
Αποτελεσματικές Τεχνικές Συγχρονισμού για

Συστήματα Διαμοιραζόμενης Μνήμης

Η ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Πληροφορικής Εξεταστική Επιτροπή

από τον

Νικόλαο Καλλιμάνη

ως μέρος των Yποχρεώσεων για τη λήψη του

ΔΙΔΑΚΤΟΡΙΚΟY ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Πανεπιστήμιο Ιωαννίνων

Μάιος 2013

Τριμελής Συμβουλευτική Επιτροπή (αλφαβητικά)

• Βασίλειος Δημακόπουλος, Αναπληρωτής Καθηγητής του Τμήματος Πληροφο-
ρικής του Πανεπιστημίου Ιωαννίνων

• Λεωνίδας Παληός, Αναπληρωτής Καθηγητής του Τμήματος Πληροφορικής του
Πανεπιστημίου Ιωαννίνων

• Παναγιώτα Φατούρου, Επίκουρη Καθηγήτρια του Τμήματος Επιστήμης Yπολο-

γιστών του Πανεπιστημίου Κρήτης

Επταμελής Εξεταστική Επιτροπή (αλφαβητικά)

• Βασίλειος Δημακόπουλος, Αναπληρωτής Καθηγητής του Τμήματος Πληροφο-
ρικής του Πανεπιστημίου Ιωαννίνων

• Απόστολος Ζάρρας, Επίκουρος Καθηγητής του Τμήματος Πληροφορικής του Πα-
νεπιστημίου Ιωαννίνων

• Κωνσταντίνος Μαγκούτης, Ερευνητής Γ΄ του Ινστιτούτου Πληροφορικής, ΄Ι-
δρυμα Τεχνολογίας και ΄Ερευνας

• Δημήτριος Νικολόπουλος, Καθηγητής της Σχολής Electronics Engineering and

Computer Science του Πανεπιστημίου Queens University of Belfast

• Λεωνίδας Παληός, Αναπληρωτής Καθηγητής του Τμήματος Πληροφορικής του
Πανεπιστημίου Ιωαννίνων

• Ευαγγελία Πιτουρά, Καθηγήτρια του Τμήματος Πληροφορικής του Πανεπιστημί-
ου Ιωαννίνων

• Παναγιώτα Φατούρου, Επίκουρη Καθηγήτρια του Τμήματος Επιστήμης Yπολο-

γιστών του Πανεπιστημίου Κρήτης

Dedication

This dissertation is dedicated to my family.

Acknowledgments

First, I would like to sincerely thank my supervisor Panagiota Fatourou for motivating

and encouraging me during the entire period that I was conducting my PhD. I would

also like to thank the members of my advisory committee, Vassilios Dimakopoulos and

Leonidas Palios for their support. Many thanks to Dimitris Nikolopoulos for arranging

the provision of access to some of the multi-core machines of the Department of Computer

Science at Virginia Tech where I ran some of the experiments of this dissertation, and to

Michael Scott for providing me access to the Rochester’s Niagara 2 machine. I would also

like to thank the rest of the members of my examination committee, Kostas Magoutis,

Evaggelia Pitoura, and Apostolos Zarras.

Special thanks go to my friends Spiros Agathos, Eytychia Datsika, Vasilis Kagias,

Kostas Lillis, Thanos Mpiliris, Odysseas Petrocheilos, and Kostas Ramantas for support-

ing and encouraging me.

Finally, I would like to thank Empirikion Foundation for the moral and financial

support.

Contents

1 Introduction 2

2 Related Work 14

3 Model 22

3.1 General . 22

3.2 Pseudocode conventions . 26

4 Adaptive Wait-Free Synchronization Algorithms 28

4.1 The F-RedBlue algorithm . 28

4.1.1 Algorithm description . 29

4.1.2 Correctness proof . 34

4.2 Modified version of F-RedBlue that uses small base objects 51

4.3 Adaptive synchronization algorithms for large objects 54

5 Practical Wait-Free Synchronization Algorithms 60

5.1 The Sim algorithm . 61

5.1.1 Algorithm description . 61

5.1.2 Correctness proof . 63

5.1.3 An efficient implementation of collect 69

5.1.4 Space and step complexity . 70

5.1.5 Derived lower bounds . 70

5.2 P-Sim: A practical version of Sim . 71

5.2.1 Algorithm description . 71

5.2.2 Correctness proof . 74

5.2.3 Space and step complexity . 78

ii

5.2.4 Making P-Sim adaptive . 78

5.3 Performance evaluation of P-Sim . 80

5.4 L-Sim: A synchronization algorithm for large objects 89

5.4.1 Algorithm description . 89

5.4.2 Correctness proof . 93

5.5 SimStack: A wait-free implementation of a shared stack 104

5.5.1 Algorithm description . 104

5.5.2 Performance Evaluation . 105

5.6 SimQueue: A wait-free implementation of a shared queue 107

5.6.1 Algorithm description . 107

5.6.2 Correctness proof . 110

5.6.3 Performance evaluation . 119

6 Highly-Efficient Blocking Synchronization Algorithms 121

6.1 CC-Synch: An efficient synchronization algorithm for the CC model 121

6.1.1 Algorithm description . 122

6.1.2 Time and space complexity . 124

6.1.3 Required memory barriers . 124

6.1.4 Correctness proof . 125

6.2 H-Synch: A hierarchical synchronization algorithm based on CC-Synch . . . 140

6.3 DSM-Synch: An efficient synchronization algorithm for the DSM model . . 142

6.3.1 Algorithm description . 142

6.3.2 Time and Space complexity . 143

6.3.3 Required memory barriers . 143

6.3.4 Correctness proof . 145

6.4 Performance evaluation of CC-Synch, DSM-Synch and H-Synch 156

6.5 Highly-efficient blocking data structures 164

7 Conclusions and Future Work 168

iii

List of Figures

4.1 The red and the blue tree of F-RedBlue for n = 8. 30

4.2 An example of an execution of F-RedBlue, where thread p4 applies an op-

eration to the simulated object. 33

4.3 An example of an execution of F-RedBlue. 40

5.1 An example execution of the Sim algorithm. 65

5.2 Performance of P-Sim. 81

5.3 Average combining degree of P-Sim and flat-combining for different num-

bers of threads. 82

5.4 Average number of failed CAS instructions per request for different numbers

of threads. 83

5.5 Average number of atomic instructions (excluding Read and Write opera-

tions) per request performed by P-Sim for different numbers of threads. . . 83

5.6 Performance of P-Sim for different values of random work. 86

5.7 Performance of P-Sim for large numbers of threads. 87

5.8 Performance of P-Sim when a large number of threads are initiated but

only 10% are active. 87

5.9 Performance of SimActSet. 88

5.10 An example of an execution of L-Sim. 96

5.11 Performance of SimStack. 106

5.12 Performance of SimQueue. 119

6.1 Average throughput of CC-Synch and DSM-Synch on the Magny Cours

machine while simulating a Fetch&Multiply object. 158

6.2 Average throughput of CC-Synch, DSM-Synch and H-Synch on the Niagara

2 machine while simulating a Fetch&Multiply object. 159

iv

6.3 Average throughput of CC-Synch, DSM-Synch and H-Synch on the Niagara 2

machine for n > 128 (over-subscribing) while simulating a Fetch&Multiply

object. 160

6.4 Average degree of combining of CC-Synch, DSM-Synch and H-Synch while

simulating a Fetch&Multiply object. 161

6.5 Average number of atomic instructions (CAS, Swap and Add) that CC-Synch,

DSM-Synch and H-Synch execute on the Niagara 2 machine while simulating

a Fetch&Multiply object. 162

6.6 Average throughput of CC-Synch, DSM-Synch and H-Synch for different

values of random work. 163

6.7 Average throughput of CC-Stack and DSM-Stack on the Magny Cours ma-

chine. 164

6.8 Average throughput of CC-Stack, DSM-Stack and H-Stack the Niagara 2

machine. 165

6.9 Average throughput of CC-Queue and DSM-Queue on the Magny Cours

machine. 165

6.10 Average throughput of CC-Queue, DSM-Queue and H-Queue on the Niagara

2 machine. 166

v

List of Tables

1.1 Algorithms and their properties proposed in this dissertation. 7

2.1 Wait-free universal algorithms and their complexities. 16

5.1 Notation used in the proof of Sim. 64

5.2 Notation used in the proof of P-Sim. 75

5.3 Average cpu cycles spent in cpu stalls per request for P-Sim and flat-

combining for n = 16. 85

5.4 Sensitivity of P-Sim to the backoff upper bound parameter. 86

5.5 Notation used in the proof of L-Sim. 94

6.1 Notation used in the proof of CC-Synch. 127

6.2 Notation used in the proof of DSM-Synch. 145

6.3 Cache misses and memory stalls per operation for n = 16 of CC-Synch,

P-Sim and flat-combining. 163

vi

List of Algorithms

1 Pseudocode for F-RedBlue. 31

2 Pseudocode for Calculate and Propagate of F-RedBlue. 32

3 Pseudocode for S-RedBlue. 52

4 Pseudocode for Propagate and Calculate of S-RedBlue. 53

5 Pseudocode for LS-RedBlue. 56

6 Pseudocode for BLS-RedBlue. 57

7 Pseudocode for Calculate of BLS-RedBlue. 58

8 Pseudocode for Sim. 62

9 Data structures used in P-Sim. 72

10 Pseudocode of P-Sim. 73

11 Data structures used in L-Sim and pseudocode for LSimApplyOp. 91

12 Pseudocode for L-Sim. 92

13 Implementation of Pop and Push for SimStack. 105

14 Data structures for SimQueue, the implementation of Enqueue and De-

queue in SimQueue, and the implementations (enqueue and dequeue) of

the sequential versions of enqueue and dequeue. 108

15 Pseudocode for the Attempt in SimQueue. 109

16 Pseudocode for EnqLinkQueue and DeqLinkQueue in SimQueue. 110

17 Pseudocode for CC-Synch. 123

18 Pseudocode for H-Synch. 141

19 Pseudocode for DSM-Synch. 144

vii

Abstract

Nikolaos D. Kallimanis.

Highly-Efficient Synchronization Techniques in Shared-Memory Distributed Systems.

PhD, Department of Computer Science and Engineering, University of Ioannina, Greece.

July, 2013.

Thesis Supervisor: Vassilios Dimakopoulos.

Overcoming the difficulty of concurrent programming has never become more urgent

due to the proliferation of multicore machines and the imperative necessity of exploiting

their computational power. One way to achieve this is by designing efficient concurrent

data structures; common structures, like stacks and queues, are the most widely used inter-

thread communication mechanisms. Additionally, synchronization techniques are required

to efficiently execute, in a concurrent environment, those parts of modern applications that

require significant synchronization. Although the efficient parallelization of these parts is

not an easy task, Amdhal’s law implies that achieving this is necessary in order to avoid

significant reductions in speed-up.

In this dissertation three families of highly efficient synchronization algorithms, called

RedBlue, Sim and Synch are presented for executing concurrently blocks of code that have

originally been programmed to be executed sequentially in asynchronous shared-memory

distributed systems.

We start by presenting the RedBlue family of adaptive synchronization algorithms that

use common base objects (LL/SC or CAS and Read-Write) provided by the majority of the

real-world machines. The first of these algorithms achieves better time complexity than

all previously presented algorithms and it matches a lower bound presented by Jayanti in

PODC 1998. This algorithm uses large LL/SC base objects and it comprises the keystone

for the design of the other RedBlue algorithms that use smaller base objects. Specifically,

viii

the second algorithm significantly reduces the size of the required base objects. The last

two algorithms have been designed for large objects improving previously presented work

for large objects.

In the Sim family of synchronization algorithms, we aim at (1) getting better time

complexity by using base objects other than LL/SC and read-write (i.e. Swap, Add, etc)

and (2) competing in terms of performance with the state-of-the-art synchronization algo-

rithms (i.e. high performance spin-locks, etc), while having the nice theoretical properties

that RedBlue algorithms have. Sim algorithms achieve these goals.

Sim is a simple synchronization algorithm with constant step complexity using an Add

additional to an LL/SC object. Sim answers the open problem that was mentioned by

Jayanti in PODC 1998: “If shared-memory supports all of Read, Write, LL/SC, Swap,

CAS, Move, Add, Fetch&Multiply, would the Ω(logn) lower bound still hold?”. Sim has

been implemented for a real shared-memory machine architecture. Its practical version,

called P-Sim, outperforms several state-of-the-art lock-based and lock-free synchronization

algorithms, while being wait-free, i.e. satisfying a stronger progress condition than all the

algorithms that it outperforms.

The Sim and RedBlue families of synchronization algorithms can be considered as

efficient wait-free implementations of the combining technique in which, one thread (the

combiner) in addition to its own operation, serves the operations of other active threads.

The RedBlue synchronization algorithms are adaptive and employ LL/SC (or CAS) and

read-write base objects, whereas Sim are much simpler algorithms that are highly-efficient

in practice and require Add base objects.

We further study blocking implementations of the combining technique with the goal

of discovering where their real performance power resides and whether or how perfor-

mance is impacted by ensuring some desired properties (e.g. fairness in serving requests).

This is accomplished by presenting two new blocking implementations of the combining

technique; the first (CC-Synch) is highly-efficient in systems that support coherent caches,

whereas the second (DSM-Synch) works better in cache-less NUMA machines. In compar-

ison to previous blocking implementations, the new implementations (1) provide bounds

on the number of remote memory references (RMRs) that they perform, (2) support a

stronger notion of fairness, and (3) use simpler and fewer base objects. CC-Synch and

DSM-Synch achieve better performance than P-Sim as well as any other algorithm pro-

ix

vided in the past. The experimental analysis sheds light to the questions that were aimed

to be answered.

Several modern multicore systems organize the cores into clusters and provide fast

communication within the same cluster and much slower communication across clusters.

A hierarchical version of CC-Synch, called H-Synch, is presented, which exploits the hier-

archical communication nature of such systems to achieve better performance. Experi-

ments show that H-Synch significantly outperforms previous state-of-the-art hierarchical

approaches.

Based on P-Sim, CC-Synch, DSM-Synch, and H-Synch, we provide very efficient im-

plementations of common shared data structures like stacks and queues. Specifically, the

implementations SimStack and SimQueue that are based on P-Sim are wait-free, whereas

those based on CC-Synch, DSM-Synch and H-Synch are blocking but achieve better perfor-

mance than SimStack and SimQueue as well as any other algorithm provided in the past.

SimStack and SimQueue are the first stack and queue implementations that satisfy both

wait-freedom and high performance.

The results of this dissertation have been published in the following conferences/journals:

ACM PPoPP 2012, ACM SPAA 2011, DISC 2009 and Theory of Computing Systems Spe-

cial Issue on SPAA 2011.

x

Εκτεταμενη Περιληψη στα Ελληνικα

Νικόλαος Καλλιμάνης του Δημητρίου και της Νικολέττας.

PhD, Τμήμα Μηχανικών Η/Y και Πληροφορικής, Πανεπιστήμιο Ιωαννίνων.

Ιούλιος, 2013.

Αποτελεσματικές Τεχνικές Συγχρονισμού για Συστήματα Διαμοιραζόμενης Μνήμης.

Επιβλέπων: Βασίλειος Δημακόπουλος.

Η εξάπλωση των πολυπύρηνων επεξεργαστών τα τελευταία χρόνια έχει καταστήσει ε-

ξαιρετικά αναγκαία την εκμετάλλευση της υπολογιστικής ισχύος τους. ΄Ενας τρόπος για

την αποδοτική χρήση συστημάτων που βασίζονται σε πολυπύρηνους επεξεργαστές είναι ο

σχεδιασμός αποδοτικών διαμοιραζόμενων (παράλληλα προσπελάσιμων από πολλά νήματα)

δομών δεδομένων (π.χ. στοιβών και ουρών), οι οποίες χρησιμοποιούνται ως ένας θεμελιώ-

δης μηχανισμός επικοινωνίας και συγχρονισμού μεταξύ των νημάτων του συστήματος. Η

αποτελεσματική παράλληλη εκτέλεση πολλών εφαρμογών επιβάλει την ανάπτυξη αποδοτικών

αλγορίθμων συγχρονισμού που θα συγχρονίζουν αποτελεσματικά τα τμήματα των εφαρμογών

που εκτελούνται σε διαφορετικά επεξεργαστικά στοιχεία. Ο νόμος του Amdhal υποδεικνύ-

ει ότι η χρήση αποδοτικών τεχνικών συγχρονισμού είναι απαραίτητη για την επίτευξη της

μέγιστης δυνατής ταχύτητας υπολογισμών.

Σε αυτή τη διατριβή παρουσιάζονται τρεις οικογένειες νέων αλγορίθμων συγχρονισμού

εξαιρετικά υψηλής απόδοσης, οι οποίες ονομάζονται RedBlue, Sim και Synch. Οι εν λόγω

αλγόριθμοι συγχρονισμού χρησιμοποιούνται για την παράλληλη εκτέλεση κώδικα που έχει

προγραμματιστεί να εκτελείται σειριακά.

Αρχικά παρουσιάζονται οι προσαρμοστικοί αλγόριθμοι συγχρονισμού RedBlue (οι προ-

σαρμοστικοί αλγόριθμοι έχουν χρονική πολυπλοκότητα ανάλογη του αριθμού των ενεργών

νημάτων), οι οποίοι πληρούν την ιδιότητα ελεύθερη-αναμονής (wait-free) και είναι κατάλληλοι

xi

για ασύγχρονα συστήματα διαμοιραζόμενης μνήμης. Ο πρώτος από αυτούς τους αλγορίθ-

μους, ο οποίος ονομάζεται F-RedBlue, επιτυγχάνει την καλύτερη χρονική πολυπλοκότητα

από τους αλγορίθμους που είχαν παρουσιαστεί παλιότερα και είναι χρονικά βέλτιστος αφού

επιτυγχάνει το κάτω όριο χρονικής πολυπλοκότητας που παρουσιάστηκε από τον Jayanti

στο PODC 1998. Ο δεύτερος αλγόριθμος της οικογένειας RedBlue χρησιμοποιεί βασικά

αντικείμενα μικρότερου μεγέθους από ότι ο F-RedBlue ενώ οι δύο τελευταίοι αλγόριθμοι της

οικογένειας RedBlue βελτιώνουν τεχνικές που είχαν παρουσιαστεί παλιότερα.

Κατά την ανάπτυξη των Sim αλγορίθμων συγχρονισμού, στόχος ήταν (1) η περαιτέρω

μείωση της χρονικής πολυπλοκότητας χρησιμοποιώντας βασικά αντικείμενα διαφορετικά των

LL/SC και Read-Write (όπως Swap και Add βασικά αντικείμενα) και (2) η βελτίωση της

απόδοσής τους, ώστε οι επιδόσεις τους να είναι τέτοιες που να ανταγωνίζονται ή και να

ξεπερνούν τις επιδόσεις των γρηγορότερων αλγορίθμων συγχρονισμού (κλειδώματα, κτλ)

έχοντας παράλληλα όλα τα καλά θεωρητικά χαρακτηριστικά των RedBlue αλγορίθμων. Η

οικογένεια των Sim αλγορίθμων επιτυγχάνει όλους αυτούς τους στόχους.

Ο αλγόριθμος συγχρονισμού Sim χρησιμοποιεί ένα Add και ένα LL/SC βασικό αντικείμε-

νο και επιτυγχάνει O(1) χρονική πολυπλοκότητα. Ο Sim αλγόριθμος απαντά στο ανοιχτό

πρόβλημα που τέθηκε από τον Jayanti στο PODC 1998, για το αν το κάτω όριο Ω(log(n))

ισχύει στην περίπτωση που η διαμοιραζόμενη μνήμη υποστηρίζει όλα τους τύπους βασικών

αντικειμένων Read, Write, LL/SC, Swap, CAS, Move, Add και Fetch&Multiply. Η χρο-

νική πολυπλοκότητα του Sim είναι σταθερή, και επομένως η απάντηση στο ερώτημα αυτό

είναι αρνητική. Η πρακτική έκδοση του Sim αλγορίθμου, που ονομάζεται P-Sim, ξεπερνά

σε επιδόσεις τους γρηγορότερους αλγορίθμους συγχρονισμού, ενώ ταυτόχρονα πληροί την

ισχυρότερη συνθήκη τερματισμού (ελεύθερη αναμονής).

Οι οικογένειες των RedBlue και Sim αλγορίθμων συγχρονισμού είναι ουσιαστικά αποδο-

τικές υλοποιήσεις της συνεργατικής τεχνικής (combining technique), στην οποία ένα νήμα

είναι δυνατό να εφαρμόζει λειτουργίες και άλλων νημάτων βοηθώντας τα να τελειώσουν την

εκτέλεσή τους. Οι RedBlue αλγόριθμοι είναι προσαρμοστικοί και χρησιμοποιούν LL/SC (ή

CAS) βασικά αντικείμενα, ενώ οι Sim αλγόριθμοι είναι απλούστεροι αλγόριθμοι που στην

πράξη επιτυγχάνουν πολύ υψηλές επιδόσεις, αλλά χρησιμοποιούν Add βασικά αντικείμενα.

Σε αυτή τη διατριβή μελετήθηκε σε βάθος η συνεργατική τεχνική με στόχο την ανά-

πτυξη εμποδιστικών (blocking) αλγορίθμων συγχρονισμού με βελτιωμένη απόδοση και με

χαρακτηριστικά δικαιότερης εξυπηρέτησης. Αναπτύχθηκαν δύο νέοι εμποδιστικοί αλγόριθ-

xii

μοι συγχρονισμού που ανήκουν στην οικογένεια Synch. Ο πρώτος ονομάζεται CC-Synch και

είναι κατάλληλος για μηχανές που υποστηρίζουν συνεπείς κρυφές μνήμες (coherent NUMA

machines), ενώ ο δεύτερος ονομάζεται DSM-Synch και είναι κατάλληλος για πολυεπεξερ-

γαστές χωρίς κρυφές μνήμες (cache-less NUMA machines). Σε αντίθεση με παλαιότερους

εμποδιστικούς συνεργατικούς αλγορίθμους, οι παραπάνω αλγόριθμοι (1) προσφέρουν άνω

όρια στον αριθμό των απομακρυσμένων αναφορών στη μνήμη, (2) προσφέρουν περισσότε-

ρη δικαιοσύνη κατά την προσπέλαση στο κοινόχρηστο αντικείμενο, και (3) χρησιμοποιούν

απλούστερα βασικά αντικείμενα. Ο CC-Synch και ο DSM-Synch επιτυγχάνουν καλύτερη

απόδοση από τον P-Sim, αλλά και όλους τους παλαιότερους αλγόριθμους συγχρονισμού.

