
Handbook of Research on
P2P and Grid Systems
for Service-Oriented
Computing:
Models, Methodologies,
and Applications

Nick Antonopoulos
University of Surrey, UK

George Exarchakos
University of Surrey, UK

Maozhen Li
Brunel University, UK

Antonio Liotta
University of Essex, UK

Hershey • New York
InformatIon scIence reference

Volume II

Director of Editorial Content: Kristin Klinger
Director of Book Publications: Julia Mosemann
Development Editor: Christine Bufton
Publishing Assistant: Kurt Smith
Typesetter: Carole Coulson
Quality control: Jamie Snavely
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Handbook of research on P2P and grid systems for service-oriented computing : models, methodologies and applications /
Nick Antonopoulos ... [et al.].
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book addresses the need for peer-to-peer computing and grid paradigms in delivering efficient service-
oriented computing"--Provided by publisher.
 ISBN 978-1-61520-686-5 (hardcover) -- ISBN 978-1-61520-687-2 (ebook) 1.
Peer-to-peer architecture (Computer networks)--Handbooks, manuals, etc. 2.
Computational grids (Computer systems)--Handbooks, manuals, etc. 3. Web
services--Handbooks, manuals, etc. 4. Service oriented architecture--
Handbooks, manuals, etc. I. Antonopoulos, Nick.
 TK5105.525.H36 2009
 004.6'52--dc22
 2009046560

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

589

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 25

Data Replication in P2P Systems
Vassilios V. Dimakopoulos

University of Ioannina, Greece

Spiridoula Margariti
University of Ioannina, Greece

Mirto Ntetsika
University of Ioannina, Greece

Evaggelia Pitoura
University of Ioannina, Greece

INTRODUCTION

In a peer-to-peer (p2p) system, a large number of
nodes share data with each other. The participation

of nodes is highly dynamic; nodes may enter and
leave the system at will. Since, it is not possible to
maintain links with all nodes, for performance as
well as for privacy and anonymity reasons, each
node maintains links with a selected subset of other
nodes, thus forming an overlay network. A message

ABSTRACT

Maintaining multiple copies of data items is a commonly used mechanism for improving the performance
and fault-tolerance of any distributed system. By placing copies of data items closer to their requesters,
the response time of queries can be improved. An additional reason for replication is load balancing.
For instance, by allocating many copies to popular data items, the query load can be evenly distributed
among the servers that hold these copies. Similarly, by eliminating hotspots, replication can lead to a
better distribution of the communication load over the network links. Besides performance-related rea-
sons, replication improves system availability, since the larger the number of copies of an item, the more
site failures can be tolerated. In this chapter we survey replication methods applicable to p2p systems.
Although there exist some general techniques, methodologies are distinguished according to the overlay
organization (structured and unstructured) they are aimed at. After replicas are created and distributed,
a major issue is their maintenance. We present strategies that have been proposed for keeping replicas
up to date so as to achieve a desired level of consistency.

DOI: 10.4018/978-1-61520-686-5.ch025

590

Data Replication in P2P Systems

between any two nodes in the p2p system is routed
through this overlay network which is built on
top of the physical one. Thus, two nodes that are
neighbors in the overlay network may be many
links apart in the physical network.

The overlay network is built to facilitate the
operation of a p2p system. In data sharing p2p
systems, a basic functionality is discovering the
data of interest. A look-up query for data items
may be posed at any node in the overlay. The
query is then routed through the overlay to effi-
ciently discover the nodes that hold the requested
data items. Such query routing must be achieved
by contacting as “small” a number of nodes in
the overlay as possible and by maintaining as
“little” state information at each overlay node
as possible.

There are two basic types of overlays: struc-
tured and unstructured ones. To assist lookup,
structured overlays map (keys of) data items to
nodes. In structured overlays, the mapping is
usually done by hashing the key space of the data
items to the id space of nodes. Thus, each node in
the overlay maintains a partition of the data space.
In structured overlays, lookup reduces to locat-
ing the node in the overlay that is responsible for
the corresponding data partition. In unstructured
overlays on the other hand, there is no correlation
between nodes and data items.

There are a number of issues regarding the
design of a structured p2p system. One design
dimension refers to the geometry of the overlay,
that is, its structural characteristics. Structured
overlays usually follow a regulated topology, such
as a ring, tree or grid. Then, upon entering the
p2p system, each node takes a specific position
in the overlay network. Another design choice is
how data are mapped to nodes. The mapping must
be fair so that nodes receive similar loads even
when the data sets or the operations are skewed.
All designs aim at supporting efficiently the basic
operations of the overlay, that is, its construction,
its incremental maintenance when nodes enter or
leave the system, and its search. Efficiency must

be achieved even in the case of high churn, where
maintaining the overlay structure incurs a high
cost. Most structured overlays guarantee lookup
operations that are logarithmic in the number of
nodes. Finally, overlays differ with respect to
the range of different types of queries that they
support.

In unstructured overlays, the topology is not a
rigid one. Unstructured overlays are formed by the
nodes as they join the system by either selecting
randomly a node from a known list of participating
peers or by following some loose rules regarding
this selection. The resulting topology may have
certain properties, however there is no assumption
regarding the way the data space is mapped to the
address space of the nodes in the overlay. To locate
data of interest, a node queries its neighbors in
the overlay, which in turn query their neighbors,
and so on, until the query hits on a node holding
the item. However, this procedure provides no
guarantees on the complexity of search.

The topology of an unstructured overlay is
built up over time in a decentralized manner as
peers join and leave the system. In many existing
systems, upon joining the network, a peer selects
to connect to another peer essentially at random.
In these systems, topologies often tend towards a
power-law degree distribution, where some long-
lived peers have many connections, while most
other peers have a few connections.

To improve performance of lookup, caching or
replication1 of either data or search paths (or both)
is possible. Besides improving search, replica-
tion may also assist in providing load balancing.
Further, replication improves fault tolerance and
the durability of data items.

Replication increases the number of copies
for each shared piece of data in the system. By
doing so, the probability that some or all the data
is temporarily or permanently lost significantly
decreases, thus the dependability of the system in
terms of reliability and availability is increased.
Additionally, by having more copies for popular
data items, the load for routing and answering

591

Data Replication in P2P Systems

queries can be evenly distributed among the servers
that hold the copies. This way, the performance of
query processing is increased in terms of through-
put and response time, since congestions in “hot”
servers are avoided. Placing data closer to their
requesters, as done by replication, also improves
the performance of query processing.

Replication may also improve data recall. In
structured overlays data recall is not an issue, con-
trary to unstructured overlays. While unstructured
overlays which adopt flooding-based techniques
are effective for locating popular data, they are
poorly suited for locating rare data. Thus, by rep-
licating the rare data the probability of locating it
during query processing increases, consequently
increasing data recall. However, replication may
affect data freshness. P2p systems consist of au-
tonomous peers that can arbitrarily delete or update
their content, thus the replicated data can become
stale if not updated properly. Updating replicas
and cache entries in a p2p system mainly aims
at providing soft-state guarantees. Hence, query
processing might encounter out-of-date copies of
data, thus failing to achieve result freshness.

The cost associated with replication includes the
storage cost as well as the maintenance cost in the case
of updates. Updates are either initiated by the owner
of the copy that was modified (push-based updates)
or by the holder of the copy (pull-based updates).
Often entries are associated with a time-out value,
whose expiration signals the removal of the entry,
thus providing only soft-state consistency.

There are two main choices on what to repli-
cate: peers may replicate the data items themselves
or their location information (index). There is an
obvious difference in the required storage space
among the two choices. Also, replicating indices
does not improve reliability or availability since it
does not lead to more physical copies. However,
both the placement and the update mechanisms
that have been proposed are applicable to both
data and index/location replication. Thus we will
treat the two cases as equivalent and shall not dif-
ferentiate between them in what follows.

The rest of this chapter is organized as follows.
Replication in unstructured p2p systems is con-
sidered first, followed by replication in structured
overlays. The results and techniques differ since
unstructured p2p systems are treated in essence as
“unknown” complex networks, while in structured
p2p systems the topology is more or less known
in advance and replication schemes may take
advantage of it. Next, the problem of keeping the
replicas up-to-date is considered where, again,
we distinguish between the techniques used for
the two types of overlay topology. A final section
summarizes the chapter.

ReplICATION IN UNSTRUCTUReD
p2p NeTwORkS

Unstructured topologies evolve in more or less
unpredictable ways, as nodes leave and join
the overlay at arbitrary positions. As a conse-
quence, they can be effectively modeled as a
random graph, or Erdős-Rényi random graph.
Such a graph with N nodes can be equivalently
described in two ways: it is a graph where
each of the possible N(N–1)/2 edges is present
with some fixed probability p; or it is a graph
selected uniformly at random among all pos-
sible graphs on N nodes and M edges. This is
a simple but powerful model, where it can be
shown that the degrees of participating nodes
follow a Poisson distribution. However, real-
world networks have exhibited a behavior that
is closer to power-law degree distributions:
there are a few highly connected nodes and a
large number of nodes with small degree. Thus
power-law random graphs or simply power-law
graphs have been quite popular as a model
for p2p networks. Although many replication
schemes do not depend on the particular model
used for the p2p topology, the choice of this
model has strong implications on the analysis
of some replication objectives (e.g. determining
an optimal number of replicas).

592

Data Replication in P2P Systems

Since in unstructured p2p systems there is no
information on where the desired piece of data
is placed, mostly “blind” search procedures are
used and look-up queries get propagated through
the network so as to locate peers offering the
data. The usually employed blind search strate-
gies are flooding and random walks, along with
their variations, and proposed methods for repli-
cation routinely depend on the particular search
strategy used for locating items. In flooding, a
node that receives a query message propagates
it to all its neighbors, unless it knows about
the item in question. Flooding usually results
in fast responses but can easily overload the
network with messages, a large percentage of
which are unnecessary duplicates. In variations
of flooding the query message is sent only to
a selected subset of a peer’s neighbors, based
on certain rules.

During a random walk on the other hand, a
contacted peer propagates the query to exactly
one of its neighbors, selected uniformly at ran-
dom. Proposed variations bias the selection of
the neighbor according to various criteria. This
type of search is particularly efficient, especially
in certain topologies, but usually results in slow
responses. Things can be significantly improved if
multiple random walkers are deployed simultane-
ously. It is a known fact that using random walks,
the probability of visiting a node is proportional
to its degree, i.e. random walks go through high-
degree nodes more frequently (since they are
more easily reached due to their large number
of neighbors).

To avoid high delays and an overwhelming
number of messages, queries are allowed to
propagate for a limited number of steps, which is
the so-called time-to-live (TTL) parameter. The
TTL value is included in every query message and
gets decremented by 1 at each visited peer. Peers
that observe a zero TTL value stop propagating
the search any further. It should be obvious, that
TTL-limited query propagation may result in
unsuccessful searches.

