the creation of replicas or indifferent 
if it has been forced to hold a replica without 
requesting the data item. In the PtPU policy, the 
owner performs a limited broadcast of the new 
version of a data item when an update occurs. If 
a peer that is characterized as responsible for an 
item receives the broadcast message with a new 
version of the data item, it undertakes the task of 
informing the indifferent peers. This is done by 
propagating the update message (U-push phase) 
exactly as in the push phase when the replicas 
were created. Apart from pushing the updates 
they receive from the owner, responsible peers 
also pull periodically in order to become aware of 
more updates. To determine the frequency of the 
pull, the adaptive polling policy is used, where a 
TTR value is increased or decreased depending 
on weather the data item has been changed or not 
between two successive poll periods.

Updates in Structured p2p Networks

Many update propagation mechanisms in p2p 
systems use a form of periodic pushing to inform 
of any updates other holders of data copies. This 
is particularly useful in terms of updates related 
to state or routing information. This is often re-
ferred to as soft-state updates. In P-RLS (Cai, et 
al, 2004) update propagation is implemented in 
two phases. In the first phase, the Replica Loca-
tion Service (LRC) periodically sends soft state 
updates summarizing its state into the peer-to-peer 
network. Then, the root peer of each mapping 
updates its successors immediately to maintain the 
consistency of the replicated mappings. Soft-state 
updates are also applied in LAR (Gopalakrishnan 
et al, 2004) and CAN (Ratnasamy et al, 2001). In 
CAN, each peer sends periodic update messages 
to each of its neighbors giving information about 
its zone coordinates and a list of its neighbors 
with their zone coordinates. The same policy 
of periodic update messages is applied to CDN 
(Alqralleh et al, 2001).
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Beehive (Ramasubramanian et al, 2004) 
exploits the structure of the underlying DHT to 
provide strong consistency. It ensures that any 
object modification is propagated to all replicas. 
In CFS (Dabek et al, 2001) cryptographic veri-
fication of updates and server id authentication 
are used and only owners of data can implement 
updates. For update dissemination in symmetric 
replication (Chen et al, 2002), replicas and caches 
self-organize into a d-tree and use application-
level multicast to propagate updates. Replicas and 
caches are always kept up-to-date. P-Grid (Aberer 
et al, 2003) proposes an update mechanism based 
on a generic push/pull gossiping scheme that pro-
vides probabilistic guarantees for consistency.

Akbarinia, Pacitti & Valduriez (2007) proposed 
an interesting replica update mechanism for DHT-
based p2p networks. Their objective is to provide 
a mechanism which returns efficiently a current 
replica of a data item given its key. The proposed 
update management mechanism relies on time-
stamps. Data items are replicated using multiple 
hash functions as in many structured p2p systems. 
The main difference is that, when a data item is 
mapped to a peer, each item is associated with a logi-
cal timestamp which is stored along with the item. 
Timestamps are generated through a distributed 
service that guarantees the monotonicity property 
for timestamps, i.e. two timestamps generated for 
the same key are monotonically increasing. This 
property allows ordering the timestamps generated 
for the same key according to the time at which 
they have been generated.

The distributed timestamp generation service 
uses the underlying DHT. In particular, a hash 
function is used to map each key with one peer that 
is held responsible for returning a new timestamp 
for that key. Each peer that needs a timestamp for 
an item with a specific key i uses the hash func-
tion to locate the peer responsible for generating 
timestamps for i and sends a timestamp request 
to it. Upon receiving the request, the responsible 
peer initializes some local counter to the value of 
the last generated timestamp for i.

Upon storing an item with timestamp ts, in 
case the peer already has a replica of the item with 
timestamp tp, the two timestamps are compared so 
that only the latest version (the one with the largest 
timestamp) is finally kept. In order to retrieve a 
data item, a peer first gets a timestamp from the 
responsible peer and compares it with the results 
it receives, so that it ensures its currency.

SUMMARY

In this chapter, we have presented replication 
techniques and mechanisms that have been pro-
posed for p2p networks. Replication is a central 
mechanism for improving performance and 
availability in a distributed system. P2p systems 
introduce new challenges mainly because of their 
unprecedented scalability and dynamicity. In this 
chapter, we have focused on replication mainly 
for improving the response time of search and 
achieving load balancing.