Πολλά πολυπύρηνα συστήματα οργανώνουν τα επεξεργαστικά στοιχεία σε ομάδες και

παρέχουν γρήγορη επικοινωνία μεταξύ των επεξεργαστικών στοιχείων που βρίσκονται στην

ίδια ομάδα, ενώ παρέχουν αργή επικοινωνία μεταξύ των επεξεργαστικών στοιχείων διαφο-

ρετικών ομάδων. Σε αυτή τη διατριβή παρουσιάζεται μια ιεραρχική έκδοση του CC-Synch

που ονομάζεται H-Synch. Ο H-Synch εκμεταλλεύεται την ιεραρχική φύση της επικοινωνίας

τέτοιων συστημάτων και η πειραματική του μελέτη έδειξε ότι ξεπερνά κατά πολύ σε απόδοση

όλες τους παλαιότερους ιεραρχικούς και μη αλγόριθμους συγχρονισμού.

Σε αυτή τη διατριβή παρουσιάζονται υλοποιήσεις διαμοιραζόμενων ουρών και στοιβών

πολύ υψηλών επιδόσεων που βασίζονται στους P-Sim, CC-Synch, DSM-Synch και H-Synch.

Ειδικότερα, οι υλοποιήσεις SimStack και SimQueue που βασίζονται στον P-Sim ικανοποιούν

τη συνθήκη τερματισμού ελεύθερη-αναμονής, ενώ εκείνες που βασίζονται στους CC-Synch,

DSM-Synch και H-Synch είναι εμποδιστικές αλλά επιτυγχάνουν καλύτερες επιδόσεις από

τον SimStack και SimQueue αλλά και όλες τις παλαιότερες υλοποιήσεις. Οι SimStack και

SimQueue είναι οι πρώτες υλοποιήσεις κοινόχρηστων στοιβών και ουρών που πληρούν την

ιδιότητα ελεύθερη-αναμονής και ταυτόχρονα επιτυγχάνουν υψηλή απόδοση.

Τα ερευνητικά αποτελέσματα αυτής της διατριβής έχουν παρουσιασθεί στα διεθνή συνέ-

δρια/περιοδικά: ACM PPoPP 2012, ACM SPAA 2011, DISC 2009 και Theory of Comput-

ing Systems Special Issue on SPAA 2011.

1

Chapter 1

Introduction

The last decade, the computer industry has made a significant turn towards developing

multicore systems which nowadays, are used in any computing device (from smartphones

to large scale multiprocessor machines). A wide variety of low cost commercial computing

devices are equipped with processors containing a dozen or more processing cores. Even

smartphones are equipped with multicore processors. In all of these devices, increased

performance can be achieved by exploiting parallelism; thus, harnessing the difficulty of

concurrent programming is currently very important.

Multicore systems are typical examples of distributed systems. A distributed system

consists of a set of computing entities (threads), which have the ability to communicate.

Distributed systems are distinguished in two main types depending on how the threads

communicate. The first type consists of systems where threads communicate through a

shared memory (shared memory systems), while the second type consists of systems that

their threads communicate by exchanging messages (message passing systems). In recent

years, a lot of research is conducted in shared memory systems due to the proliferation

of the multicore systems. A multicore system is usually a shared memory system, since

it consists of many tightly connected processing cores that communicate through shared

memory.

Several applications that could be parallelized contain parts whose parallelization re-

quires significant synchronization and coordination. Amdhal’s law [9] implies that failing

2

in parallelizing these parts may result in a significant limitation on the speed-up that

could be achieved. However, these parts usually require accesses to shared data and thus,

parallelizing them demands the design of low-overhead synchronization mechanisms; with-

out such efficient mechanisms the synchronization cost may overshadow any performance

gain that could result from the parallelization of these parts.

In a shared memory system, threads use shared atomic objects (or briefly atomic ob-

jects) as main communication mechanism. Every atomic object stores some information,

which is accessible to system’s threads via atomic operations. Intuitively, an atomic op-

eration is an operation that seems to be executed instantly at some point in time. Some

objects, called base objects, are provided by the hardware and therefore the hardware

guarantees that the supported operations are executed atomically.

The most common type of base objects are the Read-Write ones. A Read-Write base

object supports two operations for accessing and modifying the stored data: a) Read(O),

which returns the stored data of O without modifying it, and b) Write(O, v), which stores

value v in O and returns an acknowledgment.

Other types of base objects are CAS, LL/SC, Add, Swap, etc. Specifically, a CAS base

object O supports two operations: a) Read(O) that returns the stored value in O without

modifying it and b) CAS(O, vold, vnew). CAS(O, vold, vnew) compares the current value of O

with vold and if they are equal it stores the value vnew in O and returns true. Otherwise, the

contents of O remain unchanged and false is returned. An Add object supports, in addition

to Read, the operation Add(O, x) that atomically adds some (positive or negative) value

x to object O. A Swap object O supports in addition to Read, the operation Swap(O, v)

which (atomically) writes in O the value v and returns the previous value of O. An LL/SC

object O supports the atomic operations a) LL(O) which returns the current value of O,

and b) SC(O, v) whose execution by a thread pi must follow the execution of LL(O) by pi

and changes the value of O to v if no other SC (by some other thread) has changed the

value of O since the execution of pi’s latest LL on O. If the value of O changes to v by

SC(O, v), true is returned; otherwise, the value of O does not change and false is returned.

Apparently, common base objects as those described above offer very simple opera-

tions for accessing stored data. The design of more complex atomic objects significantly

simplifies the parallel programming of most modern applications. Thus, the design and

3

implementation of such complex objects in software using simpler objects provided by the

hardware is of high importance.

Any atomic object can be easily implemented using locks. A thread that wishes to

perform an operation to the shared object, acquires the lock that is associated to the

shared object, executes the sequential code of the operation and releases the lock. This

methodology has been widely used in several real-world applications systems (e.g. data

base applications, etc). However, this technique has a serious drawback; a thread may

fail (i.e. stops its execution due to a software or hardware failure) while holding the lock

leading the system to a total failure. Properties that guarantee system’s progress are

desirable, since it is very important for a system to be fault tolerant. A property that

guarantees high tolerance in thread failures is wait-freedom [12, 16]. Wait-freedom ensures

that each thread finishes the execution of the code block it wants to execute within a finite

number of its own steps independently of the speed or the state of the other threads.

Atomic objects are arguably useful; however they are practical only in the case that

they are implemented efficiently. From a theory perspective, the main complexity mea-

sures are the step complexity of an implementation, and the number and size of the

base objects it employs. The step complexity of an operation is the maximum number

of shared memory accesses that any thread executes in order to complete the operation.

Some desirable properties when designing atomic objects in software are the following:

• The step complexity of every operation of the object should be as low as possible.

• The used base objects should support as fewer complex operations as possible.

• The needed base objects should have size equivalent to the size of hardware base

objects (usually less or equal to 128 bits).

• The implementation should be fault tolerant, thus wait-freedom property should be

satisfied.

A universal synchronization algorithm is a generic mechanism to implement any shared

object; it supports an operation, called ApplyOp, that takes as a parameter the sequential

implementation of any operation of the simulated object, and simulates its execution in a

concurrent environment. A universal algorithm provides the implementation of any shared

4

object for free. So, if efficient implementations of universal algorithms are provided then

the programming effort is highly reduced and high performance is achieved.

In the first part of this dissertation, a family of wait-free universal synchronization

algorithms, called RedBlue, is presented. In shared memory systems it is often the case

that the total number of threads n taking part in a computation is much larger than the

actual number of threads that concurrently access the shared object. For this reason, a

flurry of research [2, 3, 13, 14, 38] has been devoted to the design of adaptive algorithms

whose time complexity depends on k, the maximum number of threads that concurrently

access the shared object. All RedBlue algorithms are adaptive.

All RedBlue algorithms use two perfect binary trees of dlog2 ne + 1 levels each. The

first tree (red tree) is employed for the estimation of any encountered contention, while the

second tree (blue tree) is used for the synchronization with other threads when applying

an operation. In each of these trees, a thread is assigned a leaf node (and therefore also

a path from this leaf to the root node, or vice versa). A thread that wants to apply an

operation to the simulated object, traverses first its path in the red tree from the root

downwards looking for an unoccupied node in this path. Once it manages to occupy such

a node, it starts traversing the blue tree upwards from the isomorphic blue node to the

occupied red node, transferring information about its operation (as well as about other

active operations) towards the tree’s root. In this way, each operation traverses at most

O(min{k, log n}) nodes in each of the two trees. Once information about the operation

reaches the root, the operation is applied to the simulated object.

The first algorithm of the RedBlue family, which is called F-RedBlue, has time com-

plexity O(min{k, log n}) which is better than any previously presented algorithm using

LL/SC and read-write base objects. However, F-RedBlue uses big LL/SC base objects; thus

it is mainly of theoretical interest. A lower bound of Ω(log n) on the time complexity of

wait-free universal synchronizations algorithms that use LL/SC base objects is presented

in [42]. It holds even if an infinite number of unbounded-size base objects is employed.

Therefore, F-RedBlue is optimal in terms of time complexity.

The second algorithm (S-RedBlue) of the RedBlue family is a slightly modified version

of F-RedBlue that uses smaller base objects and it is therefore practical in many cases.

S-RedBlue uses O(n) LL/SC base objects, one for each of the trees’ nodes and n+ 1 single-

writer base objects per thread. Each base object of the red tree has size dlog2 ne+1. Each

5

base object of the blue tree stores n bits, one for each thread. One of the base objects (the

base object corresponding to the blue root) is big. This base object is implemented by

single-word LL/SC objects using the technique presented in [44]. In current systems where

base objects of 128 bits are available, S-RedBlue works with single-word LL/SC objects for

up to 128 threads. In fact, even if n/128 = c > 1, where c is any constant, the algorithm

can be implemented by single-word LL/SC base objects with the same time complexity

(increased by a constant factor) using the implementation of multi-word LL/SC from

single-word LL/SC of [44].

Most of the universal algorithms presented in the past, as well as F-RedBlue and S-

RedBlue, copy the entire state of the object each time an update is to be performed on

it by some thread. This is not practical for large objects whose states may require a

large amount of storage to maintain. Anderson and Moir [11] presented a lock-free and a

wait-free synchronization algorithm that is practical for large objects. Their algorithms

assume that the object state is represented as a continuous array which requires B data

blocks of size S each for its storage. Each operation can modify at most T blocks and

each thread can help at most M ≥ 2T other threads. We combine some of the techniques

introduced in [11] with the techniques employed by the RedBlue algorithms in order to

design two simple wait-free synchronization algorithms which have the nice properties

of the constructions in [11] while achieving better time complexity and being adaptive.

The time complexity of the first algorithm is better than the synchronization algorithm

presented in [11] but it does not assume an upper bound on the number of threads a

thread may help as the wait-free construction in [11] does. BLS-RedBlue exhibits all the

properties of the wait-free construction in [11] and still achieves better time complexity. In

particular, its time complexity is similar to the time complexity of the wait-free algorithm

in [11] but with k replacing n and thus the algorithm is adaptive. The space complexity

of the algorithm is the same as that of the wait-free algorithm in [11]. RedBlue algorithms

are much simpler than the constructions presented in [11], and they improve on time

complexity upon these algorithms. Table 1.1 provides the exact time complexities and

the space overheads of all of the algorithms presented in this dissertation.

In the Sim family of synchronization algorithms, we aim at (1) getting better time

complexity by using base objects other than LL/SC and read-write (i.e. Swap, Add, etc) and

(2) competing in terms of performance with the state of the art synchronization algorithms

6

Algorithm Base objects Progress property Published in

Synchronization Algorithms
F-RedBlue CAS, rw wait-free DISC ’09
S-RedBlue CAS, rw wait-free DISC ’09
LS-RedBlue CAS, rw wait-free DISC ’09
BLS-RedBlue CAS, rw wait-free DISC ’09

Sim Add, CAS, rw wait-free SPAA ’11
P-Sim Add, CAS, rw wait-free SPAA ’11
L-Sim Add, CAS, rw wait-free unpublished

CC-Synch Swap, rw blocking PPoPP ’12
DSM-Synch Swap, CAS, rw blocking PPoPP ’12
H-Synch Swap, rw blocking PPoPP ’12

Shared Stacks
SimStack Add, CAS, rw wait-free SPAA ’11
CC-Stack Swap, rw blocking PPoPP ’12
DSM-Stack Swap, CAS, rw blocking PPoPP ’12
H-Stack Swap, rw blocking PPoPP ’12

Shared Queues
SimQueue Add, CAS, rw wait-free SPAA ’11
CC-Queue Swap, rw blocking PPoPP ’12
DSM-Queue Swap, CAS, rw blocking PPoPP ’12
H-Queue Swap, rw blocking PPoPP ’12

Table 1.1: Algorithms and their properties proposed in this dissertation.

(i.e. high performance spin-locks, etc), while having the nice theoretical properties that

RedBlue algorithms have. The family of Sim synchronization algorithms achieve these

goals.

The Sim synchronization algorithm follows the simple idea presented by Herlihy in [37]:

a thread p starts by recording the request that it wants to execute in a shared struct that

it owns. This struct additionally contains a toggle bit. A set of toggle bits, one for each

thread, are also stored as part of the simulated state. Based on the values of the toggle

bits, p finds out which other requests are active and serves them by executing their code

on a local copy of the simulated state. Finally, p tries to change a shared reference, stored

in an LL/SC object, to point to this local struct. Process p may have to apply these steps

twice to ensure that its request has been served. An array containing n response values

is also stored as part of the simulated state. Once p ensures that its request has been

served, it finds its response value in the LL/SC object.

7

We start with Sim, a simplified version of this technique that allows us to derive some

theoretical results. In Sim, the announcement of the requests and the discovery of the

active requests by each thread have been abstracted using a collect object. A collect object

consists of n components A1, ..., An, one for each thread, where each component stores

a value from some set and supports two operations update(v) and collect. When

executed by thread pi, 1 ≤ i ≤ n, update(v) stores the value v in Ai; collect returns

a vector of n values, one for each component. It is remarkable that a collect object is

not atomic (see Section 3 for a description of the correctness condition that needs to be

ensured by an implementation of a collect object). A snapshot object is an atomic version

of a collect object.

We describe simple implementations of collect and snapshot objects using a single

atomic Add (or XOR) object. An Add (XOR) object supports the operation Add (XOR) in ad-

dition to Read; Add(O, x) adds some (positive or negative) value x to object O (XOR(O, x)

computes O XOR v and stores it into O). These implementations exhibit constant step

complexity (under the standard theoretical model of shared memory computation where

even if the size of the Add object is large, an Add can be executed atomically as a sin-

gle step). Using these simple implementations, one could get improved performance for

several previously presented algorithms [7, 15, 40, 57].

By plugging in to Sim the implementation of collect discussed above, the step com-

plexity of Sim becomes constant as well. Jayanti [42] has proved a lower bound of Ω(log n)

on the step complexity of any oblivious universal synchronization algorithm using LL/SC

objects; an oblivious universal synchronization algorithm does not exploit the semantics

of the object being simulated. This lower bound holds even if the size of the base objects

used by the universal synchronization algorithm is unbounded. One of the open problems

mentioned in [42] is the following: ”If shared-memory supports all of Read, Write, LL/SC,

Swap, CAS, Move, Fetch&Add, would the Ω(log n) lower bound still hold?” Sim has constant

step complexity and it uses a single Add (or XOR) object in addition to an LL/SC object,

thus proving that the lower bound in [42] can be beaten if we use just a single Add (or XOR)

object in addition to an LL/SC object. So, an Ω(log n) lower bound can be derived for

the step complexity of any implementation of an Add, XOR, collect, or a snapshot object,

from LL/SC objects.

8

Sim is an efficient wait-free implementation of the well-known combining technique [29,

34, 37, 52, 54, 56, 60]. Most of the previous implementations of this technique, including

the algorithm presented in [52] (which we will call OyamaAlg from now on) and flat-

combining [34], employ locks and therefore they are blocking (i.e. threads may have to

wait for actions performed by other threads in order to make progress). Specifically, in

those algorithms, a thread, called the combiner, holding a coarse-grain lock, serves, in

addition to its own request, active requests announced by other threads while they are

waiting by performing local spinning (and possibly periodical checking of the lock status).

We present a practical version of Sim, called P-Sim, which we have implemented and

experimentally tested on a real shared memory machine. We provide a detailed exper-

imental analysis illustrating that P-Sim is highly-efficient in practice. Specifically, our

experiments show that P-Sim outperforms several state-of-the-art synchronization algo-

rithms, both lock-based (like local spinning) and lock-free (Figures 5.2-5.12). Moreover,

the performance of P-Sim is as good as that of the best-known implementations [34, 52]

of the combining technique, and in some cases even better than them. More specifically,

we experimentally compare P-Sim with OyamaAlg [52], flat-combining [34], CLH spin

locks [23, 47], and a simple lock free algorithm. Our experiments (Figure 5.2) show that

P-Sim outperforms all these algorithms in several cases. Besides that, P-Sim is wait-free

whereas all other algorithms ensure only weaker progress properties. P-Sim proves that

the common belief that ensuring wait-freedom is too expensive to be practical is in many

cases wrong.

We have used P-Sim to design new highly-efficient wait-free implementations of com-

mon concurrent data structures like queues and stacks. We experimentally prove that

our stack implementation, called SimStack, outperforms most well-known previous shared

stack algorithms, like the lock-free stack implementation of Treiber [58], the elimination

back-off stack [35], a stack implementation based on a CLH spin lock [23, 47], and a linked

stack implementation based on flat-combining [34]. Similarly, our queue implementation,

called SimQueue significantly outperforms the following previous queue implementations:

a lock-based algorithm [50] which uses two CLH locks [23, 47], the lock-free algorithm pre-

sented in [50], and the implementation using flat-combining provided by Hendler et. al [34].

In this dissertation, a further investigation of the combining technique is provided

aiming at discovering where its real performance power resides, understanding the perfor-

9

mance implications of using different primitives when implementing it, and investigating

whether and how ensuring some desired properties (e.g., fairness in serving requests) would

impact performance. We do so by presenting two new blocking implementations of this

technique. The first, called CC-Synch, is suitable for cache coherent (CC) shared memory

systems where accesses to shared objects are performed via cached copies of them; an

access to a shared object is a remote memory reference (RMR) if the cached copy of this

object is invalid, so the access causes a cache miss∗. The vast majority of modern parallel

architectures follow the CC shared memory model. The second implementation, called

DSM-Synch, is better suited for the cache-less NUMA shared memory systems, where a

part of the shared memory is associated with each processor; so, each shared object is

allocated (and resides) in the part of the shared memory that is associated to a specific

processor. Processors do not have access to local caches, so a thread p performs a remote

memory reference (RMR) if it accesses a shared object residing in the shared memory

part of some processor other than that where p is being executed. Since an RMR is sig-

nificantly more costly than a local memory reference [49], it is highly desirable to design

algorithms that perform as few RMRs as possible; CC-Synch and DSM-Synch perform a

bounded number of RMRs.

CC-Synch and DSM-Synch use a single FIFO queue to both implement the lock and

store the active synchronization requests. Therefore, the synchronization needed for im-

plementing the list of active requests comes for free. Specifically, each newly activated

thread adds a node to the tail of the queue to announce its request and participate to the

implementation of the lock. Thus, each active thread is assigned one of the nodes of the

queue. The active thread q that owns the first node of the queue becomes the combiner

and undertakes the responsibility of applying some (or all) of the requests listed in the

queue. Each active thread whose node is not first in the queue performs local spinning.

The experimental analysis (Section 6.4) reveals that the use of a highly-efficient queue-

like lock which, in addition to its low synchronization overhead, provides the implemen-

tation of the list of announced requests for free, significantly reduces the synchronization

required to implement the combining technique. Moreover, the new implementations are

simpler to program than previous combining-based synchronization approaches [34, 52].

∗ Once the cache miss is served and as long as the data item is not updated by threads that are being
executed on other processors, future accesses to the data item by threads that are being executed on this
processor are local.

10

These result in a performance benefit in comparison to P-Sim as well as to any other al-

gorithm provided in the past. Additionally, the new implementations exhibit several nice

properties, not ensured by previous blocking combining implementations [34, 52]. First,

they provide stronger fairness guarantees in serving the requests. Second, they provide

bounds on the number of remote memory references that are executed. Specifically, in

CC-Synch, the combiner thread performs O(h+ t) RMRs, where h is an upper bound on

the number of synchronization requests that the combiner may serve, and t is the size of

the shared data that should be accessed in order to execute these h requests; we remark

that h is a parameter that can be determined by the user and it can be chosen to be

constant. The combiner in DSM-Synch performs O(dh) RMRs, where d is the average

number of RMRs required to serve a single request. In both algorithms, all threads, other

than the combiner, perform local spinning and cause only a constant number of RMRs.

Thus, the amortized number of performed RMRs is O(d). Moreover, no thread may ever

starve. Finally, the new implementations do not employ any form of backoff and they

need minimal tuning to achieve the best performance.

CC-Synch uses a Swap object in addition to Read-Write base objects. DSM-Synch

uses an object that supports CAS and Swap in addition to Read-Write base objects; a

CAS(O, u, v) (atomically) checks if the current value of O is u and if this is so, it changes

the value of O to v and returns true, otherwise the value of O remains unchanged and false

is returned. CC-Synch and DSM-Synch use just one primitive stronger than Read-Write

base objects and in CC-Synch this is a Swap object which is weaker than CAS. In CC-Synch,

each thread maintains a single node to insert in the list, and therefore the total space

overhead of CC-Synch is O(n), where n is the number of threads; this is no more than

that of previous combining-based synchronization approaches. The total space overhead

for DSM-Synch is also O(n).

We experimentally compare CC-Synch and DSM-Synch with several state-of-the-art

synchronization approaches, like P-Sim, flat-combining [34], CLH spin locks [23, 47], and

a simple lock free algorithm. The experiments (Figures 6.1-6.10) show that CC-Synch

outperforms all these approaches in most cases. DSM-Synch outperforms all algorithms

other than CC-Synch. DSM-Synch has the advantage over CC-Synch that it is designed

to be efficient even in machines that support the DSM model; so, it can be executed

efficiently by architecture unaware applications.