In this section we present replication schemes
for unstructured p2p networks. The section con-
sists of two parts. In the first part, we discuss
theoretical results regarding the optimum number
of replicas of each item in the system and practi-
cal ways of achieving this. In the second part,
we examine methods for placing the generated
replicas onto the p2p system nodes.

Number of Replicas

Assume that there are N peers participating in the
network and m different data items to be shared
among peers. Each peer on average has a storage
capacity for storing ρ replicas of data items and
the network has a total budget of R copies overall
(R=Nρ). The query rate or popularity of item i,
qi, is the probability that any arbitrary peer issues
a request for item i.

The problem of determining what is the opti-
mal replica configuration is discussed by Cohen
& Shenker (2002), for overlays that are modeled
as Erdos-Renyi random graphs. Specifically, the
authors deal with the problem of how many replicas
of each data item should exist in the network so
that the search overhead for locating the item is
minimized, with the constraint of fixed storage
capacity in the network. Given the query rates
for each data item, the objective is determining
which fraction pi of R should be allotted to each
data item i, so that the expected search size (ESS),
i.e. the number of peers probed during the search
process is minimized.

Two natural ways of replicating data items,
namely uniform and proportional replication,
are shown to be suboptimal under the above as-
sumptions. In uniform replication (UR) the same
number of replicas is created for each data item,
regardless of its query rate. In proportional rep-
lication (PR) the number of replicas for each data
item is proportional to the popularity of the item,
so that p qi iµ . Although it seems natural to cre-
ate more replicas for more popular data items so

593

Data Replication in P2P Systems

as to favor most common queries, this is done at
the expense of rare ones. In fact, it can be shown
that the ESS for a successful query is the same
for both uniform and proportional replication
strategies. The optimal configuration, proved to
minimize the expected search size, is square-root
replication (SR), where the number of replicas of
each data item is proportional to the square root

of its query rate, i.e. p q
i i
µ .

Since global knowledge is unavailable at each
peer, the authors also consider ways of realizing
square-root replication using simple distributed
protocols. In one of the simplest, the number of
copies created after a successful search is equal
to the size of the search, i.e. the number of peers
probed during search. At steady state, and under
reasonable assumptions, this simple strategy can
be shown to converge to SR. The only critical as-
sumption is that the fixed storage capacity of each
node is managed through replacement policies that
do not depend on the identity and the query rate
of the stored items. As such, at a full node, the
item that must be deleted so as to make room for
another replica cannot be given by usage-based
policies such as LRU or LFU but rather by poli-
cies like FIFO or random deletions.

Notice that although the idea is quite simple,
the size of the search is normally not known. Lv,
Cao, Cohen, Li & Shenker (2002) discuss two
practical strategies that try to approximate the
search size, namely owner and path replication.
In owner replication, which is used in Gnutella
(2003), when a search for a data item is suc-
cessful (only) the peer that initiated the search
process stores a replica of the data item. In path
replication, each query keeps track of the path
it follows from the peer that issues the request
to the peer that offers the data item. When the
search succeeds, all peers in this path are forced
to keep a replica of the data item. Clearly, path
replication comes quite closer to approximating
the search size and experimental results show that
it comes close to achieving SR. Path replication
is used on Freenet (Clarke et al, 2002) where all

nodes along the search path are forced to create a
replica using an insert message. Nodes keep both
the item and a pointer to the original data holder
of the file. The replacement policy used to man-
age the finite storage space at each node is LRU.
Subsequent incoming requests of evicted files,
however, can still be served for much longer since
the node also holds a pointer to the original holder.
It is worth noting that LRU was shown, through
detailed simulations (Zhang, Goel, & Govindan,
2004), to be responsible for deteriorating Freenet
performance under heavy loads. By just altering
the replacement policy so as to force local data
clustering, the authors managed to achieve high
percentages of successful queries and with small
hop counts, even under heavy traffic.

Path replication works only for search strategies
based on random walks. Even in such cases however,
it may fail to discover the search size. If multiple
walkers are used (Lv, Cao, Cohen, Li & Shenker,
2002), only the successful ones will be used to create
replicas while the others will be ignored, creating a
number of replicas smaller than the total number of
visited nodes. To closely approximate the number
of probes, Leontiadis, Dimakopoulos & Pitoura
(2006) propose the Pull-then-Push (PtP) strategy,
where replica creation becomes a responsibility of
the inquiring peers. PtP replication consists of two
phases: the pull phase during which the requesting
peer is trying to locate the desired data item and the
push phase which begins after a successful search
whereby the requesting peer transmits the data
item and causes other peers to hold replicas of it.
In order to achieve SR, the number of peers that are
probed during the push phase should be equal to the
number of peers that where probed during the pull
phase. Therefore, it is essential that the same search
strategy is used both for searching for the data item
(pull) and the data item transmission (push) and
with the same hop limit (TTL). Finally, every peer
that is probed during the push phase is forced to
hold a replica of the data item. PtP works for both
flooding and random-walker based strategies and
leads easily to SR.

594

Data Replication in P2P Systems

For Erdos-Renyi random graphs, if flooding-
based search is used and if the objective is to
minimize the search time (as opposed to search
size) then proportional replication is the optimal
configuration as shown by Tewari & Kleinrock
(2005). Search time is the shortest distance from
the inquiring node where a replica of the queried
item is found. Optimality is achieved under the
assumption of an ideal “controlled” flooding strat-
egy where search stops immediately when the data
item is located. A practical but slightly suboptimal
search mechanism that approximates controlled
flooding is the expanding rings method described
in Lv, Cao, Cohen, Li & Shenker (2002). PR has
additional benefits as well, e.g. the minimization of
used network bandwidth (estimated as the average
number of links traversed per download). Tewari
& Kleinrock (2006) additionally consider practi-
cal ways of achieving PR. They basically follow
owner replication (an inquiring node keeps a copy
for itself), which should naturally lead to a number
of replicas proportional to the request rates of data
items. Again, a crucial factor is the replacement
strategy used in managing each node’s fixed stor-
age space. Experimentally, all known strategies
have good but not optimal performance, with LRU
and LFU the better ones. Almost perfect PR can
be achieved with a replacement strategy based
on random evictions combined with additional
replica creations even if the item is found in the
inquiring node’s storage space.

placement of Replicas

The works in the previous section deal mostly with
determining the optimum number of replicas and
with ways to achieve this number, under certain
assumptions and constraints. Another approach
is to determine where/how to place the replicas
(without striving for a particular number of them)
so as to optimize some objective. For example,
the objective may be the minimization of search
size or the maximization of the percentage of
successful searches.

Gia (Chawathe, Ratnasamy, Breslau, Lanham
& Shenker, 2003) has been proposed as an improve-
ment of Gnutella to exploit peer heterogeneity and
includes mechanisms that dynamically adapt the
overlay topology and the search algorithms. The
topology adaptation mechanism ensures that high-
capacity nodes are the ones that have high degree.
Gia follows one-hop replication: an index of the
content of every peer is replicated to its immediate
neighbors. The rationale behind this is that since
high-degree nodes are visited more frequently and
high-degree nodes are the ones with high capacity,
having them know the content of their neighbors
will make them capable of providing answers to
a greater number of queries.

Jia, Pei, Li & You (2005) compare various
mechanisms for the problem of replica placement
in power-law networks. They consider replication
of location information (i.e. not the actual data)
so as to maximize the overall performance of
search queries. The spread mechanisms consid-
ered are flooding, percolation-based (randomized)
flooding, random walks and high-degree random
walks (HDRW). The later is a variation of random
walks where a visited peer selects the next peer
randomly among its highest-degree neighbors. By
spreading location information along an HDRW,
more information reaches high-degree nodes more
quickly. As a result, because it is well known that
search queries gravitate towards the high-degree
nodes in the network, potentially more searches
will be resolved successfully and quickly. This was
confirmed through simulations which showed that
for the same message overhead, spreading replicas
by HDRW results in better search performance
than the other mechanisms, under both flooding-
based and random walk-based search.

Morselli, Bhattacharjee, Marsh & Srinivasan
(2005) propose LMS (Local Minima Search), a
search method and replication protocol. Assum-
ing that both peers and data items obtain ids uni-
formly at random from a given large set (so as to
guarantee uniqueness with high probability), the
replication mechanism tries to replicate an item

595

Data Replication in P2P Systems

with id i to peers with id ‘close’ to i. Such a node
is called a local minimum for item i in that its id
is closest to i among the ids of all peers in the
node’s h-hop neighborhood, where h is a given
parameter. A random walk is used first, followed
by a deterministic walk that progresses towards the
closest local minimum node by selecting at each
step the neighbor with the smallest distance from
i. When this random local minimum is reached, a
replica is created if there is not one there already;
otherwise, the process is repeated with a random
walker of double length. For locating the item,
the same procedure is used. A local minimum
that receives the query replies with the replica
or with a failure message depending on whether
it stores the item or not. To improve success rate
and response time, multiple such walkers can
be utilized. The protocol can achieve quite high
query success probabilities but at the expense of

a possibly large number of replicas (O n / dh() ,
where dh is the minimum size of an h-hop neigh-
borhood), which can be a problem if the storage
space in each peer is limited.

Maximization of the probability of success is
also the subject of the work by Sozio, Neumann
& Weikum (2008). They consider the problem of
replica placement in arbitrary networks that are
searched by random walks. Given the peer capaci-
ties and the query rates qij, i.e. the fraction of all
queries (issued in the whole network) for data item
i by peer j, the problem of finding an assignment of
replicas to peers so as to maximize the probability
of a successful query is shown to be related to the
multi-knapsack problem, where there is a set of
bins with given capacities and a set of elements
each with size and profit and the aim is to find a
feasible packing that maximizes the profit. The
problem can be tackled by good approximation
algorithms, which however are centralized. The
authors present P2R2, a distributed algorithm to
solve the problem, which is based on each peer
j keeping a special counter for each data item i,
rij . The counter rij is incremented for each query

about i that passes through node j and is unsuc-
cessful or is satisfied by a peer with larger id. This
requires that certain information is piggybacked
on the query messages and that random walks are
always unfolded to their maximum length even
if the item is located at some step earlier than the
expiration of TTL. P2R2 leads to a probability of
query success which is within a factor of 2 from
the optimal.

Summary of Replication in
Unstructured p2p Systems

Replication methods that are applicable to un-
structured p2p systems provide answers to the
questions of how many replicas are created for
each data item, according to which optimization
criteria, and where those replicas are placed. Table
1 summarizes how replication methods described
above deal with each of these issues.

ReplICATION IN STRUCTUReD
p2p NeTwORkS

In structured peer-to-peer networks, data items
are stored at specific nodes of the overlay. The
mapping of data items to overlay nodes is in gen-
eral achieved through appropriate hash functions
that support a hash table interface with primitives
put(key, value) and get(key), where key is the iden-
tity of a data item (for instance, the file name). In
addition, the nodes in the overlay are organized in
rigid topologies, such as a multidimensional ring,
grid or an n-dimensional cube. This way, items
can be located efficiently. The routing messages
for locating an item follow a deterministic path
from the requester to the owner of the item.