Note that replication is just one method for 
achieving redundancy. Alternatively, erasure cod-
ing or a combination of replication and erasure 
coding can be used towards this end. An erasure 
code provides redundancy without the overhead 
of strict replication. Erasure codes divide an 
object into m fragments and recode them into n 
fragments, where n > m. The ratio m/n is called 
the rate of encoding. A rate r code increases the 
storage cost by a factor of 1/r. The key property 
of erasure codes is that the original object can 
be reconstructed from any m fragments. Weath-
erspoon & Kubiatowicz (2002) have quantified 
the availability gained using erasure codes. Then, 
they show that erasure-resilient codes use an order 
of magnitude less bandwidth and storage than 
replication for systems with similar mean time to 
failure (MTTF). They also show that employing 
erasure-resilient codes increase the MTTF of the 
system by many orders of magnitude over simple 
replication with the same storage overhead and 
repair times. Recent research takes other issues 
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into consideration such as user download behavior 
(Chen, Qiu & Wu, 2008) and the characteristics 
of the overlay nodes (Rodrigues & Liskow, 2005) 
under which replication may outperform erasure 
codes. Erasure codes and related protocols are 
beyond the scope of this chapter, since our main 
focus is on search quality and load balance.

In unstructured p2p systems, most research has 
focused on determining the appropriate number 
of replicas as well as on developing practical 
mechanisms for placing the replicas. Most of the 
theoretical work on the subject is based on the 
results of Cohen & Shenker (2002) and assumes a 
network topology and a search strategy that allow 
uniform node sampling. Similar results are lack-
ing for other search strategies and more realistic 
network models (e.g. power-law random graphs). 
A very limited number of practical algorithms have 
been presented for the placement of replicas so as 
to optimize some aspects of search performance. 
Replication in unstructured p2p systems is cur-
rently an area where further theoretical as well as 
experimental analysis is needed.

As with unstructured p2p, the main reasons 
for replication in structured p2p systems are 
availability and performance. In particular with 
structured p2p, replication is central in improving 
load balancing caused by skew in the mapping of 
items to nodes. Replica placement decisions in 
structured p2p systems often exploit the structure 
of the underlying overlay. Common choices for 
placing replicas include the immediate neighbor-
ing nodes as well as the nodes on the search path 
of an item. DHTs also offer alternative mecha-
nisms for realizing replication that are based on 
the mapping of the data-key space to nodes. One 
way is by using multiple hash functions to map 
(store) the same item on multiple nodes. Another 
way is by assigning the same key space to more 
than one node (such as with zone overloading in 
CAN or structural relaxation in P-Grid). Finally, 
one may build multiple overlays (such as with 
multiple realities in CAN) or replica trees on top 
of the overlay (such as in d-tree).

Once replicas are created, a central point is 
maintaining the replicas up-to-date. Strategies 
that are based on global knowledge of the replica 
holders may have the potential to achieve good 
consistency levels and low message loads, but 
seem rather inappropriate for dynamic networks 
that evolve quickly. A logical thing to do in such 
a case is exploit the p2p network structure for an 
efficient update scheme, an approach that by na-
ture fits some structured network topologies well. 
For all other networks most approaches aim at 
achieving some form of probabilistic consistency, 
relying on a combination of pushing the updates 
to neighbors and pulling copies from them.

Since no single optimal solution exists for 
replica placement or for replica updates, this is 
expected to be an active area of research for many 
years. Promising issues include (a) theoretical 
results regarding the optimal replica placement 
in various types of unstructured p2p systems, (b) 
gossiping protocols for update maintenance, (c) 
replication for fault tolerance, (d) replication to 
meet the requirements of specific storage-related 
applications and (e) replication techniques for 
highly dynamic and unpredictable environments. 
New research challenges also arise in the area 
of social networking and in mobile peer-to-peer 
environments.
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keY TeRMS AND DefINITIONS

Data Replication: Refers to creating and 
maintaining multiple copies of an item so as to 
improve performance and reliability.

Overlay Networks: Networks formed be-
tween nodes in large scale distributed systems 
which are built on top of the physical network.

Peer-to-Peer (P2P) Systems: Distributed 
systems where nodes act as both servers and 
clients. Characteristics commonly attributed to 
peer-to-peer systems include node autonomy, 
large scale and dynamicity.

Replica Placement: Refers to protocols 
for assigning replicas to nodes in a distributed 
system.

Replica Updates: Refers to protocols used to 
maintain consistency among replicas.

Structured Peer-to-Peer Systems: P2P sys-
tems where nodes are connected to each other to 
form specific overlay topologies. The most com-
mon structured p2p systems are Distributed Hash 
Tables (DHTs) where data items are assigned to 
specific peers based on hashing.

Unstructured Peer-to-Peer Systems: P2P 
systems where the overlay topology is not rigid 
and there is no explicit association between the 
location of data and the location of nodes. Many 
unstructured p2p systems have power-law degree 
characteristics.
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eNDNOTe

1  We note here that while both refer to creat-
ing copies, caching and replication have 
some subtle differences. Caching is usually 
initiated at the clients, in our case, the peers 

that made the request for an item, while 
replication is a server-based decision, with 
possibly system-wide implications. In this 
chapter, we will not distinguish between 
replication and caching and we will use the 
term ‘replication’ to refer to both of them.