11

The experimental analysis reveals that the number of cache misses incurred per re-

quest is smaller in the new implementations than in previous algorithms and the same is

true for the cycles invested in memory stalls. Based on experiments, we conclude that the

algorithm of repeatedly performing CAS until it succeeds, even if it comes together with an

appropriately-tuned back-off scheme, causes more cache misses and more branch mispre-

dictions than employing Swap or other non-comparison primitives. Experiments also show

that the average number of requests served by a combiner in CC-Synch and DSM-Synch is

larger than in other algorithms, so the synchronization overhead paid to serve an amount

of requests in these implementations is closer to the ideal than in previous approaches. So,

the achieved combining degree has a significant impact on the performance of combining

implementations.

We used CC-Synch and DSM-Synch to implement shared stacks and queues (Sec-

tion 6.5). The stack implementation (CC-Stack) based on CC-Synch, outperforms all

state-of-the-art shared stack implementations like SimStack, the linked stack implemen-

tation based on flat-combining [34] where elimination has also been applied [35], and the

stack implementation based on CLH spin locks [23, 47]. The stack implementation (DSM-

Stack) based on DSM-Synch, outperforms all implementations other than CC-Stack. We

also use CC-Synch and DSM-Synch to get two highly efficient shared queue implemen-

tations, called CC-Queue and DSM-Queue. More specifically, these implementations are

derived by simply replacing the ordinary locks in the two-locks queue implementation

presented by Michael and Scott in [50] with two instances of either CC-Synch or DSM-

Synch. These implementations were experimentally compared to SimQueue, the two-locks

implementation [50], and the queue implementation based on flat-combining presented in

[34]. CC-Queue performs up to 2.5 times faster than the queue implementation of [34] and

outperforms SimQueue by a factor of up to 1.5.

For modern multi-core systems that organize the cores into clusters and provide fast

communication (via shared caches) to the threads running in the same cluster and much

slower communication across clusters, we present an hierarchical version of CC-Synch,

called H-Synch, which exploits the hierarchical communication nature of such systems

to achieve better performance. Experiments show that in such systems, H-Synch signifi-

cantly outperforms CC-Synch and DSM-Synch as well as the state-of-the-art flat-combining

NUMA locks recently presented by Dice et. al in [24]. H-Synch is used to design highly

12

efficient implementations of stacks and queues for such machines. These implementations

outperform by far, in such machines, CC-Stack, DSM-Stack, CC-Queue and DSM-Queue,

respectively, as well as all other concurrent stack and queue implementations with which

these implementations have been compared.

Many hardware manufactures have been influenced by the universality result [36], and

they have equipped their machines with strong atomic primitives (like CAS and LL/SC).

Sim shows that machines that additionally support Add instructions, have important per-

formance advantages, and can ensure wait-freedom. CC-Synch and DSM-Synch show that

machines that support Swap objects have even better performance benefits. We believe

that the results of this dissertation provide some motivation for seeing primitives such as

Add provided in the instruction set of more architectures in the future.

Note that CC-Synch, similarly to Sim and flat-combining [34], cannot be trivially ap-

plied in an efficient way for designing data structures such as search trees, where m lookups

can be executed in parallel performing just a logarithmic number of shared memory ac-

cesses each. In such cases, it is expected that CC-Synch will perform well, only if several

instances of it are employed. It is an interesting open problem to find efficient ways to

synchronize these instances. It is also not obvious how to use the combining technique to

implement data structures, like shared linked lists, if several instances of the combining

implementation should be employed to achieve good speed-up.

The synchronization algorithms of the RedBlue synchronization algorithms have been

presented in DISC ’09 [27], synchronization algorithms based on Sim have been presented

in SPAA 2011 [28] and an extended version will appear to Theory of Computing Systems

Special Issue on SPAA 2011, while the Synch synchronization algorithms are presented

in PPoPP [29].

This dissertation is organized as follows. The related work is discussed in Chapter 2.

The model of the system is described in Chapter 3. In Chapter 4, the family of RedBlue

algorithms is presented. The family of Sim algorithms is provided in Chapter 5. Finally,

the family of Synch algorithms is presented in Chapter 6.

13

Chapter 2

Related Work

In [36], Herlihy provides the first wait-free universal synchronization algorithm using Read-

Write base objects and consensus objects. This universal algorithm can be used to sim-

ulate any other shared object in a system of n threads. Herlihy’s algorithm uses O(n2)

Read-Write base objects and O(n2) consensus objects of size s, where s is the size of

the state of the simulated object. The consensus objects can be easily implemented by

using CAS or LL/SC base objects [36]. The step complexity of Herlihy’s synchronization

algorithm is O(n).

Afek, Dauber and Touitou [4] have presented algorithm GroupUpdate which also uses

a tree technique to keep track of the list of active threads. They then combine this tree

construction with Herlihy’s universal algorithm [36, 37] to get a universal construction

with time complexity O(k log k + W + kD), where W is the size (in words) of the sim-

ulated object state and D is the time required for performing a sequential request on

it. F-RedBlue retains the basic structure of GroupUpdate but achieves better time com-

plexity (O(min{k, log n})) by employing a faster mechanism to discover the encountered

contention and by using large LL/SC base objects. S-RedBlue addresses the problem of

using large base objects still achieving better time complexity than GroupUpdate.

Although the first of the RedBlue algorithms shares a lot of ideas with GroupUpdate, it

also exhibits several differences: (1) it employs two complete binary trees each of which has

one more level than the single tree employed by GroupUpdate; in each of these trees, each

14

thread is assigned its own leaf node which identifies a unique path (from the root to this

leaf) in the tree for the thread; (2) threads traverse the red tree first in order to occupy a

node and this procedure is faster than a corresponding procedure in GroupUpdate. More

specifically, GroupUpdate performs a BFS traversal of its employed tree in order for a

thread to occupy a node of the tree, while each thread in any of the RedBlue algorithms

always traverses appropriate portions of its unique path. This results in reduced time

complexity for some of the RedBlue algorithms.

Afek, Dauber and Touitou [4] present a technique that employs indirection to reduce

the size of the base objects used by GroupUpdate (each tree base object stores a thread

id and a pointer to a list of ids of currently active threads). A similar technique can

be applied to the RedBlue algorithms in case n is too large to have n bits stored in a

constant number of LL/SC base objects. The resulting algorithms will have just a pointer

stored in each of the blue nodes (thus using smaller base objects than GroupUpdate which

additionally stores a thread id in each of its LL/SC base objects). However, employing

this technique would cause an increase to the step complexity of our algorithms by an

O(k log n) additive term.

Afek, Dauber and Touitou present in [4] a second universal construction, called Indi-

vidualUpdate, that has time complexity O(k(W + D)). IndividualUpdate stores sequence

numbers in base objects and therefore it requires unbounded size base objects or base

objects that support the VL request in addition to LL and SC. The first two RedBlue algo-

rithms achieve better time complexity than IndividualUpdate. Some of our algorithms use

single-word base objects (however, they also employ LL/VL/SC objects).

Afek, Dauber and Touitou [4] discuss a method similar to that presented in [17] to

avoid copying the entire object’s state in IndividualUpdate. The resulting algorithm has

time complexity O(kD logD). The work of Anderson and Moir on universal constructions

for large objects [11] follows this work. Our last two algorithms improve in terms of time

complexity upon the constructions presented in [11]. They achieve this using single-word

base objects (and the last algorithm with the same space complexity as the wait-free

construction in [11]).

Jayanti [43] presented f-arrays, a generalized version of a snapshot object which al-

lows the execution of any aggregation function f on the m elements of an array of m

memory cells that can be updated concurrently. As F-RedBlue, f-arrays has time com-

15

Algorithm Primitives Shared Memory Accesses Required Space

Wait-free synchronization algorithms presented in this dissertation
F-RedBlue LL/SC O(min{k, log n}) O(n2 + s)

S-RedBlue LL/VL/SC, r/w regs O(k + s) O(n2 + ns)

LS-RedBlue LL/VL/SC, r/w regs O(B + k(w + TL)) O(n2 + n(B + kTL))

BLS-RedBlue LL/VL/SC, r/w regs
O((k/min{k,M/T}) (B +
ML+ k + min{k,M/T}w))

O(n2 + n(B +ML))

Sim LL/SC or CAS, FAD O(1) O(n+ s)

P-Sim LL/SC or CAS, Fetch&Add O(n+ s) O(n2 + ns)

Related Work
Herlihy [36] consensus objects, r/w regs O(n) O(n3s)

Herlihy [37] LL/VL/SCor CAS, r/w regs O(n+ s) O(ns)

GroupUpdate [4]
LL/SC r/w regs, consensus

objects
O(min{n, k log k}) O(n2s log n)

IndividualUpdate [4] LL/VL/SC O(kw logw) O(nw + s)

Anderson & Moir
[10]

LL/VL/SC
O((n/min{k,M/T}) (B+

ML+ nw))
O(n2 + n(B +ML))

Chuong, et. al [20] CAS, r/w regs O(nw) O(n+ s)

Table 2.1: Wait-free universal algorithms and their complexities.

plexity O(min{k, log n}); the algorithm uses a tree structure similar to that employed by

GroupUpdate and our algorithm. F-RedBlue is universal, thus achieving wider functional-

ity than f-arrays. Constructions for other restricted classes of objects with polylogarithmic

complexity are presented in [19].

Afek et al. [5, 6] and Anderson and Moir [10] have presented universal algorithms

for multi-object requests that support access to multiple objects atomically. The main

difficulty encountered under this setting is to ensure good parallelism in cases where

different requests perform updates in different parts of the object’s state. In Table 2.1, a

comparison between the wait-free algorithms proposed in this dissertation and previous

work is displayed. Notice that w is the maximum number of different memory words

accessed by an operation on the sequential data structure. In [10, 27], B is the number

of blocks, each of size L, required to store the object’s state, and each thread is allowed

to modify at most T blocks and help at most M/T other threads, where M ≥ 2T is some

integer.

P-Sim uses an efficient implementation of the Add-based collect object. This allows a

thread to read only the announcement records of those requests that are active improving

upon the technique described in [37] where threads read all n such records. Furthermore,

in P-Sim each thread uses its own pool of structs to store the simulated state. In the

recycling technique of [37] threads share the same pool which leads to a significantly higher

16

number of cache misses. P-Sim validates not only whether the copied state is consistent

(as does the validation mechanism in [37]), but also if the reference to the shared state

has changed in the meantime. If the validation fails, P-Sim avoids performing unnecessary

work. Moreover, P-Sim uses a simple backoff scheme to guarantee that a thread executing

a request will help a large number of other active threads; in [37], the employed backoff

scheme aims at reducing the contention in updating the LL/SC object.

Herlihy [37] starts by presenting a lock-free version of the universal synchronization

algorithm where each thread does not help requests initiated by other threads. It rather

performs LL on the reference to the simulated state, copy the state locally and apply its

SC; these actions are applied repeatedly until the SC succeeds. Experiments presented

in [37] show that Herlihy’s wait-free implementation does not perform well in comparison

to this lock-free version and a Test-And-Test-And-Set spin lock (with backoff).

The combining technique is old. It was first been introduced by Gottlieb et. al

on network switches [31] that connect processors to memory; messages with the same

destination were merged to reduce memory traffic and contention. Software combining

was first realized in combining trees [30, 60], at which requests to modify a concurrent data

structure are transferred from the leaves of the tree towards the root applying combining

at every internal node. However, each thread applies Θ(log n) CAS operations per access

and therefore the synchronization overhead is high. To reduce this overhead a lot of

research work has focused on designing adaptive versions of combining trees [32, 49]

(e.g., for implementing barriers) or decentralized algorithms for dynamically changing tree

size [55, 56]. For some of these algorithms [32, 49], it is not clear how they can be used to

design general concurrent data structures, others [55] satisfy weaker consistency conditions

than linearizability, and for others, experiments [34] have shown that the synchronization

overhead they introduce is still high.

Oyama, Taura and Yonezawa present in [52] a different approach for implementing

the combining technique. Their algorithm uses a coarse-grain lock implemented with a

CAS object O, and a list of announced requests implemented as a stack. Each thread has

a record that it uses to announce its request by pushing it in the stack. The CAS object

may store the values free, locked, or a pointer to some of the threads’ records. A thread

with a newly-activated request first performs a CAS in an effort to change the value of O

from free to locked. If this CAS succeeds, the thread becomes the combiner and starts

17

executing its request. Otherwise, the thread tries to announce its request by inserting its

record in the stack; this is done by repeatedly performing CAS on O to change its value

from locked to a pointer to its record. If this succeeds, the thread performs local spinning

on its record until the combiner thread notifies it that its request has been served. When

the combiner finishes the execution of its own request, it tries to change the value of O

from locked to free by performing a CAS. If this CAS is successful, the stack is empty,

i.e. no other thread has an active request, so the work of the combiner is done and the

combiner can return. On the opposite case, the combiner performs a Swap to store in O

the value locked and get a pointer to the stack of announced requests. Then, it serves

all the requests listed in the stack. After this, it tries again to change the value of O from

locked to free using CAS. In the meantime, other newly-activated threads may have

created a new stack pointed to by O. So, the combiner thread must apply the procedure

described above again until it manages to change the value of O from locked to free

which would mean that there are no more active requests in the system.

OyamaAlg [52] has several drawbacks. First, the list of announced requests is treated

in a LIFO way, so requests are not served in the order they enter it. CC-Synch and

DSM-Synch provide a stronger notion of fairness since they serve requests in FIFO order

of entering the list. Moreover, in OyamaAlg, the combiner may starve since there may

always be newly-activated requests, so the combiner may never manage to change the

value of O from locked to free; other threads may also starve when they repeatedly

try to insert their record in the list. In our algorithms, the combiner can choose how

many requests it will serve and no thread ever starves. Finally, the algorithm in [52]

has significant performance overheads in comparison to CC-Synch and DSM-Synch for

the following reasons. First, threads need to succeed on a CAS in order to have their

requests announced; this causes a lot of contention and leads to a significant performance

degradation. Second, the number of RMRs performed by any thread is unbounded since

threads may starve as described above.

Flat-combining has been presented by Hendler et. al in [34]. As in OyamaAlg, flat-

combining employs a global lock that protects the shared data and a list of announced

requests; the global lock is again implemented using a CAS object O. There are however

two main differences between flat-combining and OyamaAlg. First, the list of announced

requests usually contains one record for each thread independently of whether it has a

18

currently active request; this reduces the number of insertions in the list. However, it

increases the work of the combiner which should now traverse a longer list than necessary.

To avoid this extra overhead, the combiner cleanups the list periodically keeping in it only

records of threads that have recently initiated a request. A thread that initiates a request

starts by checking if its record is in the list; if not, it first tries to insert it (as the first

record of the list). Second, the CAS object O is not used to manipulate the head of the

list as in OyamaAlg. This results in less overhead since the combiner does not interfere

with threads that are trying to insert their records in the list.

Dice, Marathe and Shavit [24] have recently presented an hierarchical spin-lock im-

plementation, called flat-combining NUMA lock; this hierarchical lock is based on flat-

combining and exploits the cache hierarchies in order to provide good performance. As it

is shown in [24], this lock implementation greatly outperforms the previous (hierarchical

and non-hierarchical) spin-lock implementations presented in [23, 46, 47, 49, 53]. H-Synch

exhibits a significant performance improvement over the flat-combining NUMA locks [24],

since it (1) is simpler, (2) employs combining to serve the thread requests in each cluster,

whereas this is not the case in the hierarchical lock presented in [24], and (3) is based

on CC-Synch which performs better than flat combining. Our experiments show that not

only H-Synch, but also CC-Synch outperforms flat-combining NUMA locks, CC-Synch by

a factor of up to 1.65 (Figure 6.2) and H-Synch by a factor of up to 2.65 (Figure 6.2).

Our stack and queue implementations based on H-Synch outperform the stack and queue

implementations based on flat-combining NUMA locks by similar factors.

CC-Synch implements a combining-friendly version of the CLH queue lock [23, 47]; in

contrast to the CLH implementation where the maintained queue is implicit, the queue

maintained by CC-Synch is explicit so that the combiner can traverse it. DSM-Synch

implements a combining-friendly version of the MCS spin lock [49].

CC-Synch and DSM-Synch provide a stronger notion of fairness than flat-combining

since in flat-combining requests, that have been inserted in the list later than other re-

quests, may be served first. In flat combining, the combiner cannot starve but this does

not come without an extra performance overhead; specifically, the combiner may choose

to return without serving all the active requests in the list, but this makes it necessary to

have each active thread checking regularly whether the coarse-grain lock has been released

by the combiner and if yes, trying to become a combiner itself instead of performing just

19

local spinning. Finally, flat combining experiences performance overheads in comparison

to CC-Synch and DSM-Synch. First, in CC-Synch and DSM-Synch no extra cost is paid

for maintaining the list of active requests since this list is provided for free by the imple-

mentation of the lock. Second, the cost paid by the combiner is larger in flat combining

since the combiner usually has to traverse a longer list than necessary. Finally, threads in

flat combining may perform an unbounded number of RMRs when trying to insert their

records in the list.

Treiber has presented a lock-free shared stack implementation in [58]. Treiber’s shared

stack is implemented as a linked list and there is a CAS base object that points to the top-

most element. Each thread that wants to Push/Pop an element to the stack repeatedly

performs CAS instructions to the CAS object trying to Push/Pop a node to the top of the

linked list. The performance of Treiber’s stack is significantly enhanced by employing a

simple adaptive backoff scheme.

Hendler, Shavit and Yerushalmi [35] use an elimination layer on top of Treiber’s lock-

free stack. The elimination layer offers the ability to eliminate concurrent Push/Pop

operations instead of competing to modify the CAS object that points to the topmost

element of the stack. In cases of high contention, this results to a better scaling compared

to Treiber’s lock-free implementation.

Hendler et. al in [34], use an instance of flat-combining in order to implement a

scalable blocking shared stack. This results to better performance comparing to the lock-

free stack implementation presented in [58] and the elimination scheme presented in [35].

SimStack achieves much better performance than the lock-free stack implementation pre-

sented in [58], the elimination algorithm algorithm of [35] and the shared stack based

on flat-combining [34] (see Section 5.3). Furthermore, SimStack ensures stronger notion

of progress, since it is wait-free. CC-Stack, DSM-Stack and H-Stack offer even better

performance but they are blocking.

Michael and Scott [50] present a lock-free implementation of shared queue that is

implemented using a linked-list. There are two CAS base objects; the first object points

to the head of the queue, while the second one points to the tail of the queue. Threads

that want to Enqueue/Dequeue elements to the shared queue repeatedly perform CAS

instructions to these CAS objects. In the same paper, Michael and Scott present a blocking

alternative of the lock-free queue. Similarly to the lock-free queue, the blocking queue

20

is implemented using a linked-list. Two ordinary locks are used, the first one protects

the head of the list and the second protects the tail of the list. This gives the ability to

enqueuers and dequeuers to run independently.

Hendler et. al [34], uses an instance of flat-combining in order to implement a scalable

blocking shared queue implementation, which is called FCQueue. In the experiments

presented in [34], it is shown that FCQueue outperforms prior work (i.e the lock-free queue

implementation of [50], a queue implementation based on OyamaAlg, etc). SimQueue

achieves much better performance than the lock-free queue implementation presented

in [50] and the shared queue based on flat-combining [34] (see Section 5.3). Furthermore,

SimQueue ensures stronger notion of progress, since it is wait-free. CC-Queue, DSM-Queue

and H-Queue offer even better performance but they are blocking.

21

Chapter 3

Model

3.1 General

3.2 Pseudocode conventions

3.1 General

We consider an asynchronous system of n threads, p1, . . . , pn, each of which may fail by

crashing. In case of thread failure, the thread simply stops executing its algorithm, i.e. it

stops taking steps. Threads communicate by accessing shared base objects. Each shared

base object stores some information and provides operations to threads to read and modify

the stored information; these operations may be executed by threads concurrently.

The most basic shared object is a Read-Write base object R which stores a value and

supports two atomic operations: Read(R) which returns the current value of R and leaves

its content unchanged, and Write(R, v) which writes the value v into R and returns an

acknowledgment. A base object is multi-writer if all threads can change its content; on

the contrary, a single-writer base object can be modified only by one thread. A base

object is unbounded if the set of values that can be stored in it is unbounded; otherwise,

the base object is bounded.

22

An Add object O supports two atomic operations Read(O) and Add(O, v). Opera-

tion Add(O, v) adds the (positive or negative) value v to the value of O and returns an

acknowledgment, while operation Read(O) returns the value stored in O.

An LL/SC object O supports the atomic operations LL and SC. LL(O) returns the

current value of O; the execution of SC(O, v) by a thread p must follow the execution of

LL(O) by p, and changes the contents of O if O has not changed since the execution of

p’s latest LL on O. If SC(O, v) changes the value of O to v, true is returned and we say

that the SC is successful; otherwise, the value of O does not change, false is returned and

we say that the SC is not successful or it is failed. Some LL/SC base objects support the

operation VL in addition to LL and SC; when executing by some thread p, VL returns true

if no thread has performed a successful SC on O since the execution of p’s latest LL on

O, and false otherwise.

A CAS object O supports in addition to operation Read(O), the atomic operation

CAS(O, vold, vnew) which stores vnew to O if the current value of O is equal to vold and

returns true; otherwise the contents of O remain unchanged and false is returned. A Swap

object stores a value from a set V and in addition to Read(O), it supports the atomic

operation Swap(O, v), which stores v to O and returns the current value of O.

An active set is a shared object that identifies the set of threads that participate

in some computation; it supports the operations (1) join which is called by a thread to

identify its participation to the computation, (2) leave to request removal from the set of

participating threads, and (3) getSet which returns the set of the currently participating

threads.

A collect object consists of n components A1, ..., An, one for each thread, where each

component stores a value from some set; it supports the operations (1) update(v) which,

when executed by pi, it stores the value v in Ai, and (2) collect which returns a vector

of n values, one for each component.

A universal object simulates any other shared object. It supports an operation, called

ApplyOp(operation op), which simulates the execution of operation op on the simulated

object; ApplyOp returns the return value of operation op.