Ideally, hashing should be such that peer are
responsible for roughly the same number of data
items. The common underlying assumption for
achieving this is that data keys, and in some cases
node identifiers, are randomly chosen. However,
due to skeweness in the data population, this is

596

Data Replication in P2P Systems

not always the case. Furthermore, even when the
data items are evenly distributed among the peers
of the overlay, non-uniform query workloads may
lead to an uneven workload distribution among
the peers, resulting in potentially overloading the
peers that maintain popular items. Thus, replica-
tion techniques are central in achieving both data
and workload balance in structured peer-to-peer
systems. Furthermore, as in unstructured p2p
systems, replication is used to handle peer failures
and departures and increase availability. Scal-
ability and performance are also central goals of
replication in this context as well.

Most structured p2p systems provide search time
logarithmic to the number of nodes in the overlay.
Enhancing the basic structured overlays with
replication can lead to achieving constant search
time in most cases. Since the search path followed
for locating an item is deterministic, this can be
achieved by proactively placing replicas of each
item on appropriate nodes on its search path.

Another common mechanism for implement-
ing replication in DHT-based p2p systems is based
on replicating each data item at the k neighbors of

the node holding it. Nodes close to each other on
the overlay are not likely to be physically close
to each other, since the id of a node is based on a
hash of its IP address. This provides the desired
independence of failures. Besides availability,
these replicas can be used to improve query la-
tency; they allow choosing among the k replica
holders the one that has the lowest reported latency.
Fetching from the lowest-latency replica has also
the desired side-effect of spreading the load of
serving a lookup over the replicas.

An alternative mechanism for realizing replica-
tion in DHTs is by using multiple hash functions.
By doing so, a data item is mapped and stored at
more than one node. This results in increasing
availability as well as in improving load balanc-
ing. Furthermore, latency may be improved by
selecting at each routing step the neighborhood
or route that is closest either to the query or to
the current node.

Finally, caching in DHTs is based on placing
copies on the lookup path, similar to path replica-
tion in unstructured p2p systems or to the requestor
of an item similar to owner replication.

Table 1. Summary of replication methods for unstructured p2p systems

How many Where/How What Goal

Sqaure-root Replication
(Cohen et al, 2002)

Proportional to the square root of
the query rate of each data item - Data items Minimum expected

search size

Owner Replication
(Lv et al, 2002)

Proportional to the query rate of
each data item Only to the requesting peer Data items Minimum expected

search size

Path Replication
(Lv et al, 2002)

Proportional to the number of
probes for locating the item

Along the path from the
requesting peer to the
provider peer

Data items Minimum expected
search size

Pull-then-Push Replication
(Leontiadis et al, 2006)

Proportional to the number of
probes for locating the item - Data items Minimum expected

search size

Proportional Replication
(Tewari et al, 2005)

Proportional to the query rate of
each data item - Data items Minimum expected

search time

Gia (Chawathe et al, 2003) Equal to the degree of each node 1-hop neighborhood Location informa-
tion

Maximum success
rate

HDRW (Jia et al, 2005) Proportional to the number of
probes for locating the item

Along a degree-biased
search path

Location informa-
tion

Good success rate
and search size

LMS (Morselli et al, 2005) - At peers considered as local
minima for a data item Data items Good success rate

and search size

P2R2 (Sozio et al, 2008) - At peers resulting in greatest
success rate for a data item Data items Maximum success

rate

597

Data Replication in P2P Systems

Replication in Representative
Structured p2p Systems

CHORD

Chord (Stoica, Morris, Karger, Kaashoek &
Balakrishnan, 2001) is a popular DHT-based
p2p system. The Chord protocol uses a variant
of consistent hashing to assign to each node and
data key an m-bit identifier. The identifier of a
node is chosen by hashing its IP address, while
the identifier of an item is produced by hashing its
key. Identifiers are ordered in an identifier circle
modulo 2m. A data item with key i is assigned to
the first node whose identifier is equal to or fol-
lows i in the circular space. This node is called
the successor of i.

Each Chord node maintains two sets of neigh-
bors, its successors and its fingers. The successor
nodes immediately follow the node in the iden-
tifier space, while the finger nodes are spaced
exponentially around the identifier space. Each
node has a constant number of successors and at
most m fingers. The i-th finger of the node with
identifier p is the first node that succeeds p by at
least 2i−1 on the identifier circle, where 1 ≤ i ≤ m.
The first finger node is the immediate successor
of p, where i = 1. For a Chord network with N
nodes, the number of routing hops for a lookup is
O(log N), while each node only needs to maintain
pointers to O(log N) neighbors.

The core Chord system does not provide for
replication or caching. Instead, the replication
mechanisms are left as a responsibility of the
higher layer applications that use Chord. A typical
method for an application to replicate data items
in Chord is by using multiple hash functions to
store each data item under distinct Chord keys.
Furthermore, an application can store replicas of a
data item with key i at the k nodes succeeding the
successor of i. This is facilitated by the successor-
list mechanism supported by Chord. In Chord, each
node maintains a successor-list with its r nearest
successors on the Chord ring. When a node notices

that its successor has failed, it replaces it with the
first live entry in its successor list. The fact that a
Chord node keeps track of its successors means
that it can notify the application when successor
nodes fail or recover and thus when the applica-
tion should propagate new replicas.

CAN

The Content Addressable Network (CAN) (Ratna-
samy, Francis, Handley, Karp & Shenker, 2001)
is another popular DHT-based structured p2p
network. It uses a virtual d-dimensional Carte-
sian coordinate space or d-torus to store (key,
value) pairs. Upon entering the system, each
node is assigned a zone of this space. The key
of each data item is mapped onto a point in the
coordinate space using a uniform hash function.
Then, the item is stored at the node that owns the
zone within which the point lies. Each CAN node
maintains a coordinate routing table that holds the
IP address and virtual coordinate zone of each of
its immediate neighbors in the coordinate space.
In a d-dimensional coordinate space, two nodes
are neighbors if their coordinates overlap along
d–1 dimensions. Each node routes a message for
an item with key i towards its neighbors whose
coordinates are closer to that of i. Intuitively,
routing works by following the straight line path
through the Cartesian space from source to des-
tination coordinates.

CAN supports a variety of replication mecha-
nisms. A node that is overloaded with requests for
a specific data item can replicate the data key at
each of its neighboring nodes. The key of a popular
data item is thus eventually replicated within a
region surrounding the original storage node. A
node holding a replica of a requested data key may,
with a certain probability, choose to either satisfy
the request or forward it. The second mechanism
is based on the observation that each node can
maintain multiple, independent coordinate spaces
and be responsible for a different zone in each
coordinate space. Each such coordinate space is a

598

Data Replication in P2P Systems

called a reality. For a CAN with r realities, a single
node is assigned r coordinate zones and holds r
independent neighbor sets. This form of replica-
tion improves data availability. Multiple realities
also improve routing fault tolerance, because if
routing fails in on one reality, messages can con-
tinue to be routed using the remaining realities. It
also provides for neighbor selection. To forward
a message, a node can check all its neighbors
on each reality and forwards the message to the
neighbor whose coordinates are the closest to the
destination. Thus, using multiple realities reduces
the path length and hence the overall CAN path
latency. Yet another replication mechanism for
improved data availability is to use k different hash
functions to map a single key onto k points in the
coordinate space. In this case, a (key, value) pair
becomes unavailable only if all k distinct nodes
become simultaneously unavailable. In addition,
queries for a particular hash table entry could be
sent to all k nodes in parallel thereby reducing
the average query latency. Instead of querying
all k nodes, a node may choose to retrieve an
entry from that node which is closest to it in the
coordinate space. Finally, with zone overloading,
a zone may be assigned to more than one node.
Each node maintains a copy of all items mapped
to the zone to increase availability.

In addition to replication, CAN also supports
caching. A CAN peer maintains a cache of the
data keys it has recently accessed. Thus, before
forwarding a request for a data key towards its
destination, a peer first checks whether the re-
quested data key is in its own cache and if so, it
can itself satisfy the request without forwarding
it any further.

PAST

Pastry (Rowstron & Druschel, 2001a) is a peer-
to-peer routing substrate for supporting a variety
of applications. In Pastry, each node is assigned
a quasi-random 128-bit node identifier (nodeId).
The nodeId is used to indicate the position of the

node in a circular identifier space, which ranges
from 0 to 2128 - 1. Both nodeIds and data keys
are treated as a sequence of digits with base 2b.
Pastry routes messages to the node whose nodeId
is numerically closest to the given key.

To support routing, each node maintains a
routing table, a neighborhood set and a leaf set.
The routing table of each node p is organized
into log

2bN rows with 2b-1 entries each. The 2b-1
entries at row i of the routing table refer to those
nodes whose nodeId has the same first i digits
with the nodeID of p, but a different i + 1 th digit.
Each such entry contains the IP address of one
of the potentially many such nodes, usually the
one physically closest to p. If no such node is
known, the routing table entry is left empty. The
leaf set includes the set of nodes with the L/2 nu-
merically closest larger nodeIds to p, and the L/2
nodes with numerically closest smaller nodeIds
to p. Lastly, the neighborhood set contains the
nodeIds and IP addresses of the M nodes that are
physically closest to p. This set is not normally
used for routing, but it is used for maintaining
physical locality properties. Typical values of L
and M are 2b or 2b+1.

Given a message, each node p first checks
whether the key falls within the range of node-
Ids covered by its leaf set. If so, the message is
forwarded directly to this node. Otherwise, the
routing table is used to forward the message to a
node that shares a common prefix with the key by
at least one more digit (or b bits) than the current
node p. If no such node is known, the message
is forwarded to a node whose nodeId shares a
prefix that is as long as the one shared with p, but
is numerically closer to the key than the nodeId
of p, by using the leaf set.

In Pastry, replication is not implemented di-
rectly. Instead, Pastry provides to the applications
built on top of it the functionalities necessary for
implementing replication. In particular, applica-
tions can use the information maintained in the
routing table and the leaf and neighborhood sets
to decide where to place replicas. Further, Pastry

599

Data Replication in P2P Systems

provides mechanisms for handling peer failures,
such as periodically exchanged keep-alive mes-
sages.

In particular, PAST (Rowstron & Druschel,
2001b) is a p2p file storage system that relies on
Pastry to provide routing file queries, multiple
replicas of files, and caching for additional copies
of popular files. For improved availability, PAST
creates k replicas of each file and places them to k
different peers whose nodeId is numerically closest
to the 128 most-significant-bits of the identifier of
the file (fileId) among all live nodes, where k is the
replication factor. Since by the way identifiers are
assigned to nodes, there is no correlation between
these identifiers and the geographic location,
network connectivity, ownership or jurisdiction
of the nodes, the k nodes selected for storing the
replicas are highly likely to be diverse in all these
aspects and thus unlikely to conspire or be subject
to correlated failures or threats.