An implementation of a (high-level) object from base objects provides, for each opera-

tion of the simulated object and for each thread, an algorithm that uses the base objects

23

to implement the operation. An implementation of a universal object is called oblivious

if it does not exploit the semantics of the type of the simulated object.

A configuration consists of a vector of n+r values, where r is the number of base objects

in the system; the first n attributes of this vector describe the state of the threads, and the

last r attributes are the values of the r base objects of the system. Thus, a configuration

C describes the system at some point in time. At an initial configuration, the base

objects contain initial values and each thread is in an initial state. A thread completes

the execution of a step each time it executes an operation on a shared object (i.e. a step

consists of a single operation on a base object and possibly some local computation). An

execution α is a sequence of steps executed by threads. An execution fragment of α is a

part of α consisting of any number of consecutive steps. A thread starts the execution

of a (simulated) operation by invoking its algorithm and finishes it when it gets back

a response; thus, for each instance of an operation that is executed in α, there is an

invocation and a response. A thread is active at some configuration C, if it has invoked

an operation op at C but it has not yet issued a response for op; in this case, we also say

that op is active at C. The execution interval of op is the part of the execution that starts

with op’s invocation and ends with op’s response.

An implementation is blocking if a thread may have to wait for some event caused

by another thread. An implementation is wait-free [36] if in each execution, each thread

finishes the execution of every operation it initiates within a finite number of steps in-

dependently of the speed or the failure of other threads. Wait-freedom is the strongest

non-blocking progress property. A weaker such property is lock-freedom, which ensures

that some thread finishes the execution of an operation within a finite number of steps.

For the sake of studying the performance of blocking algorithms, we consider that the

system’s shared memory is divided into memory chunks. Each memory chunk stores a

number of base objects and is associated with some processor. We consider two shared

memory models. In cache-less NUMA machines (this model is also known as DSM), a

thread p performs a remote memory reference (RMR) if it accesses a base object residing in

the memory chunk associated with some processor other than p; all other memory accesses

by p are called local. In cache-coherent (CC) machines, accesses in shared memory are

performed on cached copies of the base objects. In this case, if the cached copy of the

base object is invalid, the memory reference is called remote. Then, a cache miss occurs

24

and a valid copy of the base object should first be fetched in the local cache before it can

be accessed. It is worth pointing out however that once this occurs and as long as the

base object is not updated by other processors, all future accesses to the base object by

the processor are local. This is not the case in the DSM model, where every access to a

base object that resides in a remote memory is remote. We remark that since an RMR is

significantly more costly than a local memory reference, our goal when designing blocking

algorithms, is have them to perform as few RMR as possible.

For the sake of studying the performance of non-blocking algorithms, we define the step

complexity of an operation, to be the maximum number of steps that a thread performs to

complete such an operation in any execution. The step complexity of an implementation

is the maximum between the step complexities of the operations of the simulated object.

The interval contention of an instance of an operation in an execution α is the max-

imum number of threads that are active in the execution interval of this instance. The

interval contention of an operation in an execution α is the maximum number of threads

that are active in the execution interval of any instance of the operation in α. The total

contention of an execution α is the total number of threads that have taken steps in

α. If the step complexity of an implementation depends on the interval (or the total)

contention of the simulated operations in each execution, and not on the total number of

threads n, then the implementation is called adaptive.

Let α be any execution. Linearizability [39] ensures that, for each operation op on the

simulated object in α, there is some point, called linearization point, within the execution

interval of op, such that op appears as if it has executed instantaneously (or as so called

atomically) at this point; more specifically, the response returned by op in α should be the

same as the response op would return if all operations in α were executing sequentially

in the order determined by their linearization points. When this holds, we say that the

response of op is consistent. An implementation is linearizable if all its executions are

linearizable.

We remark that an implementation of a collect object does not have to be linearizable.

In such an implementation, the vector returned by each collect Col must contain, for

each component Ai, the value written by the last update U on Ai by pi that has finished

its execution before the invocation of Col (or the initial value if such an update does

not exist), given that pi has not started the execution of a new update U ′ in the interval

25

between the end of U and the end of Col. If pi has started the execution of a new update

U ′, then Col may return either the value of U ′ or that of U (or the initial value, if U does

not exist) for Ai. Moreover, an instance of collect G which has started its execution

after the response of some other instance of collect G′, must return, for each component

Ai, either the same value v with that returned by G or some value v′ that has been written

in Ai by an update U ′ which has started its execution after the response of the update

U that writes into Ai the value v read by G. A similar correctness property must be

ensured by any implementation of an active set. A snapshot object is a linearizable

version of a collect object (we then use the term scan instead of collect). A snapshot

implementation is single-writer, if each component can be updated only by a specific

thread, so it is only this thread that can apply update operations to the component. In

multi-writer snapshots, each thread can execute update operations to any component.

3.2 Pseudocode conventions

The code description (pseudocode) of an algorithm for shared memory machines provides

pseudocode for every thread. The pseudocode of an algorithm for shared memory ma-

chines is similar to the pseudocode of serial algorithms. The pseudocode includes accesses

to local variables (thread’s local variables consist thread’s state) and accesses to shared

base objects. Shared base objects are similar to local variables, but the keyword shared is

inserted in the beginning of their declaration (e.g. the declaration shared int X; means

that base object X is a shared base object of type int, on the contrary int x; declares a

local variable). The first character of shared base object’s name is usually capitalized.

For simplicity, instead of using Read and Write instructions in the pseudocode, the

following conventions are used: (i) a reference to the shared base object at the left of

an assignment means that a Write instruction is executed on the base object, (ii) and

a reference to the shared base object at the right of an assignment means that a Read

instruction is executed on the base object. For example, if X and Y are shared base

objects, then the X = Y expression means that the value of Y is read and its value is

written to base object X. A simple expression of the pseudocode may contain a lot of

references to shared base objects. In such a case, the Read instructions to shared base

26

objects that are placed at the right of the expression are executed from left to right, the

returned values from the Read instructions are stored to temporary local variables, the

calculation of the expression is executed on the local variables and the result is written

to the base object appearing to the left part of the expression. For example, if X, Y and

Z are shared base objects, then X = Y + Z means that initially the value of Y is read

and its value is stored into a temporary local variable, after that Z is read and its value is

stored to a local variable, and finally the sum of local variables is written to base object

X. Comments in the pseudocode start with //.

27

Chapter 4

Adaptive Wait-Free

Synchronization Algorithms

4.1 The F-RedBlue algorithm

4.2 Modified version of F-RedBlue that uses small base objects

4.3 Adaptive synchronization algorithms for large objects

In this chapter, the family of RedBlue synchronization algorithms is presented. In

Section 4.1, we present F-RedBlue. In Section 4.2, we present S-RedBlue, which is a

modified version of F-RedBlue that uses small base objects. Section 4.3 presents two

algorithms, LS-RedBlue and BLS-RedBlue. These algorithms combine techniques presented

in [11] and the techniques employed by S-RedBlue algorithms in order to achieve the nice

properties of the algorithms presented in [11] with better time complexity.

4.1 The F-RedBlue algorithm

In this section, we present the first algorithm of the RedBlue family, which is called F-

RedBlue. F-RedBlue has time complexity O(min{k, log n}), uses LL/SC and read-write

base objects, and is optimal in terms of time complexity.

28

4.1.1 Algorithm description

We first describe a relatively simple wait-free algorithm that F-RedBlue is based on. This

simple algorithm uses a perfect binary tree (called the blue tree) of dlg ne+ 1 levels, each

node of which is a LL/SC object. We assume that the root node is placed at level dlg ne+1

and that the leaf nodes are placed at level 1. Each thread p owns one of the tree leaves

and it is the only thread capable of modifying this leaf. Thus, there is a unique path pt(p)

(called blue path for p) from the leaf node assigned to p up to the root. The LL/SC object

of each node stores an array of n request types (and their parameters), one for each thread

to identify the request that the thread is currently executing. The root node additionally

stores the state of the simulated object and the return value for the last request applied

to the simulated object by each thread. We denote by ŝ, the initial value of the state

field.

Whenever thread p wants to apply a request req to the object, it moves up its path

until it reaches the root node and ensures that its request req is recorded in all nodes of

the path by executing two LL/SC on each of them. If any of the LL/SC that p executes on

some node succeeds, req is successfully recorded in it; otherwise, the algorithm guarantees

that req is recorded for p in the node by some other thread before the execution of the

second of the two SC instructions executed by p. In this way, req is propagated towards

the root where req is applied to the object. Besides that, p records in each node the

requests that are being executed by other active threads in an effort to help them finish

their executions. Successful SC instructions that are executed at the root node may result

the application of several requests to the simulated object. In this way, the algorithm

guarantees wait-freedom.

Once p ensures that req has been applied, it traverses its path from its leaf up to the

root once more to eliminate any evidence of its last request by overwriting req with the

special value ⊥. This allows p to execute additional requests later on the simulated object.

A new request req′ by p, is applied to the simulated object only if req′ is propagated to

the root node and the thread p thats stores it, finds that the previous value for p is ⊥.

This relatively simple algorithm requires O(log n) steps to execute. In order to make

it adaptive, F-RedBlue uses one more tree (the red tree), isomorphic to the blue tree

(Figure 4.1). Each thread p is assigned a leaf node of the red tree which identifies a

29

threads 1 2 3 4 5 6 7 8

level 1

level 3

level 2

level 4

blue treered tree

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 4.1: The red and the blue tree of F-RedBlue for n = 8.

unique path from the root to this leaf (red path for p). The red tree allows threads

to obtain information about the encountered contention which is then used to shorten

the paths that threads traverse in the blue tree (i.e. a thread starts its traversal of its

blue path possibly from some internal node of blue the tree (instead of starting from its

assigned leaf) which is at a level that depends on the encountered contention).

Each node of the red tree stores information about the request req of a single (active)

thread. We then say that p “occupies” the node. More specifically, each thread p first

tries to occupy a node of the red tree and then starts traversing (part of) its blue path.

In order to occupy a red node, p traverses its red path downwards starting from the

root, until it finds a clean node (i.e. a currently unoccupied node, such a node stores

the value < ⊥,−1 >) and manages to occupy it by recording its request type and its id

in it. We prove that each red node is occupied by at most one thread at any point in

time. An occupied node identifies a thread that is currently active, so as long as p reaches

occupied nodes, it encounters more contention. We prove that p will eventually reach an

unoccupied node and record the appropriate information there. In the worst case, p will

occupy its leaf node. Once p occupies some red node with id zr, it performs two traversals

of its blue path from the node of the blue tree that corresponds to zr up to the root. By

employing the red tree, threads traverse shorter paths in the blue tree. This improves the

time complexity of the algorithm to O(min{k, log n}), where k is the interval contention

of req.

We continue to provide a more technical description of F-RedBlue (Algorithm 1). Since

the blue (red) tree is perfect and there is only one such tree with dlg ne + 1 levels, we

implement it using an array bn (rn) of 2n−1 elements. The nodes of the tree are numbered

so that node z is stored in bn[z] (rn[z], respectively). The root node is numbered with 1,

30

struct RedNode{
request req;
int pid;

};
struct BlueNode{

state st; // this field is used only at the root node
RetVal rvals[n]; // this field is used only at the root node
request reqs[n];

};

shared RedNode rn[1..2n-1] = {< ⊥,−1 >, ..., < ⊥,−1 >};
shared BlueNode bn[1..2n-1]={<ŝ,< 0, ..., 0 >,<⊥, ...,⊥>>, ..., <ŝ,< 0, ..., 0 >,<⊥, ...,⊥>>};

RetVal F-RedBlue(request req){ // pseudocode for thread p
int direction = n/2, levels = lg(n) + 1;
int z = 1, l, j;
RetVals rv;

1 for (l=levels; l ≥ 1; l--) { // traversal of red path from the root node
2 LL(rn[z]);
3 if(rn[z] == < ⊥,−1 >)
4 if(SC(rn[z], <req, p>)) break;
5 if (p ≤ direction) { // find the next node in the path
6 direction = direction - 2l−3;
7 z = 2 * z; // move to the left child of z
8 } else{
9 direction = direction + 2l−3;
10 z = 2 * z + 1; // move to the right child of z

}
}

11 Propagate(z, p); // first traversal of blue path: propagating the request
12 rv = bn[1].vals[p];
13 LL(rn[z]);
14 SC(rn[z], < ⊥, p>); // the request occupying rn[z] starts its deletion phase
15 Propagate(z, p); // second traversal of blue path: propagating ⊥
16 LL(rn[z]);
17 SC(rn[z], < ⊥, -1>); // re-initialize the occupied red node to ⊥
18 return rv; // return the appropriate value
}

Algorithm 1: Pseudocode for F-RedBlue.

and the left and right children of any node z are nodes 2z and 2z + 1, respectively. Red

and blue trees for n = 8 are illustrated in Figure 4.1. Thread p, 1 ≤ p ≤ n, is assigned to

the leaf node numbered n+ p− 1. We remark that traversing up the path from any node

z to the root can be implemented in a straightforward manner: the next node of z in

the path is node numbered bz/2c. However, the downward traversal of the path requires

some more calculations which are accomplished by the lines 5− 10 of the pseudocode.

When a thread p wants to execute a request req, it first traverses its red path (lines

1 − 10). For each node z of this path, it checks if the node is unoccupied (line 3) and if

this is so, it applies an SC instruction to it in an effort to occupy it (line 4). If the SC is

31

void Propagate(int z){
BlueNode bt;

19 while (z!=0){ // traversal of the blue path
20 for (j=1 to 2) do{ // two efforts to store appropriate information at each node
21 LL(bn[z]);
22 bt=Calculate(z);
23 SC(z, bt);

}
24 z =bz/2c;

}
}

BlueNode Calculate(int z) {
BlueNode tmp=< ⊥, < 0, . . . , 0 >,< ⊥, . . . ,⊥ >>;
BlueNode blue=bn[z], lc, rc;
RedNode red = rn[z];
int q, range;

25 if (2*z+1 < 2n) { // in case that z is not a leaf node
26 lc = bn[2*z]; // read the contents of the left child in the blue tree
27 rc = bn[2*z+1]; // read the contents of the right child in the blue tree
28 range = 2lg(n)−dlg(z)e; // compute the number of leaves that each subtree has

// copy the requests placed on the left subtree
29 tmp.reqs[2q-range..2q] = lc.reqs[2q-range..2q];

// copy the requests placed on the right subtree
30 tmp.reqs[2q+1..2q+1+range] = rc.reqs[2q+1..2q+1+range];

}
31 if (red.pid 6= -1) tmp.reqs[red.pid]=red.req; // if thread q occupies a red node
32 if (z == 1) {
33 tmp.rvals[1..n] = blue.rvals[1..n]; // copy the return values
34 tmp.st = blue.st; // copy object’s state
35 for q=1 to n do{ // local loop

// apply any pending request
36 if (tmp.reqs[q] 6= ⊥ AND tmp.reqs[q] 6= blue.reqs[q])
37 apply tmp.reqs[q] to tmp.st and store into tmp.rvals[q] the return value;

}
}

38 return tmp; // a blue node is returned
}

Algorithm 2: Pseudocode for Calculate and Propagate of F-RedBlue.

successful, the traversal of the red path ends (line 4). Otherwise, the next node in the

path is calculated (lines 5− 10) and one more iteration of the loop is performed.

Once a red node zr has been occupied, req performs two traversals of (a part of) its

blue path starting from the node in the blue tree corresponding ro zr, up to the root. This

is accomplished by the two calls to Propagate (lines 11 and 15). Each of these traversals

propagates the request type written into zr to the root node. Notice that p records ⊥, as

its request type, into zr (lines 13−14) before it starts its second traversal (we remark that

32

threads 1 2 3 4 5 6 7 8

level 1

level 3

level 2

level 4

blue treered tree

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(a) Nodes with ids 1, 2, 3, 10 and 13 are occupied by active threads, all other nodes are unoccupied.

threads 1 2 3 4 5 6 7 8

level 1

level 3

level 2

level 4

blue treered tree

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(b) Thread p4 follows the path from node 1 to node 11 and occupies the first unoccupied node, which
is 5.

threads 1 2 3 4 5 6 7 8

level 1

level 3

level 2

level 4

blue treered tree

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(c) Thread p4 traverses the path from its occupied node 5 to the root node.

Figure 4.2: An example of an execution of F-RedBlue, where thread p4 applies an operation
to the simulated object.

this occurs by performing one more LL/SC since we assume that an LL/SC base object

supports only Read, LL, and SC and not Write).

On each node z of the traversed path, Propagate performs twice the following: (1)

an LL instruction on z (line 21); (2) calculates the appropriate information to write into

z by calling function Calculate (line 22); (3) an SC to store the result of Calculate into

z (line 23). Finally, it moves up to the next node of the blue path (line 24). Thread p

re-initializes its occupied red node by writing in it the value (⊥,−1) (lines 16− 17) just

before it returns.

33

Figure 4.2 shows an example of the application of some operation by thread p4 in a

system of 8 threads. Assume that p4 wants to apply some operation op and assume that

some nodes of the red tree are already occupied. More specifically, red nodes with black

circles are occupied by active threads (see Figure 4.2(a)). At first, p4 traverses the path

from the root node to its leaf until it occupies a red node (see Figure 4.2(b)). The first

unoccupied node from the root node to the leaf of p4, is node 5. After occupying this

node, p4 continues its execution with the traversal of the blue path. Now, p4 traverses the

path from the occupied node, which is 5, to the root node upwards (see Figure 4.2(c)).

In each node of this path, p tries to store the values read in both child-nodes and also the

value that is stored to the isomorphic red node.

We finally discuss the details of function Calculate. Function Calculate applies a

(potentially new) request for each thread q (lines 35−37) as described below. If q occupies

node with id z (line 31), then q’s new request is the one which is recorded into the red

node. Otherwise, the request for q is found in the previous node of that with id z in

q’s blue path. In case z is the root node (z = 1) and the calculated request for q is not

already written in z and it is different than ⊥ (line 36), then the request of q is a new

one and should be applied to the simulated object (line 37). This is simulated by calling

function apply.

4.1.2 Correctness proof

In this section we prove the correctness of F-RedBlue and analyze its time and space

complexity. In order to prove that F-RedBlue is correct, we first study the execution

fragment of a request req executed by thread p, where p traverses the red tree. Intuitively,

we prove that req manages to occupy exactly one red node, and as long as req is executed,

no other request succeeds in occupying this red node. After this point and once req finishes

its execution, it stores into this red node its initial value in order to allow its re-occupation

by some other request. We then study the properties of the execution fragment of req

that traverses the blue tree. We prove that if req occupies a red node with id zr, req

will be recorded into all nodes of the path starting from the blue node with id zr up to

the blue root. Therefore, req eventually reaches the root node and it is applied to the

34

object. We also prove that the application of each request occurs only once and that the

calculated response values are correct.

We first study the properties of the execution fragment of an F-RedBlue request req

that traverses the red tree. Intuitively, we prove that req manages to occupy a red node

(Lemma 4.1) from that point and as long as req is executed, no other request succeeds in

updating this red node (Lemmas 4.2 and 4.4). Once req finishes its execution, it stores

into its red node its initial value in order to allow its re-occupation by some other request.

Call the SC instructions of line 4 SC of type 1, the SC instructions of line 14 SC of

type 2, and the SC instructions of line 17 SC of type 3. Let p be any thread. By the

pseudocode, only p executes SC instructions on rn[n− 1 + p], the red leaf associated to p.

Thus, all these instructions succeed. Therefore, the condition of line 3 of the pseudocode

is evaluated to true when executed on rn[n− 1 + p] and, by the pseudocode, the sequence

of SC executed on rn[n − 1 + p] alternates between SC of type 1, SC of type 2, and SC

of type 3.

Observation 4.1. Let p be any thread. Then,

1. only thread p executes SC instructions on base object rn[n− 1 + p];

2. the condition of line 3, when executed on rn[n− 1 + p], is evaluated to true;

3. all SC on rn[n− 1 + p] succeed;

4. the sequence of SC executed on rn[n− 1 + p] alternates between SC of type 1, SC of

type 2, and SC of type 3.

Based on Observation 4.1, it is easy to prove that any request req, executed by some

thread p, performs a successful SC of type 1 at some node of the red tree, since, in the

worst case, this will occur at p’s red leaf, the last node of p’s red path.

Lemma 4.1. Any instance req of ApplyOp executes a successful SC instruction of type

1 at some node of the red tree.

Proof. Let p be the thread that executes req. Assume, by the way of contradiction, that

req does not execute a successful SC of type 1 on any node of the red tree. Then, by the

pseudocode (lines 1-10), req executes an SC instruction of type 1 on any node of the red

35

path of p. Since the last node in this path is rn[n−1 +p], it follows that the SC executed

by p on rn[n− 1 + p] is not successful, which contradicts Observation 4.1 (Claim 3).

Let z, 1 ≤ z ≤ 2n − 1, be the id of a node of the red tree. For any j ≥ 1, denote by

SCj
1(z) the j-th successful SC of type 1 executed on z (i.e. on the node with id z), and

let reqj(z) be the request that executes SCj
1(z). We often abuse notation and omit z,

whenever it is clear from the context. Notice that, by definition, there are no successful

SC instructions of type 1 between SCj
1 and SCj+1

1 .

We say that a red node with id z is occupied by a thread p at some configuration C,

if it holds that rn[z].pid = p at C. If p is executing request req at C, we also say that

z is occupied by req at C. We continue to prove that each red node, occupied by some

request req, should first be released by req before it can be occupied again by some other

request.

Lemma 4.2. For each j ≥ 1, reqj executes a successful SC instruction of type 3, which

we denote by SCj
3, on rn[z] between SCj

1 and SCj+1
1 .

Proof. First, we prove that at least one successful SC of type 3 is executed on rn[z]

between SCj
1 and SCj+1

1 . We let SCj
3 be the first of these successful SC instructions.

Then, we prove, by induction on j, that SCj
3 is executed by reqj (i.e. the same request

that executes SCj
1).

1. Assume, by the way of contradiction, that no successful SC of type 3 is executed on

rn[z] between SCj
1 and SCj+1

1 . Recall that reqj is the request that executes SCj
1

and reqj+1 is the request that executes SCj+1
1 .

First, we prove that the read of rn[z] (line 3) by reqj+1 follows SCj
1 . Assume, by the

way of contradiction, that this read occurs before SCj
1 . The execution of the LL of

line 2 by reqj+1 precedes this read, so the execution of this LL occurs before SCj
1 .