For maintaining good system-wide storage
utilization, PAST uses replica and file diversion.
Replica diversion is achieved by allowing a peer
that is not one of the k numerically closest peers
to the fileId of a file to maintain a replica of it,
if it is in the leafset of one of those k peers. This
improves utilization within the nodes in the leaf
set. File diversion is performed when the entire
leaf set of a node is reaching capacity. A file is
diverted to a different part of the identifier space
by choosing a different salt in the generation of
its fileId.

Replication in PAST aims mainly at improving
fault-tolerance and partly at balancing the query
load or reducing latency. Creating additional cop-
ies for popular files is achieved through caching.
PAST uses a form of path replication: copies of
files are cached along the search path for the file.
In caching a file, however, PAST also considers
the storage available at a node. A file is cached at
a node only if its size is less than some fraction c
of the current cache size of the node.

Kademlia

Kademlia (Maymounkov & Mazieres, 2002) is a
distributed DHT-based p2p system that employs
160-bit identifiers for both participating nodes and
file keys. Every node maintains information about
(key, value) pairs “close” to itself. The distance
between two objects (keys or nodes) in the 160-
bit key space is measured as the bitwise XOR of
their ids interpreted as an integer.

Each Kademlia node maintains a routing table
that consists of 160 buckets. The ith bucket of a
node contains up to k entries pointing to nodes
in distance between 2i and 2i+1. The buckets are
kept constantly updated, as for every received
message the node either enters the sender’s id in
the tail of the appropriate bucket (possibly dis-
carding another entry) or rearranges the entries
in the bucket (by refreshing its contact with the
least recently seen node).

Lookup is implemented by contacting nodes
that have ids close to the id of the requested item.
In particular, the inquiring node selects some of the
closest nodes from its routing table and queries them,
learning about other nodes even closer to the id in
question, and so on. The end result is that within O(log
N) steps (with high probability) the node forms a list
of the k closest nodes to the requested id.

Replication in Kademlia exploits the lookup
procedure. To store a (key, value) pair, a Kademlia
node first locates the k closet nodes to the key, as
described above. Then, it sends them a STORE
message, creating k replicas of the item. Replicas
are additionally created dynamically: after each
successful search, a replica is placed in the closest
node to the key that did not contain the item. The
reason behind this is the unidirectionality property
of the XOR distance metric which ensures that
all searches for an item converge along the same
path, no matter where they originate from; placing
replicas on the lookup path leads to faster searches,
avoiding at the same time hot spots. To ensure the
freshness of replicas, Kademlia requires periodic
re-publishing of the (key, value) pairs.

600

Data Replication in P2P Systems

P-Grid

P-Grid (Aberer, Cudré-Mauroux, Datta, Des-
potovic, Hauswirth, Punceva & Schmidt, 2003;
Aberer, Datta, Hauswirth & Schmidt, 2005) is a
p2p data management system based on building
a virtual distributed trie. Data keys are composed
by a number of bits. The data key space is recur-
sively bisected so that the resulting partitions
carry approximately the same load. One or more
peers are associated with each partition. Each
partition is uniquely identified by a bit sequence.
The bit sequence of a partition is called the path
of the peer associated with the partitions. These
bit sequences induce a trie structure which is used
to implement prefix routing by resolving a key
lookup a bit at a time. Each peer maintains for
each bit position of its path one or more randomly
selected references to a peer that has a path with
the opposite bit at this position.

P-Grid implements two forms of replication for
fault-tolerance. First, multiple peers are associated
with the same key space. This is called structural
replication. Then, multiple references are kept
in the routing tables, thus providing alternative
access paths.

General Replication Strategies

Selective Placement to Reduce Latency

Beehive (Ramasubramanian & Sirer, 2004) is a
general replication framework that operates on
top of any DHT that uses prefix-routing, such as
Chord. In such systems, routing is performed by
successively matching a prefix of the data identifier
against node identifiers. In general, at each routing
step, the query reaches a node that has one more
matching prefix with the query than the previous
node on the path. A query traveling k hops reaches
a node that has k matching prefixes. The central
observation behind Beehive is that the length of
the average query path will be reduced by one
hop when a data item is proactively replicated

at all nodes logically preceding that node on all
query paths. For example, replicating the object
at all nodes one hop prior to their successor node
decreases the lookup latency by one hop. This can
be applied iteratively to disseminate items widely
throughout the system. Replicating an item at all
nodes k hops or lesser from the successor node
will reduce the lookup latency by k hops.

Beehive controls the extent of replication in
the system by assigning a replication level to
each item. An item at level i is replicated on all
peers that have at least i matching prefixes with
the item. Queries to data items replicated at level
i incur a lookup latency of at most i hops. Data
items stored only at their successor peers are at
level log(N), while items replicated at level 0 are
cached at all the peers in the system. The goal is
to find the minimal replication level for each item
such that the average lookup performance for the
system is a constant C number of hops. Naturally,
the optimal strategy involves replicating more
popular items at lower levels (on more peers) and
less popular items at higher levels. An analytical
model provides Beehive with closed-form optimal
solutions indicating the appropriate levels of rep-
lication for each item. In addition, a monitoring
protocol based on local measurements and limited
aggregation estimates the relative item popularity
and the global properties of the query distribution.
These estimates are used, independently and in
a distributed fashion, as inputs to the analytical
model which yields the locally desired level of
replication for each item. Finally, a replication
protocol proactively makes copies of the items
around the network.

PopCache (Rao, Chen, Fu & Bu, 2007) is
based on the observation that in structured p2p
system, each node can be seen as the root of a tree.
In particular, each node p can be treated as the
root of a k-ary tree with its k direct neighbors of
p connected by k links as the first level children,
the neighbors of neighbors of p added with k2
links as the second-level children and so on until
level logk(N), where N is the number of nodes.

601

Data Replication in P2P Systems

Let us denote with Tp the tree having node p as
its root. The search from some node to p is the
process of greedily approaching the root p along
the bottom-up path of Tp. For each data item i,
PopCache utilizes the tree Tp that is rooted at
the node p responsible for item i. Assume that
we want to create a total of m copies for i. First,
k replicas of i are placed on the first level of Tp,
then k2 copies of i are placed on the second level
and so on, until all m replicas are created. For
deriving the optimal number of copies per item,
two optimization criteria are considered (a) given
a maximum number of copies, how to minimize
the average latency per query (MAX PREF), and
(b) given a targeted threshold how to minimize
the number of replicas (MIN COST). The first
criterion is similar to that use in unstructured
p2p systems, however, in this case, the optimal
number of copies per item follows a different
proportional principle.

Range Queries

HotRoD (Pitoura, Ntarmos & Triantafillou, 2006)
uses replication over Chord to provide fair load
distribution in the case of range queries. The key of
this implementation is the use a locality-preserving
hash function that preserves the ordering of data by
mapping consecutive data values to neighboring
peers. A range query is pipelined through those
peers that store ranges of entries that overlap
with the query range. HotRoD detects overloaded
peers and distributes their access load among
other, under-loaded ones, through replication. In
particular, each peer keeps track of the number
of times, it was accessed during a time interval
T, and the average low and high bounds of the
ranges of the queries it has processed during this
interval. A peer is characterized as overloaded
or hot, if this number exceeds a system-defined
threshold. When a hot peer is detected, replication
is initiated. Instead of replicating the content of
a single peer, HotRoD replicates arcs of peers,
where an arc consists of successive neighbors that

correspond to a certain range. This range is defined
by the average low and high bounds of the range
of the queries processed by the hot peer during the
time interval T. Replication is achieved by using a
multi-rotational hash function to randomly place
the replicated arcs on the ring.

Sahin, Gupta, Agrawal & El Abbadi (2004)
propose an extension of CAN for caching the
results of range queries. In particular, the authors
consider a 2-dimensionsal CAN. Each range query
[low, high] is hashed at the point (low, high) in
the virtual hash space.

Load Balancing

The LAR protocol (Gopalakrishnan, Silaghi, Bhat-
tacharjee & Keleher, 2004) primarily addresses
replication for load balancing of both the routing
load as well as the load of the server holding the
item and serving the request. Instead of creat-
ing replicas on all peers on a source-destination
path as in path replication, the protocol relies on
individual server load measurements to precisely
choose replication points. The routing process is
augmented with lightweight hints that shortcut the
original routing and direct queries towards new
replicas. Zhu, Zhang, Li & Huang (2007) propose
a load prediction algorithm for estimating the load
at each peer as well as multiple load thresholds
for appropriately adjusting the number of replicas
according to the load status of each node.

Alqaralleh, Wag, Zhou & Zomaya (2007) study
three replica placements algorithms that can be
implemented on top of any prefix-based DHT
overlay. They were tested on top of FreePastry.
The first algorithm, called CDN-QueryStat, places
replicas on peers where queries frequently come
from. In the second proposed algorithm, termed
CDN-Rand, a peer randomly selects another peer
from the id space. Thus, this algorithm tends to
distribute replicas uniformly across the network.
The third algorithm, CDN-PR, is a priority based
approach that tries to minimize the number of
peers that store replicas. The motivation is to re-

602

Data Replication in P2P Systems

duce the overhead of maintaining load statistics.
Peers are initially selected to hold replicas as in
CDN-QueryStat. A new peer is chosen to hold
replicas only if the previously selected peers get
saturated with copies. Load balancing is applied,
when the access frequency exceed a threshold.
Then, a procedure is activated for replica creation
and query forwarding.

Datta. Schmidt & Aberer (2007) propose using
the query redundancy, that is, the existence of mul-
tiple search paths, to achieve better load balancing
of both the routing load and the answering load of
the server holding the item. They show through
simulation, using the P-Grid topology, that, just
replicating items and then routing to any of the
replicas results in high statistical variation of the
query and answering load. Proportional replication
was used. To address this imbalance, they propose
exploiting the redundant routing table entries
used for fault tolerance. To choose among the
available peers at each routing step, a cumulative
load measure was used where answering queries
weighted more than forwarding ones.

P2P-Based Storage and Caching

Dabek, Kaashoek, Karger, Moris & Stoica (2001)
have proposed CFS, a storage layer based on a
DHT that consists of two layers, namely the DHash
(a distributed hash table) and Chord layers. The
DHash layer performs block fetches for the client
and distributes the blocks of each file among the
servers. It uses the Chord distributed lookup sys-
tem to locate the servers responsible for a block.
CFS provides distinct mechanisms for replication
and caching. Both caching and replication are
performed at the level of a file block. CFS places
the replica of a block at the r servers immediately
after the successor of the block on the Chord ring.
The placement of block replicas makes it easy for
a client to select the replica likely to be the fastest
to download. CFS also caches blocks to avoid
overloading servers that hold popular data items.
A block is cached at all peers on the search path

after each successful look-up. Cached blocks are
replaced in a least-recently-used order. This has
the effect of preserving the cached copies close to
the successor. In addition, it expands and contracts
the degree of caching for each block according
to its popularity.