Since the corresponding SC to this LL is SCj+1
1 , and occurs after the successful

SCj
1 instruction, SCj+1

1 cannot be successful, which is a contradiction. Therefore,

the read at line 3 by reqj+1 follows the execution of SCj
1 .

Since reqj+1 executes SCj+1
1 , by the pseudocode (lines 3− 4), it follows that reqj+1

has read −1 into rn[z].pid (line 3). Let SCx be the last successful SC on rn[z]

preceding SCj+1
1 . Recall that we have assumed that no successful SC of type 3 is

36

executed on rn[z] between SCj
1 and SCj+1

1 . Moreover, by definition of SCj
1 and

SCj+1
1 , no successful SC of type 1 occurs between SCj

1 and SCj+1
1 . Thus, SCx must

be either SCj
1 or some successful SC of type 2. In either case, it follows by the

pseudocode (lines 4, 14), that SCx writes a value different than −1 into rn[z].pid,

which is a contradiction. Thus, there is at least one successful SC of type 3 executed

on rn[z] between SCj
1 and SCj+1

1 .

Let SCj
3 be the first successful SC of type 3 executed on rn[z] between SCj

1 and

SCj+1
1 .

2. We prove, by induction on j, that SCj
3 is executed by reqj. Fix any j ≥ 1 and

assume that the claim holds for any j′, 1 ≤ j′ < j.

We prove that the claim also holds for j. Assume, by the way of contradiction, that

SCj
3 is executed by some request req 6= reqj. By the pseudocode (lines 4, 14) and

by Lemma 4.1, req executes a successful SC instruction of type 1 on some node of

the red tree before SCj
3 ; let SC1 be this SC instruction. By the pseudocode (lines

4, 17), SC1 and SCj
3 are executed on the same node, namely on node z.

By the definitions of SCj
1 and SCj+1

1 , no other successful SC of type 1 is executed

on z between SCj
1 and SCj+1

1 . Moreover, SCj
1 6= SC1 since SCj

1 is executed by

reqj 6= req. Thus, SC1 is executed before SCj
1 .

If j = 1, this is a contradiction, since, by definition, SCj
1 is the first successful SC

of type 1 on rn[z]. If j > 1, let SC ′1 be the first successful SC of type 1 on rn[z]

following SC1. Notice that SC ′1 is either SCj
1 or some earlier successful SC of type

1 on z. As proved above (item 1), there is at least one successful SC of type 3

executed on rn[z] between SC1 and SC ′1. Let SC3 be the first such SC; obviously,

SC3 precedes SCj
3 . Then, by the induction hypothesis, SC3 is executed by req. By

the pseudocode, req executes only one SC of type 3, which contradicts the fact that

req executes both SC3 and SCj
3 .

We continue to prove that the SC instructions executed on rn[z] by any request req 6=

reqj between SCj
1 and SCj+1

1 fail.

Lemma 4.3. Let req 6= reqj be any request. Then, no successful SC is executed by req on

rn[z] between SCj
1 and SCj+1

1 .

37

Proof. By definition, no successful SC of type 1 is executed between SCj
1 and SCj+1

1 .

Assume, by the way of contradiction, that req executes a successful SC of type 2 or 3 on

rn[z] between SCj
1 and SCj+1

1 . Let SCh be the first of these successful SC instructions.

Lemma 4.1 implies that req executes a successful SC of type 1 on some node of the

red tree before SC ′; let SC1 be this instruction. By the pseudocode (lines 4, 17), SC1 is

executed on the same node as SCh, namely on node rn[z]. Since req 6= reqj and SCj
1 is

executed by reqj, SC1 6= SCj
1 . Since no successful SC of type 1 is executed between SCj

1

and SCj+1
1 , it follows that SC1 is executed before SCj

1 .

If j = 1, this is a contradiction since, by definition, SCj
1 is the first successful SC of

type 1 on rn[z]. If j > 1, let SC ′1 be the first successful SC of type 1 on rn[z] following

SC1. Then, SC ′1 is either SCj
1 or some earlier successful SC of type 1 on rn[z]. Lemma 4.2

implies that req executes a successful SC of type 3 on rn[z] between SC1 and SC ′1; denote

by SC3 this SC instruction. Then, SC3 precedes SCh, so SC3 6= SCh. By the pseudocode,

SC3 is the only SC of type 3 executed by req. Moreover, by the pseudocode, req executes

only one SC of type 2 and it does so between SC1 and SC3; let SC2 be this SC instruction.

Then, SC2 6= SCh. It follows that SCh cannot be an SC of the type 2 or of type 3 executed

by req. This contradicts our assumption.

Recall that, by the pseudocode, req executes exactly one SC of type 3. Thus, Lem-

mas 4.2 and 4.3 immediately imply the following observation.

Observation 4.2. For each j ≥ 1, SCj
3, executed by reqj, is the only successful SC of

type 3 executed on rn[z] between SCj
1 and SCj+1

1 .

It is now easy to prove that between any successful SC of type 1 and the following

successful SC of type 3 on rn[z], there is exactly one successful SC of type 2 on rn[z]

executed by the same thread.

Lemma 4.4. For each j ≥ 1, there is exactly one successful SC of type 2, namely SCj
2,

on the red node with id z between SCj
1 and SCj+1

1 , and SCj
2 is executed by reqj between

SCj
1 and SCj

3.

Proof. By Observation 4.2, SCj
3 is executed by reqj. By the pseudocode (line 14), reqj

executes exactly one SC of type 2, namely SCj
2 , and this happens between SCj

1 and SCj
3 .

Moreover, the only SC of type 3 executed by reqj is SCj
3 . Let LLj

2 be the matching LL

38

instruction to SCj
2 . By the pseudocode (lines 4, 13, 14), it follows that LLj

2 is executed

after SCj
1 . Lemma 4.3 implies that no successful SC is executed on rn[z] by any request

req 6= reqj between SCj
1 and SCj+1

1 . It follows that SCj
2 succeeds and it is the only

successful SC of type 2 executed on rn[z] between SCj
1 and SCj+1

1 . Since in addition SCj
2

is executed by reqj between SCj
1 and SCj

3 , the claim follows.

Lemmas 4.2 and 4.4 and the pseudocode (line 4) imply that each request req occupies

exactly one red node during its execution. We denote by zr(req) the id of this red node;

whenever req is clear from the context, we abuse notation and use zr instead of zr(req).

Observation 4.3. The following claims hold: (1) Assume that C is some configuration at

which a thread p, performing some request req at C, has executed the type 1 SC instruction

of req but it has not yet executed its type 3 SC instruction. Then, there exists exactly one

integer zr, 1 ≤ zr ≤ 2 ∗ n − 1, such that p occupies the red node with id zr at C. (2)

Assume that C is some configuration at which a thread p does not execute any request.

Then, for each integer z, 1 ≤ z ≤ 2∗n−1, p does not occupy the red node with id z at C.

We continue to study the properties of the execution fragment of a request req executed

by thread p, where p traverses the blue tree. Intuitively, we prove that for each request

req that occupies a red node with id zr; req will be recorded into all nodes of the path

starting from the blue node with id zr up to the blue root (Lemma 4.5). Therefore, req

is eventually recorded into the root node of the blue tree.

Consider any integer z, 1 ≤ z ≤ 2n − 1, and let level(z) = lg(n) − blg(z)c + 1, i.e.

level(z) is the level of the node with id z in any of the trees. For the rest of this section, let

req be any instance of ApplyOp executed by some thread p. By Lemma 4.1, req executes

a successful SC of type 1 on some node with id zr(req) of the red tree. By the pseudocode

(line 4), this is the only SC of type 1 executed by req. Let pt(req) be the path of the blue

tree from the node with id zr to the root. For each h, level(zr) ≤ h ≤ lg(n) + 1, denote

by zh the id of the node of pt(req) at level h; notice that when h = level(zr), zh = zr.

The following observation is an immediate consequence of the pseudocode (lines 20, 23).

Observation 4.4. Let π be the execution of any instance of Propagate by req. Then, π

executes two SC instructions on every node of pt(req).

Let π1(req) and π2(req) be the two instances of function Propagate executed by req,

in order. By Observation 4.4, for each i ∈ {1, 2}, πi(req) executes two SC instructions

39

π1(req)

C1(req)

π2(req)

C3(req)C2(req)

req
π1(req

′)

C1(req
′)

π2(req
′)

C3(req
′)C2(req

′)

req′

time

Figure 4.3: An example of an execution of F-RedBlue.

on each node of pt(req). For each h, level(zr) ≤ h ≤ log n + 1, denote by C ′i,h(req) the

configuration immediately following the execution of the second of these SC instructions

(line 23) on node bn[zh] by πi(req). Let reqt[1] = req and reqt[2] = ⊥. Denote by

C1(req) the configuration just after the successful SC of type 1 by req (that writes the

pair < req, p > into rn[zr]), let C2(req) be the configuration just after the successful

SC of type 3 by req (that writes the pair < ⊥, p > into rn[zr]) and let C3(req) be the

configuration just after the successful SC of type 3 by req (that writes the pair < ⊥,−1 >

into rn[zr]). In case h = level(zr), let C1,h−1(req) = C1(req) and C2,h−1(req) = C2(req).

For simplicity of presentation, we sometimes omit req from the above notation if it is

clear from the context. An example of the above notation is shown on Figure 4.3.

Lemma 4.5. For each i ∈ {1, 2}, and for each h, level(zr) ≤ h ≤ log n + 1, there is a

configuration Ci,h(req) such that:

1. C1,h(req) is the first configuration at which req is contained in bn[zh].reqs[p];

2. C2,h(req) is the first configuration following C2,h−1(req) at which ⊥ is returned;

3. Ci,h(req) follows Ci,h−1(req) and comes before or at C ′i,h(req);

4. at each configuration between C1,h(req) and C2,h(req), bn[zh].reqs[p] contains req;

5. at each configuration between C2,h(req) and C3(req), bn[zh].reqs[p] = ⊥.

Proof. The proof is by induction on h. Fix any integer h, level(zr) ≤ h ≤ log n + 1 and

assume that the claim holds for each h′, level(zr) ≤ h′ < h. We prove that the claims

hold for h.

Fix any i ∈ {1, 2}. Recall that p is the thread executing req. By Observation 4.4, πi

executes two SC instructions on the blue node with id zh. Let SCi,1, SCi,2 be these two

SC instructions and let LLi,1, LLi,2 be the matching LL instructions, respectively. By

the pseudocode, πi reads rn[zh] and bn[zh−1] during the execution of any of the instances

40

of its Calculate. We prove that req calculates the value reqt[i] as the new value of

bn[zh].reqs[p].

Assume first that h = level(zr). By definitions of zr and Ci,h−1 (when h = level(zr)),

and by the pseudocode (lines 4, 14), the pair (reqt[i], p) was written into rn[zr] at Ci,h−1,

and therefore before the execution of LLi,1 and LLi,2. By the pseudocode, and by Lem-

mas 4.2 and 4.4, it follows that rn[zr] contains the pair (reqt[i], p) until the execution by

req of the SC of type (i + 1) which comes after the final configuration of πi. Therefore,

each of the reads of rn[zr] by πi following LLi,1 and LLi,2 returns reqt[i] for thread p and,

by the pseudocode (lines 27−28), Calculate writes reqt[i] for p in the new set of request

types it calculates.

Assume now that h > level(zr), so zh 6= zr. Then, Observation 4.3 (Claim 1) im-

plies that rn[zh].pid 6= p. By the pseudocode (lines 29 − 30), it follows that Calculate

will consider, as the new request type for p, the value read for p in bn[zh−1]. By the

induction hypothesis, there is a configuration Ci,h−1(req) in which reqt[i] is written in

bn[zh−1].reqs[p], and Ci,h−1(req) precedes C ′i,h−1. We argue that request reqt[i] is con-

tained into bn[zh−1].reqs[p] from Ci,h−1(req) until the execution of the SC instruction of

type (i + 1) by req (which occurs after the final configuration of πi). If i = 1, this is

implied by the induction hypothesis (Claim 2) and because C2,h−1(req) = C2(req) when

h = level(zr). If i = 2 this is immediate from the induction hypothesis (Claim 3). By the

definition of C ′i,h−1, and by the pseudocode, it follows that LLi,1 and LLi,2 occur between

C ′i,h−1 and the final configuration of πi. Thus, when bn[zh−1] is read between LLi,1 and

SCi,1 (or LLi,2 and SCi,2), reqt[i] is found in bn[zh−1].reqs[p].

If any of the SCi,1 or SCi,2 is successful, then reqt[i] is recorded into bn[zh].reqs[p] by

this successful SC.

Assume now that both SCi,1 and SCi,2 fail. Since SCi,2 fails, it must be that, between

LLi,2 and SCi,2 there is at least one successful SC instruction on bn[zh]. Let SC ′i,2 be the

first of these instructions, and let req′i 6= req be the request that executes SC ′i,2. Let LL′i,2

be the matching LL instruction to SC ′i,2. Since SCi,1 fails, it must be that between LLi,1

and SCi,1, there is at least one successful SC instruction on bn[zh]; let SC ′i,1 be any of

them. LL′i,2 follows LLi,1, since otherwise SC ′i,1, which follows LLi,1, would cause SC ′i,2

to fail.

41

The pseudocode implies that req′i reads rn[zh] and bn[zh−1] during the execution of its

Calculate between LL′i,2 and SC ′i,2. Recall that req occupies zr. We prove that request

req′i calculates the value reqt[i] as the new value of bn[zh].reqs[p].

Assume first that h = level(zr), so zh = zr. Recall that the pair (reqt[i], p) was

written into rn[zr] before the execution of LLi,1 and LLi,2; moreover, rn[zr] contains the

pair (reqt[i], p) until the execution of the SC instruction of type (i+1) by req which comes

after the final configuration of πi. By the pseudocode (line 20), req′i reads rn[zr] after LL′i,2

(which follows LLi,1) and before SC ′i,2 (which precedes SCi,2 and the final configuration of

πi) . Thus, req′i reads the pair (reqt[i], p) in rn[zr]. So, by the pseudocode (lines 27− 28),

the instance of Calculate executed by req′i between LL′i,2 and SC ′i,2, stores reqt[i] for p

in the new set of request types it calculates and req′i writes reqt[i] into bn[zh].reqs[p] when

it executes SC ′i,2.

Assume now that h > level(zr), so zh 6= zr. Then, Observation 4.3 (claim 1) implies

that rn[zh].pid 6= p. By the pseudocode (lines 28 − 30), it follows that the instance of

Calculate executed by req′i between LL′i,2 and SC ′i,2, will consider as the new request

type of p the value read in bn[zh−1].reqs[p]. By the induction hypothesis, there is a

configuration Ci,h−1 in which reqt[i] is written into bn[zh−1].reqs[p], and Ci,h−1 precedes

C ′i,h−1; moreover, reqt[1] is contained in bn[zh−1] from C1,h−1 until C2,h−1 (which follows

the final configuration of π1), and reqt[2] is contained in bn[zh−1] from C2,h−1 until the

execution of the SC instruction of type (i+1) by req (which follows the final configuration

of π2). Thus, in either case reqt[i] is contained in bn[zh−1].reqs[p] from Ci,h−1 until the

final configuration of πi. By the definition of C ′i,h−1, and by the pseudocode, it follows

that LLi,1 and SCi,2 occur between C ′i,h−1 and the final configuration of πi. Thus, when

bn[zh−1] is read between LL′i,2 (which follows LLi,1) and SC ′i,2 (which precedes SCi,2),

reqt[i] is found in bn[zh−1].reqs[p]. So, by the pseudocode (lines 27− 28), reqt[i] i stored

for p in the new set of request types calculated by req′i and is written into bn[zh].reqs[p]

by SC ′i,2.

In both cases, we conclude that there is at least one configuration between SCi,1 and

SCi,2 at which the value reqt[i] is written into bn[zh].reqs[p].

Let SCi,h(req) be the first successful SC that writes reqt[i] into bn[zh].reqs[p] and

follows Ci,h−1(req); let Ci,h(req) be the configuration immediately following the execution

of SCi,h(req). Therefore, it follows that SCi,h(req) precedes SCi,2. (We remark that

42

SCi,h(req) may also precede SCi,1.) Since, by definition, C ′i,h follows SCi,2, SCi,h(req)

precedes C ′i,h. Thus, Ci,h(req) comes before or at C ′i,h. By definition, SCi,h(req) follows

Ci,h−1(req), so Ci,h(req) follows Ci,h−1(req). This concludes the proof of Claim 3.

We continue to prove Claim 1. We argue that the first time that reqt[1] appears in

bn[zh−1].reqs[p] is at Ci,h−1. If h = lever(zr), this is implied by the pseudocode and by

the fact that C1,h−1(req) = C1(req) in this case. If h > level(zr), this is implied by

the induction hypothesis (Claim 1); moreover, in this case, Observation 4.3 implies that

rn[zh].pid 6= p at all configurations starting from C1(req) until C3(req) (which comes

after Ci,h−1(req)). Thus, by the pseudocode, it follows that no SC can write reqt[1] into

bn[zh].reqs[p] before Ci,h−1(req). Since (by definition) SC1,h(req) is the first successful SC

that writes reqt[1] into bn[zh].reqs[p] after Ci,h−1(req), C1,h(req) is the first configuration

at which reqt[1] is contained in bn[zh].reqs[p].

By Claim 3 proved above, C1,h precedes the final configuration of π1; moreover, C2,h

follows C2(req) which comes after the final configuration of π1. Thus, C2,h follows C1,h.

Assume, by the way of contradiction, that there is a configuration Cl between C1,h and

C2,h, such that bn[zh].reqs[p] contains a value x 6= reqt[1] at Cl. By definition of Cl, there

is at least a successful SC instruction that writes x into bn[zh].reqs[p] and occurs between

C1,h and the configuration that precedes C2,h. Let SC ′1 be the first of these instructions,

let it be executed by request req′′1 6= req and let LL′1 be its matching LL instruction.

Recall that SC1,h is the successful SC instruction executed just before C1,h. Since SC ′1 is

a successful SC instruction, LL′1 must follow SC1,h. By the pseudocode, req′′1 reads rn[zh]

and bn[zh−1] during the instance of Calculate executed between LL′1 and SC ′1. Recall

that p occupies zr.

Assume first that h = level(zr). Then, the pseudocode (lines 4 or 14), and Lemmas 4.2

and 4.4 imply that req′′1 reads either the pair (reqt[1], p) or the pair (reqt[2], p) into rn[zr]

(depending on whether the read happens between C1,h and C2,h−1 or between C2,h−1 and

the configuration that precedes C2,h, respectively) when executing Calculate between

LL′1 and SC ′1. Assume now that h > level(zr), so zh 6= zr. Then, Observation 4.3

(Claim 1) implies that rn[zh].pid 6= p. By the pseudocode (lines 28− 30), it follows that

req′′1 will consider as the new request type for p, the value read in bn[zh−1].reqs[p] when

executing Calculate between LL′1 and SC ′1. By the induction hypothesis (Claim 5), req

is contained in bn[zh−1].reqs[p] at all configurations between C1,h−1(req) and C2,h−1(req).

43

Thus, req′′1 reads either the pair (reqt[1], p) or the pair (reqt[2], p) (depending on whether

the read happens between C1,h and C2,h−1 or between C2,h−1 and the configuration that

precedes C2,h, respectively) in bn[zh] when executing Calculate between LL′1 and SC ′1.

We conclude that this is so in either case.

If req′′1 reads the pair (reqt[1], p), by the pseudocode, it follows that req′ writes the

value reqt[1] into bn[zh].reqs[p] when it executes SC ′1. This is a contradiction to our

assumption that SC ′1 writes x 6= reqt[1] into bn[zh].reqs[p]. Thus, assume that req′′1 reads

the pair (⊥, p). Then, by the pseudocode, it follows that req′′1 writes ⊥ into bn[zh].reqs[p]

when it executes SC ′1. Recall that, in this case, the read by req′′1 that occurs between

LL′1 and SC ′1 must take place after C2,h−1(req). Therefore, SC ′1 occurs after C2,h−1(req)

and before SC2,h(req). Then, it is SC ′1 (and not SC2,h(req)) the first SC after C2,h−1(req)

that writes ⊥ into bn[zh].reqs[p], which contradicts the definition of SC2,h(req).

We continue to prove Claim 5. By definition of C2,h, ⊥ is contained in bn[zh].reqs[p] at

C2,h. So, we continue to prove that ⊥ is contained in bn[zh].reqs[p] at each configuration

between C2,h and C3(req).

By the definitions of C ′2,h and C3(req), and by the Claim 3 that is proved above,

C3(req) follows C2,h. Assume, by the way of contradiction, that there is a configuration

Cl between C2,h and C3(req), such that bn[zh].reqs[p] contains a value x 6= ⊥ at Cl.

By definition of Cl, there is at least a successful SC that writes x into bn[zh].reqs[p]

and occurs between C2,h and the configuration that precedes C3(req). Let SC ′2 be the

first of these instructions, let it be executed by request req′′2 6= req and let LL′2 be its

matching LL instruction. Recall that SC2,h is the successful SC instruction executed just

before C2,h. Since SC ′2 is a successful SC instruction, LL′2 follows SC2,h.

If h = level(zr), Lemmas 4.2 and 4.4 imply that the read of rn[zh] by req′′1 , which

occurs between LL′2 and SC ′2 (at the beginning of the execution of its Calculate) returns

(⊥, p). Thus, by the pseudocode, req′′2 writes ⊥ 6= x into bn[zh].reqs[p] by executing SC ′2,

which is a contradiction.

Assume now that h > level(zr). Observation 4.3 (Claim 1) implies that rn[zh].pid 6= p.

By the pseudocode (lines 28− 30), it follows that the instance of Calculate executed by

req′′2 between LL′2 and SC ′2, will consider as the new request type of p the value read in

bn[zh−1].reqs[p]. By the induction hypothesis, there is a configuration C2,h−1 at which ⊥

is written into bn[zh−1].reqs[p], and C2,h−1 precedes C ′2,h−1; moreover, ⊥ is contained in

44

bn[zh−1].reqs[p] from C2,h−1(req) until C3(req). Thus, the read of bn[zh] by req′′2 , which

occurs between LL′2 and SC ′2 returns the value ⊥ for p. Thus, by the pseudocode, req′′2

writes ⊥ 6= x into bn[zh].reqs[p] by executing SC ′2, which is a contradiction.