Squirrel (Iyer, Rowstron & Druschel, 2002)
is a decentralized p2p system that exploits re-
sources from many desktop machines to achieve
the functionality and performance of a dedicated
web cache without requiring any additional hard-
ware. Squirrel is built over the routing substrate
of Pastry and uses its functionality for locating
an object stored at the distributed client caches. It
adopts two approaches to create copies: a home-
store and a directory approach. In the home-store
approach, Squirrel stores objects both at client
caches and at their home peer. In the directory ap-
proach, the home peer remembers a small number
of peers (up to k) that have recently accessed a
certain object and keeps pointers to these peers.
Then, each request is redirected to a randomly
chosen peer among these (called the delegate),
which is expected to have a copy of the object
locally cached. Comparing these approaches in
practice, the home-store method achieves better
load balancing than the directory one, since popu-
lar objects are associated with rapidly changing
directories.

Multiple Mappings

The “power of two choices” (Byers, Considine
& Mitzenmacher, 2003) proposes a strategy for
replica placement for Chord based on multiple
hash functions. Each object is hashed using d (d
≥ 2) hash functions to multiple ids and placed on
the least loaded peer among candidates. To locate
an item, instead of applying all d hash functions,
the peers responsible for the item are connected
with each other through redirection pointers. Using
the redirection pointers, each request received by
other peers (candidates) is redirected to the host-
ing peer. Although, using two or more choices for

603

Data Replication in P2P Systems

placement improves load balancing, it still forces
a static placement of the data items, which may
lead to poor performance when the popularity of
items changes over time. One way of addressing
this issue is to use the re-direction pointers among
the peers and allow items to choose a different peer
for placing its replica by periodically re-inserting
the items, if their previous choice has become more
heavily loaded. The redirection pointers can also
be used to facilitate a wide range of load balanc-
ing methods that react more quickly than periodic
re-insertion, such as allowing an under-utilized
peer to perform load-stealing or an overloaded
one to attempt load shedding.

Symmetric Replication (Ghodsi, Alima &
Haridi, 2005) can be applied to any structured
peer-to-peer system. The basic idea is to associate
each identifier in the system with f other identi-
fiers. If identifier i is associated with identifier r,
any item with identifier i should be stored at the
peers responsible for identifiers i and r. Similarly,
any item with identifier r should also be stored
at the peers responsible for the identifiers i and
r. Thus, effectively an identifier space of size N
is partitioned into N/f equivalence classes such
that identifiers in an equivalence class are all
associated with each other. To replicate items
with symmetric replication, the peer responsible
for identifier i stores all f items with an identifier
associated with i. For example, if the identifier 0
is associated with the identifiers 0, 5, 10, 15, any
peer responsible for any of the items 0, 5, 10, or
15 has to store all of the items 0, 5, 10, and 15.
Hence, if we are interested in retrieving item 0, we
can ask the peer responsible for any of the items
0, 5, 10, 15. To implement symmetric replication,
each peer in the system augments its routing table
to contain for each routing entry f entries, one for
each of the replicas of the routing entry. Symmet-
ric replication can be used to send out multiple
concurrent requests for an item and then picking
the first response that arrives. The advantage of
this is twofold. First, it enhances performance.
Second, it provides fault tolerance in an end-to-

end fashion, since the failure of a peer along the
search path does not require repeating the request
as it is likely that another one of the concurrent
requests succeeds. It can also be used to achieve
proximity neighbor selection in the following way.
To route a message to the peer responsible for
identifier i, each message in the routing process
is augmented with a parameter r that specifies
which of the f replicas of i is currently searched
for. A peer that receives the request for a replica
of i can calculate its distance to all of the f replicas
and choose among the f peers the one that has a
shorter distance to each respective replica of i.
Then, it updates the parameter r in the outgoing
message to reflect the new selection.

Locating Replicas

The Replica Location Service (P-RLS) (Cai, Cher-
venak & Frank, 2004) relies on Chord to build a
mechanism for locating replicas. Each mapping
from logical names (i.e., keys) to physical loca-
tions (i.e., replicas) is stored at the root peer of the
mapping. P-RLS uses successor replication: the
root peer replicates the mappings to its k succes-
sor peers in the Chord ring for successor routing
reliability, where k is the replication factor. As a
peer joins to network, it will take over some of
the mappings and replicas from its successor peer.
When a peer leaves the system, its predecessor
will detect its departure, make another peer the
new successor, and replicate mappings on the
new successor peer adaptively. To avoid unnec-
essary replication of mappings, each mapping is
associated with an expiration time. Besides fault
tolerance, successor replication improves data
load balance. In Chord, the number of mappings
stored at each node is determined by the distance
of the node to its immediate predecessor in the
circular space, i.e. the “owned region” of the
node. With adaptive replication with replication
factor k, besides storing the nodes belonging to
its own region, each node also replicates the map-
pings belonging to its k predecessors. Therefore,

604

Data Replication in P2P Systems

the number of mappings stored on each node is
determined by the sum of k+1 continuous owned
regions before the node. If the node identifiers
are generated randomly, there is no dependency
among these continuous owned regions. Thus,
intuitively, when the replication factor k increases,
the sum of k+1 owned region is distributed more
normally. To improve query load balance, P-RLS
also proposes predecessor replication: replicating
mappings at the predecessors of the root node.
When a predecessor receives a query to the root
node, it resolves it locally using its own replica
of the mapping without forwarding the request to
the root node, thus alleviating hotspots.

To reduce the number of replicas as well as
the delay and bandwidth consumption for update
propagation, Chen, Katz & Kubiatowicz, (2002)
propose organizing the replicas on an application-
level multicast tree, called replica dissemination
tree (or d-tree) build on top of the overlay network,
in their case, Tapestry. Each peer in the d-tree
maintains state information only for its parent and
its direct children. Two algorithms are proposed for
dynamic replica placement. In the first algorithm,
called naive placement, a peer stores a replica on
the parent server of the requestor peer or on the
overlay path server that is as close to the asked
peer as possible. The second scheme, called smart
placement, chooses as parent the peer with the
lowest load among candidates. If more than one
of them meets the requirements, then the replica
is placed on the overlay path server that is as far
from the requestor as possible.

Caching State

EpiChord (Leong, Liskov & Demaine, 2006) is a
DHT similar to Chord. Instead of maintaining a
finger table per node, EpiChord keeps a cache per
node with a list of k successor and k predecessor
node. Nodes populate their caches mainly from
observing network look-up traffic, and cache
entries are flushed from the cache after a fixed
lifetime. In particular, each node updates its cache

based on information returned by queries and adds
an entry to the cache each time it is queried by a
node not already in the cache. To lookup an entry,
an EpiChord node initiates a number of parallel
lookups to the successors and predecessors nodes
in its cache. In addition, nodes communicate
with their immediate successor and predecessor
periodically, exchanging their entire successor
and predecessor lists.

Summary of Replication in
Structured p2p Systems

Approaches to replication differ on what is repli-
cated. Replication may involve either replicating
the item itself or its index (i.e. its location). In
few cases, the routing table or information about
neighbors is also replicated.

There are various methods for achieving repli-
cation in structured p2p systems. A very common
approach is to place a number of replicas at the
immediate neighbors of a node such as the suc-
cessor nodes in CHORD, the nodes in the leafset
in PAST or the peers at the neighboring zones
in CAN. Such replicas are easily locatable. The
primary reason for this form of replication is fault
tolerance. Another approach is to use multiple hash
functions to map an item to more than one node.
Besides availability, applying multiple hash func-
tions allows the employment of multiple search
paths for an item and thus improves query latency
and path fault tolerance. Path or owner replication
can also be used to improve search for popular
items. Finally, to achieve load balancing various
approaches base their decision to create replicas
purely on the load of each peer. Other approaches
include: making more than one node responsible
for the same identifier space (such as with zone
overloading in CAN or structural relaxation in
P-Grid), building multiple overlays (such as with
multiple realities in CAN) or building a replica
tree on top of the overlay (such as in d-tree).

The number of replicas created is either fixed
for all items as a general replication factor of the

605

Data Replication in P2P Systems

system (for instance k successors or nearest peers in
the identifier space) or varies for each item or node
depending on the current system parameters such

as the item popularity or the load at the servers.
Table 2 summarizes the various replication

approaches in structured p2p networks.

Table 2. Summary of replication strategies in structured p2p systems

How many Where/How What Goal

Applications built on top of
Chord (Stoica et al, 2001) k successors Multiple hash functions, or

At the successors of an item Data items or keys Failure recovery
Load balance

CAN (Ratnasamy et al, 2001) varies

Neighbor replication
Multiple realities
Multiple hash functions
Zone overloading
Caching (i.e. owner replication)

Data items/index
entries

Response time
Availability
Neighbor selection
Load balancing

PAST (Rowstron et al, 2001b)
k nearest identifiers

At the k peers whose identifier is
numerically closest to the identifier
of the file

Files Fault tolerance

Caching (path replication) Files Query load balance

Kademlia (Maymounkov &
Mazieres, 2002)

k replicas plus 1 new
per successful lookup

k closest nodes to the key and 1 to
next-to--last node on the lookup path <key, value> pairs Handle failures and improve

latency

P-Grid (Aberer et al, 2005) - Multiple peers per key space
Multiple route paths

Data keys
Routing

Load balancing
Fault tolerance

Beehive (Ramasubramanian et
al, 2004)

k per item where
k depends on item
popularity

At all peers k hops before the suc-
cessor of the item Data items Achieves lookup of a con-

stant number of C hops

PopCache (Rao et al, 2007)

Such that to achieve
optimal average search
(MAX PERF) or a tar-
geted lookup threshold
(MIN COST)

On the k-tree induced by the k neigh-
bors of each node Data items Query latency

HotRoD (Pitoura et al, 2006) Arcs of peers Multi-rotational locality-preserving
hash function

Popular data items on
arcs of peers

Load balance for range
queries

LAR {Gopalakrishnan et al,
2004) adaptive Load measurements by individual

peers
Data items/index
entries Data and query balance

CDN (Alqaralleh et al, 2007) adaptive
Frequently query peers, or at random
peers or such that to minimize the
number of peers holding replicas

Data items
Performance
Load balancing
Replica maintenance cost

CFS (Dabek et al, 2001) varies Caching
Replication at the successor File Blocks Load balancing

Performance

Squirrel (Iyer et al, 2002) up to k pointers Caching

Data items (home-
store) or Pointers to
their location (direc-
tory)

Query latency
Fault tolerance

Power of two choices (Byers et
al, 2002) d hash functions Multiple hash functions Data items Load balance

Symmetric Replication (Ghodsi
et al, 2005) f nodes Equivalence classes of related

identifiers Data items
Response time
Neighbor selection
Fault tolerance

P-RLS (Cai et al, 2004) k successors and /or
predecessors

At the successors
Mappings

Failure recovery,
Data balance

At the predecessors Query balance

d_tree (Chen et al, 2002) varies On a multicast tree built on top of
the p2p overlay Data items

Reduce storage
Query latency
Improve update efficiency

EpiChord
(Leong et al, 2006) varies Caching during lookup Routing state (prede-

cessor and successors)
Query latency
Reduce state per node

606

Data Replication in P2P Systems

UpDATeS

Replication introduces the overhead of maintain-
ing the replicas of each data item up-to-date. A
replica management protocol decides where (i.e.
at which copies) updates take place, when updates
propagate to other replicas and how the propaga-
tion of updates is achieved.

According to the where aspect, replication
strategies can be classified broadly as single master
or primary copy and multi-master or group. Single
master or primary copy replication is the simplest
approach in which each replicated item is owned
by a single peer (or owner). The copy held by the
owner is called the primary copy. All copies can
be read but any update to an item must be first
applied to its primary copy and then propagated
to the other copies. The advantage of primary
copy replication is its simplicity. However, the
owner of an item may be a potential bottleneck
as well as a single point of failure. The multi-
master or group approach allows multiple peers
to hold primary copies of the same data item. All
replicas are regarded as equally authoritative. The
multi-master approach avoids bottlenecks and
single points of failures, however, it increases
communication costs and system complexity,
since it requires concurrent updates at different
replicas to be coordinated and reconciled to solve
any potential replica divergences.

In terms of the when aspect, update propagation
strategies can be implemented either synchronous-
ly or asynchronously. A synchronous propagation
mechanism updates all replicas before a transac-
tion commits. With the asynchronous strategy,
only a subset of the replicas is updated.

Regarding the how aspect, most replication
management techniques in p2p networks use a
combination of push and pull methods to propa-
gate updates as follows. The initiator of an update
pushes the new value of its copy to a number of
other peers in the system. A peer that holds a copy
pulls other peers to be informed of any potential
updates. Most update propagation mechanisms

in p2p systems are probabilistic in the sense that
they ensure that an update will eventually reach
all copies of an item with a certain probability.
The propagation of an update may involve a no-
tification that the item has been updated, a state
transfer where the actual new value of the modified
data is transferred or an operation transfer where
the update operation is propagated. Choosing a
propagation method depends on the amount of
data, bandwidth availability and various system-
and application- related characteristics.

Finally, the consistency of replicas refers to the
allowable divergence among the various copies
of an item. Strong consistency does not allow any
such divergence and guarantees that each read
returns the most current value of an item. Weak
consistency allows various levels of divergence
among copies as well as reads that may return
stale values of an item.

To address scalability and dynamicity, most
update replication mechanisms in p2p systems
support multi-master schemes, probabilistic up-
date propagation and weak consistency.

Individual peer Techniques

Before proceeding to describe update mechanisms
for unstructured and structured p2p systems, we
review some techniques that can be followed by
individual peers in order to achieve a desired level
of confidence or consistency for the items they
are interested in.

Vecchio & Son (2005) adapt the traditional
quorum consensus schemes to a dynamic p2p
environment by letting each peer choose its own
quorum level. In effect, each peer decides on the
level of confidence of the item it accesses. This
way, there is a tradeoff between the incurred
message overhead and the achieved consistency
levels; the higher the quorum values the higher the
message overhead and the lower the possibility
of accessing stale data.

The Controlled Update Propagation (CUP)
protocol (Roussopoulos & Baker, 2003) allows

607

Data Replication in P2P Systems

individual peers to receive and propagate updates
only when they have a payoff to do so. Each peer
registers with its neighbors for receiving updates
only for the items it is interested in. Correspond-
ingly, it propagates any received updates of an
item i only to the neighbors that have registered
their interest for i. A node decides whether it is
interested in receiving updates for item i based
on the “profit” it will have; receiving an update is
justified if it will save the node the cost of handling
queries, i.e. if the node receives frequently queries
for item i then keeping an up-to-date replica of
i will allow it to answer these queries immedi-
ately, avoiding the overhead of propagating the
queries further. Clearly, these policies favor the
popular items since these items generate queries
most often.

Susarla & Carter (2005) let each peer express
their consistency requirements as a vector of
options along five different dimensions, on a
per-access basis. They argue that different classes
of distributed applications, such as file access,
database and directory services, and real-time
collaborative groupware, have a broad and di-
verse set of requirements with regards to replica
handling. These requirements are classified along
the following five, mostly orthogonal, dimensions:
(1) concurrency - the degree to which conflicting
accesses can be allowed, (2) replica synchroniza-
tion - the degree to which replica divergence can
be tolerated (termed coherence or timeliness) and
the types of inter-dependencies among updates that
must be preserved upon replica synchronization
(termed consistency), (3) failure handling - how
data access is handled when some replicas become
unreachable or have poor connectivity (4) update
visibility - the time at which modifications to lo-
cal data are made visible globally, and (5) view
isolation - the time at which remote updates are
made visible locally. To cater for such diverse
requirements with regards to replica updates, the
composable consistency model is proposed along
with an outline of its implementation in Swarm,
a wide area p2p middleware file service. Swarm

allows applications to specify the level for each
of the five requirements at every search. Swarm
assumes that there is a master server, termed cus-
todian, per file that coordinates the consistency
management protocols for the file. There can be
more than one custodian per file for fault tolerance.
Consistency is achieved through a combination
of push and pull operations.

Updates in Unstructured
p2p Networks

As mentioned above, the consistency mechanisms
that have been proposed use a push-based and/or a
pull-based propagation algorithm. One more pos-
sibility can be found in the work of Demers et al
(1987), who have applied the theory of epidemics
to the problem of update propagation in a distrib-
uted environment, proposing a number of generic
methods. The first method the authors examine is
direct mail, where the owner of a data item contacts
(`mails’) all the other peers at every update. This
approach, although simple, can be overwhelming
in a p2p network with a large number of nodes.
In the anti-entropy method each peer regularly
chooses a neighbor and by exchanging their con-
tent resolves any differences between them (if a
newer version of an item is found, it updates its
own replica). A peer can either push its content to
the other peer letting it check for inconsistencies,
or pull content, or even push and pull content at
the same time. Another update spreading algorithm
considered is rumor mongering: at first all peers
are considered ‘ignorant’ when an update is out
and the update becomes a ‘hot rumor’. If a peer
knows of such a rumor, it periodically chooses
another peer and tries to communicate the rumor.
If the peer sees that the rumor is no longer hot
(i.e. most of the peers it contacts already know
it), it stops propagating it any further.

If the direct mail method is to be used, a natural
plan would be to know (most of) the peers that
hold a replica of the particular data item (statefull
replication) so as to only contact those upon an

608

Data Replication in P2P Systems

update. A mechanism like this is assumed by Datta,
Hauswirth & Aberer (2003). The authors study the
performance of a generic hybrid push-pull consis-
tency maintenance protocol for p2p environments
where peers join and leave the network at a very
high rate. At the push phase, the owner sends the
updated item, along with its version number, to the
peers that hold replicas. This requires knowledge
of who holds replicas of what, but the update is
not communicated through direct mail; it is rather
propagated with a randomized flooding among the
affected peers. The owner performs a selective
push of its updates to a subset of the peers that
will be affected by it (because they have a replica
of the updated data item); each peer that receives
the update also propagates it to a subset of affected
peers it knows, and so on. To reduce the overhead,
each message contains a partial list of the peers
that have already been contacted. The method
is accompanied by a pull phase that takes place
whenever a peer is reconnected to the network
after a disconnection or has not received updates
for a long time (in the spirit of the anti-entropy
method); during this pull phase, it contacts online
peers with replicas of the items it stores, for their
latest versions.

UPTReC – update propagation thought rep-
lica chain (Wang, Das, Kumar & Shen, 2007)
– exploits similar pull and push mechanisms to
scatter updates in decentralized and unstructured
p2p systems. The peers that hold the replicas
of an item i form a logical bi-directional chain,
where each peer maintains information about
the k closest peers in the chain in each direction.
Peers may join (when a new replica is created)
or leave (when removing a replica) by pushing
messages at appropriate directions in the chain.
Updates are similarly propagated by pushing
messages at both directions, informing up to 2k
nodes; at each direction the furthest known peer
undertakes the responsibility of reaching the next
bunch of k nodes in the chain and so on. Nodes
that reconnect after a disconnection pull in order
to synchronize. Maintaining such a chain for every

item reduces the message overhead on updates
while also providing better consistency levels
than Datta, Hauswirth & Aberer (2003), as shown
experimentally.

Wang, Kumar, Das & Shen (2006) consider
multi-master replication where all replica holders
(termed “replica peers” – RPs) are allowed to up-
date the item. In particular, a subset of RPs become
“virtual servers” (VRPs) for the data item. The set
of VRPs changes dynamically over time, based
on node availability. Any replica peer updating
the item contacts a VRP to undertake the update
coordination. This “master” VRP first enters an
agreement phase with the other VRPs in order to
commit the update. When agreement is achieved,
the master VRP obtains the updated item from the
replica peer and pushes it to the remaining VRPs
and to a partial list of the other RPs. Among the
other RPs, the update propagation is implemented
using a combination of push and pull, where some
RPs are only pushing while the others are only
pulling. The protocol achieves one-copy serializ-
ability, i.e. the concurrent execution of updates on
a replicated item has the same effect as a serial
execution on a non-replicated item.

Update propagation in the last three methods
occurs strictly among the interested peers; al-
though this seems efficient in terms of overheads
and consistency levels, it nevertheless incurs the
extra state overhead of keeping track of all peers
holding a replica of the data item, which could be
prohibitive in an unstructured and dynamic p2p
network. Three update propagation policies (two
based on push and pull techniques and a hybrid
one that combines the push and pull policies) are
proposed by Lan, Liu, Shenoy & Ramamritham
(2003) for practical networks. The authors assume
a master-copy schema where the owner of the
data item always has the most up to date version
and all peers that hold a replica need to be kept
consistent; the overlay network is unstructured
and the owners do not know who/where replica
holders are. To achieve consistency, each data
item is associated with a version number which

609

Data Replication in P2P Systems

is incremented by the owner every time an update
occurs. In the push-based policy, the owner of a
data item broadcasts an invalidation message when
a data item is modified. The invalidation message
is propagated through the network using a flood-
ing algorithm, limited to a predefined number of
hops (TTL). When a peer receives an invalidation
message, it checks its cache. If it holds a replica
of the data item and the stored version is smaller
than the received version number, it invalidates
the replica in its cache. In the proposed pull-based
policy, a peer polls the owner of an item it holds in
its cache to determine if the replica is stale or not.
An adaptive polling policy is used to determine
how frequently the peer should poll. It is based
on a time-to-refresh (TTR) value associated with
each item in the cache, which indicates when the
next pull for the item should occur. The TTR is
increased by an additive amount C (TTR = TTR+C)
if the peer finds out that a data item has not been
modified between two successive polls, otherwise
TTR is reduced by a multiplicative factor D (TTR
= TTR/D). A hybrid push and pull approach can
also be used to combine both techniques. In this
hybrid scheme, the owner propagates invalida-
tion messages using a limited push. In addition,
a peer that holds a replica may pull adaptively
to make sure that the replica is valid. TTR can
be further tuned by a factor that depends on the
degree of a peer; the intuition behind this is that
highly connected nodes should poll less frequently
since they are potentially easier to reach by the
owner push.