We remark that information about req (namely, req and the id p of the thread that

executes it) is recorded for the first time into one of the base objects when req occupies its

red node zr. Lemma 4.5 implies that it is then transferred to the blue node with id zr (by

req or some other request); moreover, only when it is written there, it can be forwarded

to the next node of the blue path of req. This transfer continues up to each node of req’s

blue path until the request type of req eventually reaches the root. Recall that for each

h, level(zr) ≤ h ≤ log n+1, req is written into node zh at level h of pt(req) by SC1,h(req)

just before C1,h(req), and ⊥ is written into bn[zh] by SC2,h(req) just before C2,h(req).

The following claim is an immediate consequence of Lemma 4.5 when h = log n+ 1.

Corollary 4.1. The request type of any request req is successfully recorded in the blue

root by SC1,logn+1(req).

We continue to prove that the value ⊥ is contained for some thread p in a blue node

z from the time that a request by p writes ⊥ into z until the time that the subsequent

request by p (for which z is contained in its path) writes its request type into z (or until

the final configuration if such a request does not exist).

Lemma 4.6. Consider any request req executed by some thread p. For each zh ∈ pt(p),

let Ch = C1,h(reqmh
) if p executes a subsequent request reqmh

such that zh ∈ pt(reqmh
);

let Ch be the final configuration if such a request does not exist. Then, bn[zh].reqs[p] = ⊥

at each configuration between C3(req) and Ch.

Proof. Assume, by the way of contradiction, that the claim does not hold and let C be the

first configuration at which the claim is violated. Let req be the request (let it be executed

by some thread p) and zh ∈ pt(p) be the node that causes this violation. More specifically,

if reqmh
is the first request executed by p after req for which zh ∈ pt(reqmh

), then C is

between C3(req) and C1,h(reqmh
) and bn[zh].reqs[p] = x 6= ⊥ at C (if such a request does

not exist, then C is between C3(req) and the final configuration). Assume that SC ′ is the

SC instruction executed just before C which writes the value x in bn[zh].reqs[p] and let

45

req′ be the request that executes SC ′. Denote by LL′ the corresponding LL instruction

to SC ′.

Assume first that req′ reads x in rn[zh].req. Notice that req′ performs this read (let

it be r′) at some configuration C ′ that precedes C. By the pseudocode, it follows that

rn[zh].pid = p and rn[zh].req = x at C ′. Thus, p is active executing some request req′′ at

C ′ such that zh is the first node in pt(req′′).

If zh ∈ pt(req), let reqbh = req; otherwise, let reqbh be the last request by p preceding

req such that zh ∈ pt(reqbh). (Since zh ∈ pt(req′′), reqbh is well-defined.) By the pseu-

docode, LL′ happens before r′. If C ′ precedes C2,h(reqbh), then LL′ precedes C2,h(reqbh).

Since, by Lemma 4.5, SC2,h(reqbh) happens just before configuration C2,h(reqbh) and it

is a successful SC on bn[zh], SC ′ cannot be successful. This is a contradiction. Thus,

C ′ follows C2,h(reqbh). Lemmas 4.2 and 4.4 imply that rn[zh] = (⊥, p) at C2,h(reqbh).

By definition of reqbh , no other request following reqbh and containing zh in its path is

executed by p before reqmh
. It follows that, at each configuration between C2,h(reqbh) and

C ′, rn[zh] 6= (x, p). This is a contradiction (since we have assumed that req′ reads (x, p)

in rn[zh] at C ′).

Assume now that req′ reads x in bn[zh−1].reqs[p] (where zh−1 is the node preceding zh in

pt(p)); let r′′ be this read. Notice that r′′ results in some configuration C ′′ which precedes

C. Let reqmh−1
be the first request executed by p after req such that zh−1 ∈ pt(reqmh−1

). If

zh−1 ∈ pt(req), let reqbh−1
= req; otherwise, let reqbh−1

be the last request by p preceding

req such that zh−1 ∈ pt(reqbh−1
). In case reqbh−1

does not exist, denote by C2,h−1(reqbh−1
)

the initial configuration. Similarly, in case reqbh does not exist, let C2,h(reqbh) be the initial

configuration. If reqmh−1
does not exist, denote by C1,h−1(reqmh−1

) the final configuration.

Similarly, in case reqmh
does not exist, let C1,h(reqmh

) be the final configuration.

Since zh is an ancestor of zh−1 in the blue tree, it follows that zh ∈ pt(reqmh−1
) and

zh ∈ pt(reqbh−1
). Thus, either reqbh−1

= reqbh or reqbh−1
precedes reqbh . Similarly, either

reqmh−1
= reqmh

or reqmh−1
follows reqmh

.

Assume first that reqmh−1
follows reqmh

, so that C precedes C1,h−1(reqmh−1
). By the

pseudocode, LL′ happens before r′′. Obviously, C ′′ follows the initial configuration. If C ′′

precedes C2,h(reqbh), then LL′ precedes C2,h(reqbh). Since, by Lemma 4.5, SC2,h(reqbh)

happens just before C2,h(reqbh) and it is a successful SC on bn[zh], SC ′ cannot be successful.

This is a contradiction. Thus, C ′′ follows C2,h(reqbh).

46

We now prove that, at each configuration between C2,h(reqbh) and C1,h−1(reqmh
),

bn[zh−1].reqs[p] = ⊥. In case that reqbh−1
= reqbh , Lemma 4.5 implies that C2,h−1(reqbh)

precedes C2,h(reqbh), and at each configuration between C2,h−1(reqbh) and C3(reqbh), it

holds that bn[zh−1].reqs[p] = ⊥. Otherwise, recall that reqbh−1
precedes reqbh and they

are both executed by p, so C3(reqbh−1
) precedes C2,h(reqbh). Since C is the first configu-

ration at which the claim of the lemma is violated, it must be that, at each configuration

between C3(reqbh−1
) and C1,h−1(reqmh−1

), bn[zh−1].reqs[p] = ⊥.

Assume that C precedes C1,h−1(reqmh−1
). It follows that at each configuration between

C3(reqbh−1
) and C, it holds that bn[zh−1].reqs[p] = ⊥. It follows that r′′ reads ⊥ 6= x in

bn[zh−1].reqs[p] and writes ⊥ 6= x in bn[zh].reqs[p], which is a contradiction.

Assume now that C follows C1,h−1(reqmh−1
). In case that request reqmh−1

follows

request reqmh
, it holds that configuration C precedes C1,h−1(reqmh−1

), so it must be that

reqmh−1
= reqmh

. Since (1) it holds that bn[zh−1].reqs[p] = ⊥ at each configuration

between C2,h(reqbh) and C1,h−1(reqmh−1
) = C1,h−1(reqmh

), (2) r′′ occurs after C2,h(reqbh),

and (3) r′′ returns x 6= ⊥, it must be that r′′ occurs after C1,h−1(reqmh
). Thus, r′′ occurs

between C1,h−1(reqmh
) and C1,h(reqmh

). Lemma 4.5 implies that, at all configurations

between C1,h−1(reqmh
) and C1,h(reqmh

), it holds that bn[zh−1].reqs[p] = reqmh
. Thus, r′′

reads reqmh
in bn[zh−1].reqs[p] and writes the same value in bn[zh].reqs[p] by executing

SC ′. However, Lemma 4.5 implies that the first configuration after C1,h−1(reqmh
) at which

reqmh
is written into bn[zh].reqs[p] is C1,h(reqmh

). Since we have assumed that C precedes

C1,h(reqmh
), this is a contradiction.

We are now ready to assign linearization points to the requests of F-RedBlue. By

Observation 4.1, there is at least one successful SC that records the request type of req in

the blue root node. Recall that SC1,logn+1(req) is the first of these SC instructions. We

place the linearization point of req at SC1,logn+1(req); ties are broken by the order that

thread identifiers impose.

Lemma 4.7. For each request req, the linearization point of req is placed in its execution

interval.

Proof. By Lemma 4.5, the request type of req is recorded in the root node by some SC

instruction and this occurs before the execution of the type 2 SC instruction by req (line

14). Thus, the linearization point of req precedes the end of its execution interval.

47

Let SC(req) be the first successful SC that records the request type of req in the

blue root node. Notice that req is invisible to all threads until it performs its first store

request, writing its information into the red node that it occupies. Thus, SC(req) must

follow the beginning of the execution interval of req.

We say that a request req is applied on the simulated object if (1) procedure Calculate

executed by some request req′ (that might be req or another request), reads in the ap-

propriate child node of the blue root or in the red root node, a value equal to req (i.e.

the request type written there for req) and records it as the new request type for p, (2)

Calculate by req′ applies this request type with its parameters, and (3) the execution of

the SC of line 23 (let it be SCr) on bn[1] by req′ succeeds (thus writing there the value

req for p). When these conditions are satisfied, we sometimes also say that req′ applies

req on the simulated object or that SCr applies req on the simulated object. We next

prove that each request req is applied on the simulated object exactly once.

Lemma 4.8. Each request req is applied on the simulated shared object exactly once by

SC1,logn+1(req).

Proof. Assume that req is executed by thread p. We first prove that req is applied on

the simulated object at least once. Lemma 4.5 implies that req is successfully recorded in

the root node of the blue tree at least once and that SC1,logn+1 is the first SC instruction

that stores req into bn[1].reqs[p]. Let req′ be the request that executes SC1,logn+1.

In case p executes a request before req, let Cbh = C2,logn+1(reqbh), where reqbh is the

last preceding to req request executed by p; otherwise, let Cbh be the initial configuration

of the algorithm. If req′ performs the read of bn[1] that precedes SC1,logn+1 before Cbh ,

then SC1,logn+1 fails. This is so because, by the pseudocode, the corresponding LL to

SC1,logn+1 precedes this read, and, by the definition of Cbh and Lemma 4.5, a successful SC

on bn[1] (namely SC2,logn+1(reqbh)) occurs at Cbh , thus causing the failure of SC1,logn+1.

This is a contradiction.

Thus, req′ performs its read after Cbh . Lemmas 4.5 and 4.6, imply that, at each

configuration between Cbh and C1,logn+1(req), bn[1].reqs[p] = ⊥. It follows that req′ reads

⊥ into bn[1].reqs[p] during the execution of Calculate that precedes SC1,logn+1(req).

Since req 6= ⊥, req′ evaluates the condition of the if statement of line 31 to true. We

conclude that req′ applies req.

48

We now prove that req is applied at most once on the simulated object. Assume, by

the way of contradiction, that req is applied at least twice, and let SC ′ be the first SC

after SC1,logn+1(req) that applies req. Let req′′ be the request that executes SC ′ and let

r′ be the last read of bn[1] executed by req′′ before SC ′.

If r′ occurs before SC1,logn+1(req), then the corresponding LL to SC ′, which precedes

r′, precedes also SC1,logn+1(req). Thus, SC1,logn+1(req) causes SC ′ instruction to fail,

which is a contradiction. Therefore, r′ follows SC1,logn+1(req).

If r′ occurs between configurations C1,logn+1(req) and C2,logn+1(req), then Lemmas 4.5

and 4.6 imply that r′ reads the value req in bn[1]. Since req′′ apply req, it must be that

tmp.reqs[p] = req when req′′ executes line 31 of the instance of Calculate that precedes

SC ′. Thus, by the pseudocode (line 31), it follows that the condition of the if statement

of line 31 is evaluated to false. Thus, req′ does not call ApplyOp which contradicts the

fact that req′ applies req.

Assume finally that r′ follows C2,logn+1(req). Lemma 4.4 and Observation 4.3 imply

that rn[1] 6= req at all configurations after the configuration at which req executes its

type 2 SC instruction. Moreover, if any of the root children belongs to pt(req), then

Lemma 4.5 imply that C2,logn(req) precedes C2,logn+1(req), and bn[log n].reqs[p] 6= req

after C2,logn(req). By the pseudocode, it therefore follows that procedure Calculate

executed by req′′ before SC ′, calculates as the new value of bn[1].reqs[p] a value other

than req and therefore it does not apply req, which is a contradiction.

In order to prove consistency, we use the following notation. Denote by SCm, m > 0,

the mth successful SC instruction on b[1], which is the root node of the blue tree, and let

LLm be its matching LL. Obviously, between SCm and SCm+1, b[1] is not modified.

Denote by αm, the prefix of α which ends at SCm and let Cm be the first configuration

following SCm. Let α0 be the empty execution. Denote by Lm the order defined by the

linearization points, assigned as described above, of the requests in αm. We remark that

b[1].st stores a copy of the simulated state at each point in time. Moreover, each thread

applies requests on its local copy of the simulated state sequentially, the one after the

other. We say that b[1].st is consistent at Cm if it is the same as the state that results if

the requests of αm are executed sequentially in the order specified by Lm.

49

Lemma 4.9. For each m ≥ 0, (1) b[1].st is consistent at Cm, and (2) Lm is a linearization

order for αm.

Proof. We prove the claim by induction on m.

Base case (m=0): The claims hold trivially: by the initialization of b[1], b[1].st contains

ŝ, which is the initial state of the simulated object, and α0 is empty.

Induction hypothesis: Fix any m > 0 and assume that the claims hold for m− 1.

Induction step: We prove that the claim holds for m. By the induction hypothesis,

it holds that: (1) b[1].st is consistent at Cm−1, and (2) Lm−1 is a linearization order for

αm−1. Let req be the request that executes SCm. Assume that req applies j > 0 requests

on the simulated object. Denote by req1, ..., reqj the sequence of these requests ordered

in increasing order of the identifiers of the threads that initiate them.

Notice that req performs LLm after Cm−1 since otherwise SCm would not be successful.

By the induction hypothesis, b[1].st is consistent at Cm−1. Thus, the local copy of b[1]

that is last stored by req in tmp, represents a consistent state of the simulated object.

Lemma 4.8 implies that req1, . . . , reqj are applied only once. This is realized when SCm

is executed. Thus, none of these requests have been applied in the past.

Given that the application of req1, ..., reqj is simulated by the thread executing req

sequentially, in the order mentioned above, starting from the state stored in tmp, it is a

straightforward induction to prove that (1) for each f , 0 ≤ f ≤ j, a consistent response

is calculated for reqf , and the new state of the simulated object is calculated in a correct

way in the local variable tmp of the Calculate executed by req. Therefore, b[1].st is

consistent after the execution of req’s successful SC. Notice that, by the way linearization

points are assigned, Lm = Lm−1, req1, . . . , reqj. It follows that Lm is a linearization order

for αm.

Pseudocode (lines 1 and 19-24) implies that an operation op takes as many steps as the

path length it traverses in the red and blue tree. Lemma 4.1 and the pseudocode (lines 4

and 17) imply that when a process occupies some red node, then the interval contention

is at least equal with the depth of the occupied node. Since the maximum path length

of the red and blue trees is lg n+ 1, the time complexity of F-RedBlue is O(min{k, lg n}),

where k is the point contention. Thus, the following theorem holds.

50

Theorem 4.1. F-RedBlue is a linearizable, wait-free implementation of a universal object

that uses 2n− 2 LL/SC objects. Its step complexity is O(min {k, lg n}).

4.2 Modified version of F-RedBlue that uses small base objects

In this section, we present S-RedBlue, a modified version of F-RedBlue that uses small base

objects. Now, each red node stores dlog ne+1 bits. A blue node other than the root stores

n bits. The blue root stores n bits, a thread id and the state of the object. This LL/SC

base object is implemented by single-word LL/SC base objects using the implementation

presented in [44].

In S-RedBlue, a thread p uses a single-writer base object to record its current request

(line 1). As in F-RedBlue, the thread starts the execution of any of its requests by

traversing the red tree. However, to occupy a red node, the thread just records its id

and sets the bit of the node to true.

Similarly, each thread, moving up the path to the root of the blue true, just sets a bit

in each node of the path to identify that it is currently executing a request. Thus, the bit

array of the root identifies all threads that are currently active.

To avoid storing the return values in the root node, each thread p maintains an array

of n single-writer base objects, one for each thread. When p reaches the root (during the

application of one of its requests), it first records the responses for the currently active

threads in its appropriate single-writer base objects (lines 25−26). Then, it tries to store

the new state of the object in the blue root together with its id and the set (bit vector)

of active threads. A thread finds the response for its current request in the appropriate

single-writer base object of the thread whose id is recorded in the root node.

The state is updated only at the root node and only when the bit value for a thread

changes from false to true in the blue root’s bit array (line 23). This guarantees that the

request of each thread is applied only once to the simulated object. However, all threads

reaching the root, record responses for each currently active thread p in their single-writer

base objects, independently of whether they also apply p’s request to the simulated object.

This is necessary, since the request of p may be applied to the object by some thread q

and later on (and before p reads the root node for finding its response) another thread q′

51

struct RedNode{
boolean req;
int pid;

};
struct BlueNode{

state st; // this field is used only at the root node
RetVal rvals[n]; // this field is used only at the root node
boolean reqs[n];

};

shared RedNode rn[1..2n-1] = {<F, -1>, ..., <F, -1>};
shared BlueNode bn[1..2n-1]={<F, <0, ...,0>, <F,...,F>>,...,< ⊥, < 0, ..., 0 >,< ⊥, ...,⊥ >>};
shared RetVal rvals[1..n][1..n] = {{⊥, . . . ,⊥}, . . ., {⊥, . . . ,⊥}};
share request Announce[1..n];

RetVal ApplyOp(Request req){ // pseudocode for thread p
int direction = n/2, z = 1, levels = lg(n) + 1, l, j;
RetVals rv;

1 announce[i] = req; // p announces its request
2 for(l=levels;l≥1;l--){ // traversal of red path
3 LL(rn[z]);
4 if(rn[z] == <F, -1>)
5 if(SC(rn[z], <req, p>)) break;
6 if(p≤direction){ // find the next node in the path
7 direction = direction - 2l−3;
8 z = 2 * z; // move to the left child of z
9 } else{
10 direction = direction + 2l−3;
11 z = 2 * z + 1; // move to the right child of z

}
}

12 Propagate(z); // first traversal of blue path: propagating the request
13 rv = bn[1].rvals[p];
14 LL(rn[z]);
15 SC(rn[z], <F, p>); // the request occupying rn[z] starts its deletion phase
16 Propagate(z); // second traversal of blue path: propagating ⊥
17 LL(rn[z]);
18 SC(rn[z], <F, -1>); // re-initialize the occupied red node to ⊥
19 return rv; // return the appropriate value
}

Algorithm 3: Pseudocode for S-RedBlue.

may overwrite the root contents. thread q′ will include p in its calculated active set but

it will not re-apply p’s request to the object, since it will see that p’s bit in the active set

of the root node is already set. Still q′ should record a response for p in its single-writer

base objects since p may read q′ and not q in bn[1].pid when seeking for its response.

The proof that S-RedBlue is correct closely follows the correctness proof of F-RedBlue.

The main difference of the two algorithms is on the way that response values are calculated.

If q is the thread that applies some request req, the response for req is originally stored

52

void Propagate(int z){ // pseudocode for thread p
20 while (z!=0){ // traversal of the blue path
21 for (j=1 to 2) do{ // two efforts to store the appropriate information
22 LL(bn[z]);
23 bt=Calculate(z, i);
24 SC(z, bt);

}
25 z =bz/2c;

}
}

BlueNode Calculate(int z) {
BlueNode tmp=< ⊥, < 0, . . . , 0 >,< ⊥, . . . ,⊥ >>;
BlueNode blue=bn[z], lc, rc;
RedNode red = rn[z];
int q, range;

26 if (2*z+1 < 2n) {
27 lc = bn[2*z];
28 rc = bn[2*z+1];

} // if z is an internal node
29 range = 2lg(n)−dlg(z)e; // compute the number of leaves of each subtree

// copy the requests placed on the left subtree
30 tmp.reqs[2q-range..2q] = lc.reqs[2q-range..2q];

// copy the requests placed on the right subtree
31 tmp.reqs[2q+1..2q+1+range] = rc.reqs[2q+1..2q+1+range];
32 if (red.pid 6= -1) tmp.reqs[red.pid]=red.req; // if thread q occupies node red
33 if (z == 1) {
34 tmp.rvals[1..n] = blue.rvals[1..n]; // copy the return values
35 tmp.st = blue.st; // copy object’s state
36 for q=1 to n do{ // local loop
37 if (tmp.reqs[q]==T AND blue.reqs[q]==F) // apply any pending request
38 apply tmp.reqs[q] to tmp.st and store into tmp.rvals[q] the return value;
39 else if(tmp.reqs[q]==T) // store the return value for pending request q
40 rvals[p][q]=rvals[b.pid][q];

}
}

41 return tmp;
}

Algorithm 4: Pseudocode for Propagate and Calculate of S-RedBlue.

in rvals[q][p] and the id of q is written into the root node. The next thread to update

the root node will find the id of q in the root node and (as long as req has not yet read

its response by executing line 8), it will see that tmp.reqs[p] = T . Therefore, it will copy

the response for req from rvals[q][p] (line 26) to its appropriate single-writer base object.

So, when p seeks for the response of req it will find the correct answer in the single-writer

base object of the thread recorded at the root node.

S-RedBlue uses O(n) multi-writer LL/SC objects and O(n2) single-writer read/write

base objects. One of the multi-writer base objects is large and it is implemented using the

53

implementation of a W -word LL/SC object from single-word LL/VL/SC objects presented

in [44]. This implementation achieves time complexity O(W) for both LL and SC and

has space complexity O(nW). Thus, the number of base objects used by S-RedBlue is

O(n2 + nW). In common cases where n bits fit in a constant number of single-word

base objects, the time complexity of S-RedBlue is O(k + W) since Calculate pays O(k)

to record k response values in the single-writer base objects and O(W) for reading and

modifying the root node.

Theorem 4.2. S-RedBlue is a linearizable, wait-free implementation of a universal object

that uses O(n2 + nW) base objects and its step complexity is O(k +W).

4.3 Adaptive synchronization algorithms for large objects

In the universal constructions for large objects presented by Anderson and Moir in [11] the

object is treated as if it were stored in a contiguous array. Moreover, the user is supposed

to provide sequential implementations of the object’s requests which call appropriate

Read and Write procedures (described in [11]) to perform read or write requests in the

contiguous array (see [11, Section 4] for more information on what the user code should

look like and a example). The universal constructions partition the contiguous array into

B blocks of size S each, and during the application of a request to the object, only the

block(s) that should be modified are copied locally (and not the entire object’s state).