An alternative hybrid push/pull update propa-
gation policy, PtPU, is proposed by Leontiadis,
Dimakopoulos & Pitoura (2006). It is assumed that
for the creation of replicas in the p2p network the
Pull-then-Push algorithm was used where a peer
that requests an item, after a successful search
(pull phase) enters a push phase where it transmits
replicas of the item using the same algorithm as
in the pull phase. Given this replica creation ap-
proach, each peer that holds a data item is charac-
terized as owner if it is allowed to apply updates,

responsible if it has requested the data item and
has forced the creation of replicas or indifferent
if it has been forced to hold a replica without
requesting the data item. In the PtPU policy, the
owner performs a limited broadcast of the new
version of a data item when an update occurs. If
a peer that is characterized as responsible for an
item receives the broadcast message with a new
version of the data item, it undertakes the task of
informing the indifferent peers. This is done by
propagating the update message (U-push phase)
exactly as in the push phase when the replicas
were created. Apart from pushing the updates
they receive from the owner, responsible peers
also pull periodically in order to become aware of
more updates. To determine the frequency of the
pull, the adaptive polling policy is used, where a
TTR value is increased or decreased depending
on weather the data item has been changed or not
between two successive poll periods.

Updates in Structured p2p Networks

Many update propagation mechanisms in p2p
systems use a form of periodic pushing to inform
of any updates other holders of data copies. This
is particularly useful in terms of updates related
to state or routing information. This is often re-
ferred to as soft-state updates. In P-RLS (Cai, et
al, 2004) update propagation is implemented in
two phases. In the first phase, the Replica Loca-
tion Service (LRC) periodically sends soft state
updates summarizing its state into the peer-to-peer
network. Then, the root peer of each mapping
updates its successors immediately to maintain the
consistency of the replicated mappings. Soft-state
updates are also applied in LAR (Gopalakrishnan
et al, 2004) and CAN (Ratnasamy et al, 2001). In
CAN, each peer sends periodic update messages
to each of its neighbors giving information about
its zone coordinates and a list of its neighbors
with their zone coordinates. The same policy
of periodic update messages is applied to CDN
(Alqralleh et al, 2001).

610

Data Replication in P2P Systems

Beehive (Ramasubramanian et al, 2004)
exploits the structure of the underlying DHT to
provide strong consistency. It ensures that any
object modification is propagated to all replicas.
In CFS (Dabek et al, 2001) cryptographic veri-
fication of updates and server id authentication
are used and only owners of data can implement
updates. For update dissemination in symmetric
replication (Chen et al, 2002), replicas and caches
self-organize into a d-tree and use application-
level multicast to propagate updates. Replicas and
caches are always kept up-to-date. P-Grid (Aberer
et al, 2003) proposes an update mechanism based
on a generic push/pull gossiping scheme that pro-
vides probabilistic guarantees for consistency.

Akbarinia, Pacitti & Valduriez (2007) proposed
an interesting replica update mechanism for DHT-
based p2p networks. Their objective is to provide
a mechanism which returns efficiently a current
replica of a data item given its key. The proposed
update management mechanism relies on time-
stamps. Data items are replicated using multiple
hash functions as in many structured p2p systems.
The main difference is that, when a data item is
mapped to a peer, each item is associated with a logi-
cal timestamp which is stored along with the item.
Timestamps are generated through a distributed
service that guarantees the monotonicity property
for timestamps, i.e. two timestamps generated for
the same key are monotonically increasing. This
property allows ordering the timestamps generated
for the same key according to the time at which
they have been generated.

The distributed timestamp generation service
uses the underlying DHT. In particular, a hash
function is used to map each key with one peer that
is held responsible for returning a new timestamp
for that key. Each peer that needs a timestamp for
an item with a specific key i uses the hash func-
tion to locate the peer responsible for generating
timestamps for i and sends a timestamp request
to it. Upon receiving the request, the responsible
peer initializes some local counter to the value of
the last generated timestamp for i.

Upon storing an item with timestamp ts, in
case the peer already has a replica of the item with
timestamp tp, the two timestamps are compared so
that only the latest version (the one with the largest
timestamp) is finally kept. In order to retrieve a
data item, a peer first gets a timestamp from the
responsible peer and compares it with the results
it receives, so that it ensures its currency.

SUMMARY

In this chapter, we have presented replication
techniques and mechanisms that have been pro-
posed for p2p networks. Replication is a central
mechanism for improving performance and
availability in a distributed system. P2p systems
introduce new challenges mainly because of their
unprecedented scalability and dynamicity. In this
chapter, we have focused on replication mainly
for improving the response time of search and
achieving load balancing.

Note that replication is just one method for
achieving redundancy. Alternatively, erasure cod-
ing or a combination of replication and erasure
coding can be used towards this end. An erasure
code provides redundancy without the overhead
of strict replication. Erasure codes divide an
object into m fragments and recode them into n
fragments, where n > m. The ratio m/n is called
the rate of encoding. A rate r code increases the
storage cost by a factor of 1/r. The key property
of erasure codes is that the original object can
be reconstructed from any m fragments. Weath-
erspoon & Kubiatowicz (2002) have quantified
the availability gained using erasure codes. Then,
they show that erasure-resilient codes use an order
of magnitude less bandwidth and storage than
replication for systems with similar mean time to
failure (MTTF). They also show that employing
erasure-resilient codes increase the MTTF of the
system by many orders of magnitude over simple
replication with the same storage overhead and
repair times. Recent research takes other issues

611

Data Replication in P2P Systems

into consideration such as user download behavior
(Chen, Qiu & Wu, 2008) and the characteristics
of the overlay nodes (Rodrigues & Liskow, 2005)
under which replication may outperform erasure
codes. Erasure codes and related protocols are
beyond the scope of this chapter, since our main
focus is on search quality and load balance.

In unstructured p2p systems, most research has
focused on determining the appropriate number
of replicas as well as on developing practical
mechanisms for placing the replicas. Most of the
theoretical work on the subject is based on the
results of Cohen & Shenker (2002) and assumes a
network topology and a search strategy that allow
uniform node sampling. Similar results are lack-
ing for other search strategies and more realistic
network models (e.g. power-law random graphs).
A very limited number of practical algorithms have
been presented for the placement of replicas so as
to optimize some aspects of search performance.
Replication in unstructured p2p systems is cur-
rently an area where further theoretical as well as
experimental analysis is needed.

As with unstructured p2p, the main reasons
for replication in structured p2p systems are
availability and performance. In particular with
structured p2p, replication is central in improving
load balancing caused by skew in the mapping of
items to nodes. Replica placement decisions in
structured p2p systems often exploit the structure
of the underlying overlay. Common choices for
placing replicas include the immediate neighbor-
ing nodes as well as the nodes on the search path
of an item. DHTs also offer alternative mecha-
nisms for realizing replication that are based on
the mapping of the data-key space to nodes. One
way is by using multiple hash functions to map
(store) the same item on multiple nodes. Another
way is by assigning the same key space to more
than one node (such as with zone overloading in
CAN or structural relaxation in P-Grid). Finally,
one may build multiple overlays (such as with
multiple realities in CAN) or replica trees on top
of the overlay (such as in d-tree).

Once replicas are created, a central point is
maintaining the replicas up-to-date. Strategies
that are based on global knowledge of the replica
holders may have the potential to achieve good
consistency levels and low message loads, but
seem rather inappropriate for dynamic networks
that evolve quickly. A logical thing to do in such
a case is exploit the p2p network structure for an
efficient update scheme, an approach that by na-
ture fits some structured network topologies well.
For all other networks most approaches aim at
achieving some form of probabilistic consistency,
relying on a combination of pushing the updates
to neighbors and pulling copies from them.

Since no single optimal solution exists for
replica placement or for replica updates, this is
expected to be an active area of research for many
years. Promising issues include (a) theoretical
results regarding the optimal replica placement
in various types of unstructured p2p systems, (b)
gossiping protocols for update maintenance, (c)
replication for fault tolerance, (d) replication to
meet the requirements of specific storage-related
applications and (e) replication techniques for
highly dynamic and unpredictable environments.
New research challenges also arise in the area
of social networking and in mobile peer-to-peer
environments.

RefeReNCeS

Aberer, K., Cudré-Mauroux, P., Datta, A., Despo-
tovic, Z., Hauswirth, M., Punceva, M., & Schmidt,
R. (2003). P-Grid: A Self-organizing Structured
p2p System. SIGMOD Record, 32(3).

Aberer, K., Datta, A., & Hauswirth, M. (2003).
The quest for balancing peer load in structured
peer-to-peer systems (Tech. Rep. EPFL No.
IC/2003/32). Lausanne, Switzerland: Ecole Poly-
technique Fédérale de Lausanne.

612

Data Replication in P2P Systems

Akbarinia, R., Pacitti, E., & Valduriez, P. (2007).
Data currency in replicated DHTs. In Proc. SIG-
MOD 2007ACM Int’l Conference on Management
of Data, Beijing, China (pp. 211-222).

Alqaralleh, B. A., Wang, C., Zhou, B. B., & Zo-
maya, A. Y. (2007). Effects of replica placement
algorithms on performance of structured overlay
networks. In Proc. IPDPS 2007, IEEE Int’l Paral-
lel & Distributed Processing Symposium, Long
Beach, CA, USA (pp. 1-8).

Byers, J., Considine, J., & Mitzenmacher, M.
(2003). Simple load balancing for distributed hash
tables. In Proc. IPTPS 2003, 2nd Int’l Workshop on
Peer-to-Peer Systems, Berkeley, CA, USA.

Cai, M., Chervenak, A., & Frank, M. (2004). A
peer-to-peer replica location service based on a
distributed hash table. In Proc. SC2004, ACM/
IEEE Conference on Supercomputing, Pittsburgh,
Pennsylvania, USA (pp. 54-54).

Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham,
N., & Shenker, S. (2003). Making gnutella-like
P2P systems scalable. In Proc. of SIGCOMM’03,
Karlsruhe, Germany (pp. 407-418).

Chen, G., Qiu, T., & Wu, F. (2008). Insight into
redundancy schemes in DHTs. The Journal of
Supercomputing, 43, 183–198. doi:10.1007/
s11227-007-0126-4

Chen, Y., Katz, R. H., & Kubiatowicz, J. (2002).
Dynamic replica placement for scalable content
delivery. In Proc. IPTPS 2002, 1st Int’l Workshop
on Peer-to-Peer Systems (pp. 306-318). Boston,
MA, USA.

Clark, I., Miller, S. G., Hong, T. W., Sandberg,
O., & Wiley, B. (2002). Protecting free expression
online with Freenet. IEEE Internet Computing,
6(1), 40–49. doi:10.1109/4236.978368

Cohen, E., & Shenker, S. (2002). Replication
strategies in unstructured peer-to-peer networks. In
Proc. of SIGCOMM’02, Pittsburgh, Pennsylvania,
USA (pp. 177-190).

Dabek, F., Kaashoek, M. F., Karger, D., Morris, R.,
& Stoica, I. (2001). Wide-area cooperative storage
with CFS. In Proc. of the 18th ACM Symposium
on Operating Systems Principles, Chateau Lake
Louise, Banff, Canada (pp. 202-215).

Datta, A., Heuswirth, H., & Aberer, K. (2003,
May). Updates in highly unreliable, replicated
peer-to-peer systems. In Proc. of ICDCS 2003,
23rd Int’l Conference on Distributed Computing
Systems, Providence, Rhode Island, (pp. 76-85).

Datta, A., Schmidt, H., & Aberer, K. (2007).
Query-load balancing in structured overlays.
In Proc. of CCGrid’07, 7th Int’l Conference on
Cluster Computing and the Grid, Rio de Janeiro,
Brazil (pp. 453-460).

Demers, A., Green, D., Hauser, C., Irish, W.,
Larson, J., Shenker, S., et al. (1987). Epidemic
algorithms for replicated database maintenance. In
Proc. PODC 1987, 6th Annual ACM Symposium on
Principles of Distributed Computing, Vancouver,
Canada (pp. 1-12).

Ghodsi, A., Alima, L. O., & Haridi, S. (2005).
Symmetric replication for structured peer-to-peer
systems. In Proc. DBISp2p’05, 3rd Int’l VLDB
Workshop on Databases, Information Systems
and Peer-to-Peer Computing (LNCS 4125, pp.
74-85). Berlin: Springer.

Gnutella. (2003). Protocol V.0.6 RFC. Retrieved
from http://rfc-gnutella.sourceforge.net

Gopalakrishnan, V., Silaghi, B., Bhattacharjee,
B., & Keleher, P. (2004). Adaptive replication
in peer-to-peer systems. In Proc. ICDCS 2004,
24th Int’l Conference on Distributed Computing
Systems, Tokyo, Japan (pp. 360-369).

Iyer, S., Rowstron, A., & Druschel, P. (2002).
Squirrel: a decentralized peer-to-peer web cache.
In Proc. PODC 2002, 21st Annual Symposium on
Principles of Distributed Computing, Monterey,
California, USA (pp 213-222).

613

Data Replication in P2P Systems

Jia, Z., Pei, B., Li, M., & You, J. (2005). A com-
parison of spread methods in unstructured P2P
networks. In Proc. of ICCSA 2005, Int’l Confer-
ence on Computational Science and its Applica-
tions Singapore (pp. 10-18).

Lan, J., Liu, X., Shenoy, P., & Ramamritham, K.
(2003). Consistency Maintenance in Peer-to-peer
File Sharing Networks. In Proc. of WIAPP’03,
3rd IEEE Workshop On Internet Applications,
San Jose, CA, USA (pp. 76-85).

Leong, B., Liskov, B., & Demaine, E. D. (2006).
EpiChord: Parallelizing the chord lookup algo-
rithm with reactive routing state management.
Computer Communications, 29(9), 1243–1259.
doi:10.1016/j.comcom.2005.10.002

Leontiadis, E., Dimakopoulos, V. V., & Pitoura,
E. (2006). Creating and maintaining replicas in
unstructured peer-to-peer systems. In Proc. of
EURO-PAR 2006, 12th Int’l Euro-Par Conference
on Parallel Processing (LNCS 4128, pp. 1015-
102). Dresden, Germany: Springer.

Lv, Q., Cao, P., Cohen, E., Li, K., & Shenker, S.
(2002). Search and replication in unstructured
peer-to-peer networks. In Proc. of ICS 2002, 16th
ACM Int’l Conference on Supercomputing, New
York, New York, USA (pp. 84-95).

Maymounkov, P., & Mazieres, D. (2002), Kadem-
lia: A peer to peer information system based on
the XOR metric. In Proc. of IPTPS 2002, 1st Int’l
Workshop on Peer-to-Peer Systems, Cambridge
MA, USA.

Morselli, R., Bhattacharjee, B., Marsh, M. A.,
& Srinivasan, A. (2005). Efficient lookup on
unstructured topologies. In Proc. PODC 2005,
24th Symposium on Principles of Distributed
Computing, Las Vegas, NV, USA.

Pitoura, T., Ntarmos, N., & Triantafillou, P. (2006).
Replication, load balancing and efficient range
query processing in DHTs. In Proc. EDBT 2006,
Munich, Germany (pp. 131-148).

Ramasubramanian, V., & Sirer, E. G. (2004).
Beehive: O(1) lookup performance for power-
law query distributions in peer-to-peer overlays.
In Proc. NSDI’04, 1st Symposium on Networked
Systems Design and Implementation, San Fran-
cisco, CA.

Rao, W., Chen, L., Fu, A., & Bu, Y. Y. (2007).
Optimal Proactive Caching in Peer-to-peer Net-
work: Analysis and Application. In Proc. CIKM
2007, 15th ACM Int’l Conference on Information
and Knowledge Management, Lisbon, Portugal
(pp. 663-672).

Ratnasamy, S., Francis, P., Handley, M., Karp,
R., & Shenker, S. (2001). A scalable content ad-
dressable network. In Proc. of ACM SIGCOMM,
San Diego, CA, USA (pp. 161-172).

Rodrigues, R., & Liskow, B. (2005). High Avail-
ability in DHTs: Erasure Coding vs. Replication.
In Proc. IPTPS 2005, Ithaca, NY, USA (pp.
226-239).

Roussopoulos, M., & Baker, M. (2003). CUP:
Controlled update propagation in peer-to-peer
networks. In Proc. of the Annual USENIX Tech-
nical Conference, San Antonio, Texas, USA (pp.
167-180).

Rowstron, A., & Druschel, P. (2001a). Pastry:
Scalable, distributed, object location and routing
for large-scale peer-to-peer systems. In Proc.
Middleware 2001, IFIP/ACM Int. Conf. on Dis-
tributed System Platforms, Heidelberg, Germany
(pp. 329–350).

Rowstron, A., & Druschel, P. (2001b). Storage
management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In Proc. of
ACM SOSP’01, Banff, Canada (pp. 188-201).

Sahin, O. D., Gupta, A., Agrawal, D., & El Ab-
badi, A. (2004). A Peer-to-peer Framework for
Caching Range Queries. In Proc. ICDE 2004, 20th
Int’l Conference on Data Engineering, Boston,
USA (pp. 165 -176).

614

Data Replication in P2P Systems

Sozio, M., Neumann, T., & Weikum, G. (2008).
Near-Optimal Dynamic Replication in Unstruc-
tured Peer-to-Peer Networks. In Proc. PODS’08,
27th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, Vancouver,
BC, Canada (pp. 281-290).

Stoica, I., Morris, R., Karger, D., Kaashoek, F.,
& Balakrishnan, H. (2001). Chord: A scalable
peer-to-peer lookup service for internet applica-
tions. In Proc. of ACM SIGCOMM, San Diego,
CA, USA (pp.149–160).

Susarla, S., & Carter, J. (2005). Flexible Consistency
for Wide Area Peer Replication. In Proc. ICDCS
2005, 25th IEEE Int’l Conference on Distributed
Computing Systems, Ohio, USA (pp. 199-208).

Tewari, S., & Kleinrock, L. (2005). Analysis of
search and replication in unstructured peer-to-peer
networks. In Proc. of SIGMETRICS 2005, Banff,
Canada (pp 404-405).

Tewari, S., & Kleinrock, L. (2006). Proportional
replication in peer-to-peer networks. In Proc. of
INFOCOM 2006, Barcelona, Spain (pp 1-12).

Vecchio, D., & Son, S. H. (2005). Flexible update
management in peer-to-peer database systems.
In Proc. IDEAS 2005, Int’l Database Engineer-
ing and Applications Symposium, Montreal,
Canada.

Wang, Z., Das, S. K., Kumar, M., & Shen, H.
(2007). An efficient update propagation algorithm
for p2p systems. Computer Communications, 30,
1106–1115. doi:10.1016/j.comcom.2006.11.005

Wang, Z., Kumar, M., Das, S. K., & Shen, H.
(2006). File consistency maintenance through
virtual servers in P2P systems. In Proc. ISCC
2006, 11th IEEE Symposium on Computers and
Communications, Sardinia, Italy (pp. 435-441).

Weatherspoon, H., & Kubiatowicz, J. (2002).
Erasure Coding vs. Replication: A Quantitative
Comparison. In Proc. of IPTPS 2002, Cambridge,
MA, USA (pp 328-338).

Zhang, H., Goel, A., & Govindan, R. (2004).
Using the small-world model to improve Freenet
performance. Computer Networks, 46, 555–574.
doi:10.1016/j.comnet.2004.06.003

Zhu, X., Zhang, D., Li, W., & Huang, K. (2007).
Prediction-based fair replication algorithm in
structured p2p Systems. In Proc. ATC 2007, 4th
Int’l Conference on Autonomic and Trusted Com-
puting, Hong Kong, China (pp. 499-508).

keY TeRMS AND DefINITIONS

Data Replication: Refers to creating and
maintaining multiple copies of an item so as to
improve performance and reliability.

Overlay Networks: Networks formed be-
tween nodes in large scale distributed systems
which are built on top of the physical network.

Peer-to-Peer (P2P) Systems: Distributed
systems where nodes act as both servers and
clients. Characteristics commonly attributed to
peer-to-peer systems include node autonomy,
large scale and dynamicity.

Replica Placement: Refers to protocols
for assigning replicas to nodes in a distributed
system.

Replica Updates: Refers to protocols used to
maintain consistency among replicas.

Structured Peer-to-Peer Systems: P2P sys-
tems where nodes are connected to each other to
form specific overlay topologies. The most com-
mon structured p2p systems are Distributed Hash
Tables (DHTs) where data items are assigned to
specific peers based on hashing.

Unstructured Peer-to-Peer Systems: P2P
systems where the overlay topology is not rigid
and there is no explicit association between the
location of data and the location of nodes. Many
unstructured p2p systems have power-law degree
characteristics.

615

Data Replication in P2P Systems

eNDNOTe

1 We note here that while both refer to creat-
ing copies, caching and replication have
some subtle differences. Caching is usually
initiated at the clients, in our case, the peers

that made the request for an item, while
replication is a server-based decision, with
possibly system-wide implications. In this
chapter, we will not distinguish between
replication and caching and we will use the
term ‘replication’ to refer to both of them.