The authors assume that each request modifies at most T blocks.

S-RedBlue can easily employ the simple technique of the lock-free construction pre-

sented in [11] in order to provide a simple, adaptive, wait-free algorithm (called LS-

RedBlue) for large objects. As illustrated in Algorithm 5, only routine Propagate requires

some modifications. Also, data structures are similar to those of [11] are needed for stor-

ing the array blocks, having threads making “local” copies of them and storing back the

changed versions of these blocks. More specifically, array BLK stores the B blocks of

the object’s state, as well as a set of copy blocks used by the threads for performing their

updates without any interference by other threads. Since each request modifies at most T

blocks, a thread reaching the blue root, requires at most kT copy blocks in order to make

copies of the kT state blocks that it should possibly modify. So, BLK contains nkT +B

54

blocks; initially, the object’s state is stored in BLK[nkT + 1], . . . , BLK[nkT + B] (the

blocks storing the state of the object at some point in time are called active). The blue

root node stores an array named BANK of B indices; the ith entry of this array is the

pointer (i.e. the index in BLK) of the ith active block. Each thread p has a private

variable ptrsp, which it is used to making a local copy of the BANK array (line 9).

The application of an active request to the object is now done by calling (in Calculate)

the appropriate sequential code provided by the user. The codes of the Read and Write

routines (used by the user code) are also presented in Algorithm 5 (although they are

the same as those in [11]). These routines take an index addr in the contiguous array

as a parameter. From this index, the block number blkidxp that should be accessed is

calculated as blkidxp = addr div S, and the offset in this block as addr mod S. The actual

index in BLK of the blkidxp-th block can be found through the BANK array. However,

the thread uses its local copy ptrsp of BANK for doing so. Thus, line 15 simply access

the appropriate word of BLK. If the execution of the V L instruction of line 16 by some

thread p does not succeed, the SC instruction of line 11 by p will also not succeed. So,

we use the goto to terminate the execution of its Calculate .

The first time that thread p executes a Write to the blkidxp-th block, it copies it to

one of its copy blocks (line 21). Array dirtyp is used to identify whether a block is written

for the first time by p. In this case, the appropriate block is copied into the appropriate

copy block of p (line 21). Indices to the kT copy blocks of p are stored in p’s private

array copyp. The dirty bit for this block is set to true (line 22). Counter dcntp counts the

number of different blocks written by p thus far in the execution of its current request (line

25). The appropriate entry of ptrsp changes to identify that the blkidxp-th block is now

one of the copy blocks of p (line 23). The write is performed in the copy block at line 27.

A thread p uses its copy blocks to make copies of the blocks that it will modify. If later

p’s SC at line 11 is successful, some of p’s copy blocks become active blocks (substituting

those that have been modified by p). These old active blocks (that have been substituted)

consist the new copy blocks of p which it will use to perform its next request. This is

accomplished with the code of line 12.

LS-RedBlue is a wait-free algorithm; it has space overhead Θ(n2 + n(B + kTS)) and

its time complexity is Θ(B+ k(D+TS)). The wait-free universal construction presented

in [11] assumes that each thread has enough copy blocks to perform at most M/T other

55

type INDEX {1, . . . , nkT +B};
struct BlueNode {

INDEX BANK[B];
int pid;
boolean reqs[n]

};
shared word BLK[1..B + kN ∗ T][1..S];

INDEX copyp[1..kT], oldlstp[1..kT], dcntp, blkidxp;
pointer ptrsp[1..B];
boolean dirtyp[1..B];
word vp;

void Propagate(int z) { // pseudocode for thread p
BlueNode b;

1 while(z 6= 0) {
2 for(int i=1 to 2) do {
3 if(z == 1) {
4 for(int j=1 to B) do
5 dirtyp[j]=false;
6 dcntp = 0;

}
7 b=LL(bn[z]);
8 if (z == 1) ptrsp = b.BANK;
9 bt = Calculate(z);
10 if (SC(bn[z], bt) AND z==1)
11 for (int l=1 to dcntp) do
12 copyp[l]=oldlstp[l];

}
13 z =bz/2c;

}
}

wordtype Read(int addr) {
14 vp=BLK[ptrsp[addr div S]][addr mod S];
15 if (VL(BANK)==false)
16 goto line 41 of Calculate (Algorithm 4);
17 else return vp;
}

void Write(int addr, wordtype val) {
18 blkidxp=addr div S;
19 if (dirtyp[blkidxp]==false) {
20 memcpy(BLK[copyp[dcntp]], BLK[ptrsp[blkidxp]], sizeof(blktype));
21 dirtyp[blkidxp]=true;
22 oldlstp[dcntp]=ptrsp[blkidxp];
23 ptrsp[blkidxp]=copyp[dcntp];
24 dcntp=dcntp+1;

}
25 BLK[ptrsp[blkidxp]][addr mod S]=val;
}

Algorithm 5: Pseudocode for LS-RedBlue.

56

struct BlueNode{
int BANK[B]; // this field used only at root
PINDEX pid; // this field used only at root
PINDEX help; // this field used only at root
boolean reqs[n];

};

void Propagate(int z){ // pseudocode for thread p
BlueNode b;

1 while(z!=1){
2 for (int d=1 to 2) do {
3 b=LL(bn[z]);
4 bt=Calculate (z);
5 SC(bn[z], bt);

}
6 z =bz/2c;

}
7 b=LL(bn[1]); // requests to perform at root
8 while (b.reqs[p] == false) {
9 for (int j=1 to B) do
10 dirtyp[j]=false;
11 dcntp = 0;
12 b=LL(bn[1]);
13 ptrsp = b.BANK;
14 bt=Calculate (1);
15 if (SC(bn[1], bt))
16 for (l=1 to dcntp) do
17 copyp[i] = oldlstp[i];

}
}

Algorithm 6: Pseudocode for BLS-RedBlue.

requests in addition to its own where M ≥ 2T is any fixed integer. The algorithm uses a

quite complicated helping mechanism with return values written into return blocks which

should then be recycled in order to keep the memory requirements low. This universal

construction has time complexity O((n/min{n,M/T})(B + nD + MS)). LS-RedBlue

achieves much better time complexity (Θ(B + k(D + TS))) and is adaptive. However, it

assumes that threads have enough copy blocks to help any number of other active threads.

LS-RedBlue can be slightly modified to disallow a thread to help more than M/T

other threads. The resulting algorithm (BLS-RedBlue) is much simpler than the wait-

free construction of [11] since it does not require the complicated mechanisms of [11] for

returning values and verifying the application of a request. These tasks are performed in

BLS-RedBlue in the same way as in S-RedBlue.

The BLS-RedBlue algorithm is presented in Algorithm 6. Propagate executes the same

code as in S-RedBlue for all nodes other than the root. The code executed by a thread p

57

BlueNode Calculate(int z) { // pseudocode for thread p
BlueNode tmp=< ⊥, < 0, . . . , 0 >,< ⊥, . . . ,⊥ >>;
BlueNode blue=bn[z], lc, rc;
RedNode red = rn[z];
int q, range, d, help = 0;

18 if (2*z+1 < 2n) {
19 lc = bn[2*z];
20 rc = bn[2*z+1];

} // if z is an internal node
21 range = 2lg(n)−dlg(z)e; // compute the number of leaves of each subtree

// copy the requests placed on the left subtree
22 tmp.reqs[2q-range..2q]=lc.reqs[2q-range..2q];

// copy the requests placed on the right subtree
23 tmp.reqs[2q+1..2q+1+range] = rc.reqs[2q+1..2q+1+range];
24 if (red.pid 6= -1) tmp.reqs[red.pid]=red.req; // if thread q occupies node red
25 if (z == 1) { // in case z is the root node
26 q = blue.help; // start helping form thread q
27 tmp.pid = p; // set thread’s id
28 tmp.rvals[1..n] = blue.rvals[1..n]; // copy the return values
29 tmp.st = blue.st; // copy object’s state
30 for d=1 to n do { // local loop
31 if (tmp.reqs[q]==true AND blue.reqs[q]==false) // apply any pending request
32 if (help < M/T) { // help at most M/T requests
33 apply tmp.reqs[q] to tmp.st and store into tmp.rvals[q] the return value;
34 help = help + 1; // increase the number of helped requests
35 } else tmp.reqs[q] = false; // mark that thread q has an unapplied request
36 else tmp.reqs[q]==true) // store the return value for pending request q
37 rvals[p][q]=rvals[b.pid][q];

}
}

38 return tmp;
}

Algorithm 7: Pseudocode for Calculate of BLS-RedBlue.

when it reaches the blue root (lines 18−37) is similar to the one of LS-RedBlue. However,

lines 31− 34 may have to execute more times in order to ensure that p’s request has been

applied to the object. Only when this has occurred, p’s Propagate returns. To speed

up this thread, we store one more field, called help, in the blue root node. Each thread,

applying a successful SC on the root node, writes there the index of the last active thread

it has helped, and next time threads start their helping effort from the next to this thread.

This has as a result, the body of the while loop (line 8) to execute at most min{k, 2M/T}

times. Each time that the loop is executed twice, M/T more active threads are helped.

Therefore, after 2k/(min{k,M/T}) iterations, the request of p will have been applied to

the object.

58

Each iteration of the loop requires O(B) time to execute lines 9 − 10 and 13. Each

execution of Calculate applies at most min{k,M/T} requests. The cost of applying

these requests is O(MS + min{k,M/T}D). Finally, the cost of calculating the return

values at each execution of Calculate is O(k). So, the cost of executing the while loop is

O(k/(min{k,M/T})(B + MS + k + min{k,M/T}D)). Given that each thread requires

only O(log k) steps to reach the root node, it follows that the time complexity of BLS-

RedBlue algorithm is O((k/min{k,M/T})(B + MS + k + min{k,M/T}D)). Obviously,

BLS-RedBlue achieves better time complexity than the wait-free construction of [11] and

it is adaptive. This is achieved without any increase to the required space overhead which

is O(n2 + n(MS +B)) for both algorithms.

In case a return value has size larger than a single word, i.e. it is at most R words,

our algorithms can still work with single-word base objects by substituting the array of

single-writer base objects held by each thread with a bi-dimensional array of nR words.

Then, the time complexity of BLS-RedBlue becomes O((k/min{k,M/T}) (B + MS +

kR+ min{k,M/T}D)). The wait-free universal construction of [11] has time complexity

O(n/min{n M/T}(B + nR + nD +MS)) under this assumption.

If n is very large, a technique like the one used by GroupUpdate [4] can be employed to

store a single pointer instead of the bit vector in each blue node. Then, the time complexity

of BLS-RedBlue becomes O(k log k+(k/min{k,M/T})(B+MS+kR+min{k, M/T}D)).

We expect that k log k ∈ O((k/min{k,M/T}) (B+MS+kR+min{k,M/T}D)) for large

objects in most cases.

59

Chapter 5

Practical Wait-Free

Synchronization Algorithms

5.1 The Sim algorithm

5.2 P-Sim: A practical version of Sim

5.3 Performance evaluation of P-Sim

5.4 L-Sim: A synchronization algorithm for large objects

5.5 SimStack: A wait-free implementation of a shared stack

5.6 SimQueue: A wait-free implementation of a shared queue

In this chapter, the family of Sim synchronization algorithms is presented. Specifically,

in Section 5.1, we present the Sim wait-free synchronization algorithm based on the simple

algorithm presented in [37]. In Section 5.2, a practical and efficient implementation of

P-Sim is discussed, while its performance is evaluated in Section 5.3. In Section 5.4, we

present the L-Sim synchronization algorithm, which is suitable for simulating objects with

large state. Section 5.5 presents a wait-free stack implementation based on P-Sim, while

Section 5.6 presents a wait-free shared queue implementation also based on P-Sim.

60

5.1 The Sim algorithm

In this section, we present the Sim algorithm. Sim is a wait-free synchronization algorithm

with O(1) step complexity using an Add and an LL/SC object.

5.1.1 Algorithm description

Sim (Algorithm 8) uses an LL/SC object S and a collect object Col. The LL/SC object

stores the simulated state st, a vector, called applied, of n bits with initial value 0, and

an array rvals of n elements containing the return values. We remark that the size of

S could be reduced to a single pointer using indirection (see Section 5.2 which describes

how to build a practical version of Sim).

Each thread maintains a persistent local variable togglei, initially 0, which it toggles

each time it performs a new request. The collect object consists of n components, one

for each thread. The ith component of Col stores the last request reqi initiated by pi (or

⊥ if no such request exists) and a toggle bit toggle which stores the value contained in

togglei at the time that reqi was initiated (or 0 if no such request exists). Whenever pi

wants to perform some request reqi, it first announces reqi by updating component i of

Col with the value 〈reqi, togglei〉 (line 1). It then toggles togglei. Finally, pi executes a

routine (line 3), called Attempt, to ensure that its request has been executed.

A request by pi is applied only if the toggle field of the ith component of Col differs

from the ith bit of S.applied (lines 13, 15). In more detail, when pi wants to execute its

first request req1, it writes in the toggle field of the ith component of Col the value 1

(line 3). Each thread q that sees the value 1 in Col[i].toggle and 0 in S.applied[i], will

apply req1 on the copy of the simulated state that it works on. However, only one of

them will succeed in updating S on line 18. This update changes S.applied[i] to 1 which

identifies that req1 has been applied. When pi initiates its second request, it changes the

toggle field of the ith component of Col to 0, thus storing in it a different value than that

of S.applied[i]; this indicates that a new request by pi has been announced.

When a thread pi executes Attempt, it first creates a copy of S (line 6) which contains

the state of the simulated object. Then, it discovers which requests are currently active

(line 7) by executing collect, and performs locally, one after the other, those of them

that have not been applied yet (lines 8 - 11) by using its local copy ls of S. By doing so,

61

typedef struct {
State st;
boolean applied[1..n];
RetVal rvals[1..n];

} StRec;

typedef struct {
Request req;
boolean toggle;

} CollectRec;

// ŝ is the initial state of the simulated object
shared StRec S = 〈ŝ, 〈0, . . . , 0〉, 〈⊥, . . . ,⊥〉〉;

// Col is a collect object that stores n structs of type CollectRec
shared CollectRec Col(n) = << ⊥, 0 >, . . . , < ⊥, 0 >>;

Boolean togglei = 1; // Persistent variable of thread pi

RetVal SimApplyOp(Request req, ThreadId i){
1 update(Col, i, <req, togglei>); // Announce req
2 togglei = 1 - togglei;
3 Attempt(i); // Call Attempt to perform req
4 return S.rvals[i];
}

void Attempt(ThreadId i) { // Code for Attempt
StRec ls;
CollectRec v[n]; // v stores a copy of the collect object

5 for j=1 to 2 do{
6 ls = LL(S); // create a local copy of S in ls
7 v = collect(Col); // discover the active requests
8 for l=1 to n do {
9 if(v[l].toggle 6= ls.applied[l]) { // if pl has a request not applied yet
10 apply v[l].req on ls.st and store the return value into ls.rvals[l];

}
11 ls.applied[l] = v[l].toggle;

}
12 SC(S, ls); // Try to change the contents of S

}
}

Algorithm 8: Pseudocode for Sim.

it calculates a new state for the simulated object and a return value for each of the active

requests (line 10); finally, Attempt attempts to write the value of ls into S by executing an

SC (line 12). If, in the mean time, some other thread managed to replace S with its local

copy of the simulated state, then pi’s SC will not succeed and the actions it performed

during the execution of the current loop of for (of line 8) will be discarded.

62

Recall that thread pi computes the return values (line 8) for the requests that it

attempts to perform and stores them in ls.rvals (line 8). We remark that ls.rvals contains

return values for all active requests (and not only for those that pi attempts to perform)

since all return values recorded in S are copied in ls by executing the LL of line 6.

The instance of Attempt executed by pi performs the above steps twice (lines 6-12)

to ensure that its currently active request reqi has been applied to the simulated object

before the instance of SimApplyOp that is currently executed by pi responds. We remark

that executing lines 6-12 just once is not enough. This is so since, if this was the case,

there could be another request reqj executed by some thread pj whose collect on line 7

occurred before the execution of the update with parameter 〈reqi, togglei〉 (line 1) and

so it did not return reqi for the ith component∗. If the SC instruction, let it be SC1, that

was executed by reqj on S was successful, it may have caused reqi’s SC on S to fail. In

this case, pi would return without ensuring that its request has been served.

We finally explain why this problem is overcome if the instance of Attempt executed by

pi performs lines 6-12 twice. Let SC2 be the first successful SC instruction on S executed

after SC1. Notice that SC2 is either the second SC executed by pi or SC1 is executed

before this SC. Then, the thread p which executes SC2 sees reqi and performs it, if this

has not already been done. This is so since the matching LL of SC2 (and the collect

that follows it) are executed by p after SC1 and reqi is announced before SC1.

5.1.2 Correctness proof

In this section, we prove that Sim is linearizable. We start by introducing some useful

notation. Fix any execution α of Sim. Assume that some thread pi, i ∈ {1, ..., n}, executes

mi > 0 requests in α. Let reqij be the argument† of the jth invocation of SimApplyOp

by pi and let πi
j be the instance of Attempt executed by reqij. Let U i

j be the last update

executed by pi before πi
j and let Qi

j be the configuration just before the first step of U i
j ;

let Qi
0 be the initial configuration C0 and let vij be the value written by U i

j . The notation

of this proof is summarized in Table 5.1.

∗ For simplicity we sometimes say that a request req by a thread pi executes Attempt (or any other
line of the pseudocode) meaning that the instance of SimApplyOp that is called by pi for req executes
Attempt (or any code line in reference). Moreover, when we refer to the execution interval of some request
req, we mean the execution interval of the instance of SimApplyOp that is invoked with parameter req.

† For clarity of the proof, we consider each reqij as distinct.

63

Notation Description

α Any execution of Sim
C Any configuration in α

C0 The initial configuration of α

pi The thread which its id is equal to i, i ∈ {1, . . . , n}
mi Thread pi executes mi requests in α

reqij The argument of the jth invocation of SimApplyOp

πi
j The instance of Attempt executed by regij
U i
j The last update executed by pi before πi

j

Qi
j The configuration just before the first step of U i

j

Qi
0 The initial configuration C0

vij The value written by U i
j

Ci
1

The first configuration between C0 and the end of πi
1 at

which S.applied[i] is equal to 1

Ci
j

The first configuration between the end of πi
j−1 and the

end of πi
j such that S.applied[i] is equal to j mod 2

SCi
j The SC instruction executed just before Ci

j

LLi
j The matching LL instruction of Ci

j

SCm The mth successful SC instruction on S in α

LLm The matching LL of SCm

Cm The configuration just after the execution of SCm

αm The prefix of α which ends at SCm

α0 The empty execution

Table 5.1: Notation used in the proof of Sim.

We first present the following lemma which is an immediate consequence of the pseu-

docode (lines 5, 6 and 12) and of the semantics of the LL/SC operation.

Lemma 5.1. Consider any j, 0 < j ≤ mi. There are at least two successful SC instruc-

tions in the execution interval of πi
j.

The next lemma also follows from the pseudocode (lines 1 and 2). It states that U i
j

updates the ith component of Col with the value 〈reqij, j mod 2〉 and this value does not

change until the next update on the ith component starts its execution.

Lemma 5.2. For each j, 0 ≤ j ≤ mi, the following claims hold:

1. vij = 〈reqij, j mod 2〉;

2. no update occurs on the ith component of Col between the end of U i
j−1 and Qi

j.

We next prove that, at the end of the execution of πi
j, it holds that S.applied[i] is

equal to j mod 2.

Lemma 5.3. Consider any j, 0 < j ≤ mi. It holds that S.applied[i] is equal to j mod 2

at the end of the execution of πi
j.

64

C0 Qi
1 Ci

1

πi
1

reqi1

. . .

Qi
j−1 Ci

j−1

πi
j−1

reqij−1

Qi
j Ci

j

πi
j

reqij

U i
1

U i
j−1 U i

j

time

Figure 5.1: An example execution of the Sim algorithm.

Proof. Assume, by way of contradiction, that S.applied[i] = 1 − (j mod 2) at the end

of πi
j. By Lemma 5.1, there are at least two successful SC instructions in the execution

interval of πi
j. It follows that the last successful SC instruction that is executed in πi

j

writes 1 − (j mod 2) into S.applied[i]. Let SCx be this SC instruction, let LLx be the

matching LL instruction of SCx, let px be the thread that executes LLx and SCx, and let

Gx be the instance of collect executed by px between LLx and SCx. Since the execution

interval of πi
j contains at least two successful SC instructions and SCx is the last one and

it is successful, it follows that LLx follows the beginning of πi
j.

By the pseudocode (lines 1, 6 and 7), it follows that Gx begins its execution after the

end of the execution interval of U i
j . Thus, Lemma 5.2 implies that Gx returns j mod 2

for the toggle field of the ith component of Col. By the pseudocode (line 11), SCx writes

the value j mod 2 into S.applied[i] which is a contradiction.

At C0, S.applied[i] is equal to 0. If mi > 0, Lemma 5.3 implies that at the end of

πi
1, S.applied[i] is equal to 1. Let Ci

1 be the first configuration between C0 and the end

of πi
1 at which S.applied[i] is equal to 1. Consider any integer 1 < j ≤ mi. Lemma 5.3

implies that at the end of πi
j−1, S.applied[i] is equal to (j − 1) mod 2, whereas at the

end of πi
j, S.applied[i] is equal to j mod 2. Let Ci

j be the first configuration between the

end of πi
j−1 and the end of πi

j such that S.applied[i] is equal to j mod 2; let Ci
0 = C0.

Obviously, Ci
j precedes the end of πi

j. Figure 5.1 illustrates the above notation.

By the definition of Ci
j, it follows that just before Ci

j a successful SC on S is executed.

Let SCij be this SC instruction and let LLij be its matching LL instruction. Denote by

Gi
j the instance of collect that is executed between LLij and SCij by the same thread

(line 7).

We continue to prove that Gi
j returns the value vij written by U i

j for thread pi. More-

over, we prove that SCij is executed after Qi
j (i.e. after the execution of the first step of

U i
j).

65

Lemma 5.4. Consider any j, 0 < j ≤ mi. It holds that: (1) SCij is executed after Qi
j,

and (2) Gi
j returns vij for the ith component.

Proof. Assume first that j = 1. Then, SCi1 writes 1 to S.applied[i]; the code (lines 7, 11

and 12) implies that, in this case, Gi
1 returns the value 1 for the toggle field of the ith

component of Col. However, since the initial value of this field is 0, and U i
1 is the only

update that is executed on the ith component between C0 and the end of πi
1, it follows

that Gi
1 returns the value written to the ith component by U i

1. Thus, the execution of Gi
1

ends after the beginning of U i
1, i.e. after Qi

1, and Gi
1 returns vi1.

Consider now any j > 1. Suppose first that Gi
j starts executing before the beginning

of πi
j−1. By the pseudocode, it follows that LLij is executed before Gi

j and, by its definition,

SCij is executed after the end of πi
j−1. By Lemma 5.1, at least two successful SC instructions

are executed in the execution interval of πi
j−1. It follows that SCij is not successful, which

is a contradiction. Thus, Gi
j starts its execution after the beginning of πi

j−1.

We continue to prove that the value v returned by Gi
j for the toggle field of the

ith component of Col is not equal to vij−1.toggle. By definition, SCij writes j mod 2 to

S.applied[i]. Then, by the code (lines 7, 11 and 12), it follows that Gi
j returns the value

v = j mod 2 for the toggle field of the ith component. By Lemma 5.2, vij−1.toggle =

(j − 1) mod 2. Thus, v 6= vij−1.

By the code (lines 1-4), no update other than U i
j is executed on the ith component

between the end of U i
j−1 and the end of πi

j. Since Gi
j starts after the beginning of πi

j−1

(and therefore after the end of U i
j−1), ends before the end of πi

j, and returns a value not

equal to vij−1, it follows that Gi
j must return the value vij written by U i

j . Therefore, the

execution of Gi
j ends after the beginning of the execution of U i

j , and the same is true for

SCij which is executed right after Gi
j.

We next prove that the value of S.applied[i] remains the same between SCij−1 and SCij.

Lemma 5.5. Consider any j, 0 < j ≤ mi. At each configuration C following Ci
j−1 and

preceding Ci
j, it holds that S.applied[i] = (j − 1) mod 2.

Proof. By definition of Ci
j, no successful SC writes the value j mod 2 to S.applied[i]

between the end of πi
j−1 and Ci

j. Assume, by way of contradiction, that there is some

configuration between Ci
j−1 and the end of πi

j−1 such that S.applied[i] is equal to j mod 2.

66

Let Cx be the first of these configurations. Since only SC instructions change the value

of S, there is a successful SC instruction, SCx, which occurs just before Cx and writes

the value j mod 2 to S.applied[i]. Let LLx be the matching LL instruction to SCx, let πx

be the instance of Attempt that executes SCx, and let Gx be the instance of collect

executed by px between LLx and SCx.

We continue to prove that the value v returned by Gx for the toggle field of the

ith component of Col is not equal to vij−1. By definition of SCx, SCx writes the value

j mod 2 into S.applied[i]. Then, by the code (lines 7, 11 and 12), it follows that Gx

returns a value v = j mod 2 for the toggle field of the ith component. By Lemma 5.2,

vij−1.toggle = (j − 1) mod 2. Thus, v 6= vij−1.

Since SCx is successful, LLx must have occurred after Ci
j−1. Since Gx occurs between

LLx and SCx, and U i
j−1 is executed before πi

j−1, Gx occurs after the end of the execution

of U i
j−1. Since no other update occurs on component i between the end U i

j−1 and the

end of πi
j−1, it follows that Gx returns vij−1 for the ith component, which contradicts our

argument above that Gx returns v 6= vij−1.

We say that a request reqij is applied on the simulated state if there is some request

req′ (that might be reqij or not) for which all the following conditions hold: (1) the last

collect that is executed by req′ returns 〈reqij, toggle〉 as the value of the ith component

of Col, where toggle is a value different from the value returned by the last Read on

S.applied[i] (line 6) that is executed by the Attempt of req′ (so that line 10 is executed),

and (2) the execution of the last SC of line 12 on S by req′ succeeds. When these conditions

are satisfied, we sometimes also say that req′ applies reqij.

We continue to prove that reqij is applied on the simulated object exactly once and

this occurs just before Ci
j.

Lemma 5.6. For each j, 0 < j ≤ mi, req
i
j is applied exactly once.

Proof. By the pseudocode (lines 7, 8, 9, and 11) and by definition, it follows that when

some request req initiated by pi is applied, there is some successful SC on S which toggles

the value of S.applied[i]. Lemmas 5.3 and 5.5 imply that there should be at least one

m > 0 such that this SC is SCim. Since the requests initiated by pi are distinct, Lemmas 5.2

and 5.4 imply that reqij is applied if m = j. Thus, reqij is applied exactly once.

67

We are now ready to assign linearization points. For each i ∈ {1, ..., n} and 0 < j ≤ mi,

we place the linearization point of reqij at Ci
j; ties are broken by the order imposed by

threads’ identifiers.

Lemma 5.7. Each request reqij, 0 < j ≤ mi, is linearized within its execution interval.

Proof. Lemma 5.4 implies that SCij follows Qi
j. By its definition, SCij occurs before the

end of πi
j. Thus, Ci

j is in the execution interval of reqij, as needed.

In order to prove consistency, we use the following notation. Denote by SCm, m > 0,

the mth successful SC instruction on S and let LLm be its matching LL. Obviously, between

SCm and SCm+1, S is not modified.

Denote by αm, the prefix of α which ends at SCm and let Cm be the first configuration

following SCm. Let α0 be the empty execution. Denote by Lm the order defined by the

linearization points, assigned as described above, of the requests in αm. We remark that

S.st stores a copy of the simulated state at each point in time. Moreover, each thread

applies requests on its local copy of the simulated state sequentially, one after the other.

We say that S.st is consistent at Cm if it equals the state resulting from executing the

requests of αm sequentially in the order specified by Lm.

Lemma 5.8. For each m ≥ 0, (1) S.st is consistent at Cm, and (2) Lm is a linearization

order for αm.

Proof. We prove the claim by induction on m.

Base case (m=0): The claims hold trivially: by the initialization of S, S.st contains ŝ,

which is the initial state of the simulated object, and α0 is empty.

Induction hypothesis: Fix any m > 0 and assume that the claims hold for m− 1.

Induction step: We prove that the claim holds for m. By the induction hypothesis, it

holds that: (1) S.st is consistent at Cm−1, and (2) Lm−1 is a linearization order for αm−1.

Let req be the request that executes SCm. Assume that req applies j > 0 requests on

the simulated object. Denote by req1, ..., reqj the sequence of these requests ordered in

increasing order of the identifiers of the threads that initiate them.

Notice that req performs LLm after Cm−1 since otherwise SCm would not be successful.

By the induction hypothesis, S.st is consistent at Cm−1. Thus, the local copy of S that is

last stored by req in ls, represents a consistent state of the simulated object. Lemma 5.6

68

implies that req1, . . . , reqj are applied only once. This is realized when SCm is executed.

Thus, none of these requests have been applied previously.

Given that the application of req1, ..., reqj is simulated by the thread executing req

sequentially, in the order mentioned above, starting from the state stored in ls, it is a

straightforward induction to prove that (1) for each f , 0 ≤ f ≤ j, a consistent response

is calculated for reqf , and the new state of the simulated object is calculated in a correct

way in the local variable ls of the Attempt executed by req. Therefore, S.st is consistent

after the execution of req’s successful SC. Notice that, by the way linearization points are

assigned, Lm = Lm−1, req1, . . . , reqj. It follows that Lm is a linearization order for αm.

Theorem 5.1. Sim is a linearizable implementation of a universal object.

5.1.3 An efficient implementation of collect

We present an implementation of a collect object, called SimCollect, which uses a single

Add object and has step complexity O(1). However, the size of the Add object it employs

is large. In Section 5.2, we describe a practical version of SimCollect which has been used

by P-Sim to achieve high performance and scalability.

Recall that a collect object consists of n components. Suppose that each of the compo-

nents stores a value from some set D. Suppose that d is the number of bits that are needed

for the representation of any value in D. SimCollect uses an Add object O of nd bits. O

is partitioned into n chunks of d bits each, one for each thread. Thread pi owns the ith

chunk of d bits, and stores there the value of the component that has been assigned to it.

An update U with value v by pi first performs an Add to ensure that v is written into the

ith chunk of O, and then keeps a copy of v into a local variable; this copy is maintained by

pi to discover the appropriate value that should be added to the ith chunk of O during its

next update (which will be the new value minus v). Whenever pi executes a collect,

it simply reads the value stored in O and returns for each component the value stored

in the corresponding chunk. It is apparent that the number of shared memory accesses

performed by SimCollect is 1.

If the size b of an Add object is less than nd bits, then we can employ dnd/be Add

objects, O1, . . . , Odnd/be. In this case, the value last written by pi is represented by the

69

(i · d mod b)th chunk of Odi·d/be
‡. An update by pi adds an appropriate value to Odi·d/be,

and collect reads every Add object once and returns the set of values written in the

chunks. This version of the algorithm has step complexity 1 for update, and O(nd/b) for

collect. Notice that this version is not linearizable (but recall that linearizability is not

necessary for implementations of collect objects). In case b ≥ nd, the implementation is

linearizable; in this case, SimCollect can serve as a single-writer snapshot implementation.

We remark that the same techniques, as in SimCollect, can be used to get an imple-

mentation of an active set, called SimActSet, by using an Add object of n bits (one for

each thread); this implementation has step complexity 1 if b < n, and dn/be if b > n.

It is apparent that similar implementations of collect, snapshot and active set can be

derived if a XOR object is used instead of an Add object.

5.1.4 Space and step complexity

The step complexity of Sim is O(sc), where sc is the step complexity of the implementation

of the collect object it employs. If this implementation is SimCollect, Sim exhibits constant

step complexity. In this case, it uses an Add object of nd bits and an LL/SC object of size

O(n+ s), where s is the size of the simulated state.

Theorem 5.2. By using SimCollect, the step complexity of Sim is O(1) and Sim uses one

Add object of nd bits and one LL/SC object of size O(n+ s).

5.1.5 Derived lower bounds

Jayanti [42] has proved that any oblivious implementation of a universal object from

LL/SC objects has step complexity Ω(log n). This lower bound holds even if the size of

the LL/SC objects is unbounded. Sim is oblivious. So, the lower bound can be beaten if

just one Add object (or a collect object) is used in addition to an LL/SC object. Thus, the

following theorem holds:

Theorem 5.3. A lower bound of Ω(log n) holds on the step complexity of any implemen-

tation of (1) a single-writer snapshot object, (2) a collect object, (3) a XOR object, and (4)

an Add object, from LL/SC objects.

‡For simplicity, we assume that d is a divisor of b, so that the d bits allocated to each thread are not
split across two Add objects.

70

5.2 P-Sim: A practical version of Sim

In this section, we present a practical version of Sim, which is called P-Sim. P-Sim uses

O(n/b) Add objects of size b bits each, one LL/SC object storing a single pointer, and O(n)

Read-Write structs each of size O(n+ s). The step complexity of P-Sim is O(n+ s).

5.2.1 Algorithm description

First, we discuss the techniques applied to Sim in order to port it to a real-world machine

architecture, like x86 64. Applying these techniques leads to a practical version of Sim,

called P-Sim. In P-Sim, the information stored in struct StRec is now maintained using

indirection; we employ recycling to reduce the space requirements. Each thread pi main-

tains a pool of two structs of type StRec. These pools are implemented by allocating

an array Pool of type StRec which consists of n + 1 rows of two elements each. Thread

pi’s pool is comprised by the ith row of Pool§. Variable S is now a pointer to one of the

elements of Pool¶, initially pointing to Pool[n+ 1][1] (where the (n+1)st row is used for

initialization).

The collect object is implemented by a set of n single-writer Read-Write structs of

type Request, called Announce, and a shared bit vector Toggles of n bits, one for each

thread. A struct of type Request contains two fields, a pointer func which points to

a function containing the code of the simulated operation, and an argument. Toggles

is implemented using Add in a way similar to SimCollect. Specifically, when a thread pi

initiates a new request, it toggles Toggles[i] by performing an atomic Add (lines 3-4).

More specifically, Toggles is implemented as an integer (or as an array of dn/be integers,

if n is larger than the size b of an integer); to toggle bit i, pi atomically adds 2i or −2i to

this integer (or 2i mod b or −2i mod b to Toggles[di/be], respectively). Initially, all bits of

Toggles are equal to 0.

When pi wants to execute a request req, it announces it by writing req (and its

parameters) in Announce[i] (line 2). Thread pi discovers the requests that other active

threads want to perform by reading the appropriate entries of Announce (lines 14-16)

§ We remark that in the real code we use a pool of nC + 1 structs, where C > 1 is a small constant,
for performance reasons. However, using a pool of just 2n+ 1 structs is enough to prove correctness. For
code simplicity, Algorithm 9 uses 2n+ 2 such structs.
¶ In the real code, Pool is implemented as a one-dimensional array, and S is an index indicating one

of its elements.

71

typedef struct {
void *func; // Function pointer to push or pop
ArgVal arg;

} Request;

1 typedef struct {
State st;
boolean applied[1..n]; // applied is implemented as an integer
RetVal rvals[1..n];

} StRec;

shared Integer Toggles = 0; // Toggles implements a vector of n bits
shared StRec Pool[1..n+1][1..2]; // Initially, Pool[n+ 1][1] = 〈⊥, 0, 〈⊥, . . . ,⊥〉〉
shared StRec *S = &Pool[n+1][1]; // Initially, S points to Pool[n+ 1][1]
shared Request Announce[1..n];

Algorithm 9: Data structures used in P-Sim.

based on the information Read in Toggles and in the struct pointed to by S. This

increases the step complexity of P-Sim but it decreases the size of the Add object which

now stores n bits instead of nd bits that are used in SimCollect. A simplified version of

P-Sim is shown in Algorithms 9-10.

The VL instruction of line 11 guarantees that the copied state (line 10) is consistent. A

slow thread pj may read the state of the simulated object form some struct r while thread

pi, which owns r, reuses this struct. This will have as a result pj reading an inconsistent

state. Notice that, in this case, the SC instruction of pj on line 18 will fail. Still, pj may

simulate locally the application of several requests , while executing lines 14-17, using an

inconsistent state. Successful execution of the VL of line 11 guarantees that r has not

yet been reused, so the state that was read is consistent. Additionally, the existence of

the VL enhances the performance of P-Sim. Making a local copy of the state (line 10)

is slow, since it usually causes one or more cache misses. In the mean time, another

thread may have successfully updated the state of the simulated object. In this case,

having pj executing lines 14-17 is useless and may cause cache misses due to the Read

operations that are performed on the Announce array. The use of the VL ensures that

this unnecessary overhead is avoided.

The majority of the commercially available shared memory machines support CAS

rather than LL/SC. P-Sim simulates an LL on S with a Read(S). VL is implemented by

reading S and checking whether its timestamp has changed since the most recent previous

72

// Private local variables for thread pi
Integer togglei = 2i;
Integer indexi = 0;

RetVal PSimApplyOp(Request req, ThreadId i){ // Code for thread pi
2 Announce[i] = req; // Announce req
3 FAD(Toggles, togglei); // toggle pi’s bit in Toggles
4 togglei = -togglei;
5 Backoff();
6 Attempt(i);
7 return S.rvals[i];
}

void Attempt(ThreadId i) { // Code for Attempt
boolean ltoggles[1..n]; // ltoggles is implemented as an integer
StRec *ls ptr;

8 for j=1 to 2 do {
9 ls ptr = LL(S); // read the pointer stored in S
10 Pool[i][indexi] = *ls ptr; // Create a copy of current state
11 if (VL(S) == 0)
12 continue;
13 ltoggles = Toggles; // Read the vector of toggles
14 for l=1 to n do {

// If pi has a request that is not applied yet
15 if(ltoggles[l] 6= Pool[i][indexi].applied[l]) {

// Apply the request and compute return value
16 apply Announce[l] on Pool[i][indexi].st

and store the return value into Pool[i][indexi].rvals[l];
}

17 Pool[i][indexi].applied[l] = ltoggles[l];
}

18 if(SC(S, &Pool[i][indexi])) // Try to change the contents of S
19 indexi=(indexi + 1) mod 2; // If success, pi uses the next struct
20 BackoffCalculate();

}
}

Algorithm 10: Pseudocode of P-Sim.

LL executed by the same thread. Finally, an SC is simulated with a CAS on a timestamped

version of S to avoid the ABA problem‖. In the real code S stores just an index to Pool

(and not a full 64 bit pointer), so there are enough bits (in our experiments 48) in a word

to store the timestamp. In systems with more threads, we could use 128 bit words; we

remark that x86 64 machines support 128 bit words.

‖ This problem occurs when a thread p reads some value A from a shared variable and then some
other thread p′ modifies the variable to the value B and back to A; when p begins execution again, it
sees that the variable has not changed and continues executing normally which might be incorrect.

73

We remark that the performance of P-Sim becomes better when a combining thread

manages to help a large number of other threads while performing its request. For ex-

ploiting this property, we use an adaptive backoff scheme. A thread pi backoffs, after

it has announced its request (line 5) and has indicated in Act that it is active. P-Sim

does not use backoff for reducing the contention on accessing a shared CAS object, as it

is usually the case in previous algorithms [37, 50]. It rather employs backoff in an effort

to achieve a better combining degree. The backoff scheme of P-Sim is simple: it uses a

single parameter which is a backoff upper bound (by default, the backoff lower bound is

set to 1). During backoff, a thread executes t noop instructions (where t is initialized to

1). Each time a new request is initiated t is re-calculated as follows. If the SC instruction

(line 18) of this request succeeds, t is doubled (until it reaches its upper bound); otherwise

t is halved until it reaches its lower bound. In Section 5.3, we discuss the impact of backoff

in the performance of P-Sim.

The full source code of P-Sim is provided at http://code.google.com/p/sim-universal-

construction/.

5.2.2 Correctness proof

The correctness proof of P-Sim is similar to that of Sim presented in Section 5.1.2. We

follow the same notation as in Section 5.1.2 where we consider as U i
j the jth Add executed

by pi (line 3) and as the analog of the collect executed on line 7 of Sim, the Read of

Toggles on line 13 of P-Sim. Let vij be equal to 1 if the argument of the jth Add by pi

is positive and 0 otherwise. It is easy to see that, in this way, vij plays the same role as

vij.toggle in the proof of Sim. The notation of this proof is summarized in Table 5.2.

We focus on those parts of the proof of Sim that are different than those of the proof

of P-Sim. We start with Lemma 5.1 whose proof is now simpler.

Lemma 5.9. Consider any j, 0 < j ≤ mi. There are at least two successful SC instruc-

tions in the execution interval of πi
j.

Proof. We prove that during the execution of each iteration of the for loop of lines 8-

17, at least one successful SC instruction is performed. If the iteration is completed on

line 12 of the pseudocode, the VL instruction (line 11) returns 0. This implies that at

least one successful SC instruction occurred between the LL of line 9 and the execution of

74

Notation Description

α Any execution of P-Sim
C Any configuration in α

C0 The initial configuration of α

pi The thread which its id is equal to i, i ∈ {1, . . . , n}
mi Thread pi executes mi requests in α

reqij The argument of the jth invocation of PSimApplyOp

πi
j The instance of Attempt executed by regij
U i
j The jth Add executed by pi

Qi
j The configuration just before U i

j

Qi
0 The initial configuration C0

vij The value written by U i
j

Ci
1

The first configuration between C0 and the end of πi
1 at

which S.applied[i] is equal to 1

Ci
j

The first configuration between the end of πi
j−1 and the

end of πi
j such that S.applied[i] is equal to j mod 2

SCi
j The SC instruction executed just before Ci

j

LLi
j The matching LL instruction of Ci

j

rij
The Read of Toggles that is executed between LLi

j and

SCi
j

SCm The mth successful SC instruction on S in α

LLm The matching LL of SCm

Cm The configuration just after the execution of SCm

αm The prefix of α which ends at SCm

α0 The empty execution

Table 5.2: Notation used in the proof of P-Sim.

VL on line 11. Suppose that the iteration executes the SC instruction on line 18. If this

SC is successful, the claim follows. Otherwise, at least one successful SC instruction was

performed between the execution of line 9 and line 18.

We next present the analog of Lemma 5.2 of Sim. Its proof is a straightforward

induction on j.

Lemma 5.10. For each j, 0 ≤ j ≤ mi, the following claims hold:

1. vij = j mod 2 (i.e. Toggles[i] = j mod 2 after the execution of U i
j);

2. no Add instruction executed between the end of U i
j−1 and Qi

j changes the ith bit of

Toggles.

It is easy to prove a lemma similar to Lemma 5.3 for P-Sim. Its proof follows the same

arguments as those in the proof of Lemma 5.3.

Lemma 5.11. Consider any j, 0 < j ≤ mi. It holds that S → applied[i] is equal to j

mod 2 at the end of πi
j.

75

As in the proof of Sim, we let Ci
1 denote the first configuration between C0 and the

end of πi
1 at which S → applied[i] is equal to 1, and we let Ci

j to be the first configuration

between the end of πi
j−1 and the end of πi

j such that S → applied[i] is equal to j mod 2;

let Ci
0 = C0.

We continue to prove that no field of the structure pointed to by S may change its

value as long as S points to it. Thus, S → applied[i] takes different values only by

executing successful SC instructions on S. It follows that recycling does not cause any

implication to the proof.

Lemma 5.12. Let SC1 and SC2 be two successful SC instructions on S such that no

successful SC on S is executed between SC1 and SC2. Let v1 be the value of the structure

pointed to by S after SC1. Then, the value of the structure pointed to by S is always v1

between SC1 and SC2.

Proof. Let C1 and C2 be the configurations resulting from the application of SC1 and SC2,

respectively. Let pi be the thread that executes SC1. By the pseudocode (lines 10, 18), it

follows that S points to Pool[i][l], for some l ∈ {1, 2} at C1, so Pool[i][l] = v1.

Assume, by way of contradiction, that there is a configuration Cx between SC1 and SC2

at which Pool[i][l] 6= v1. By the pseudocode (lines 17 and 18), it follows that only pi can

write to Pool[i][l]. Since pi’s pool contains two structures and pi uses a different structure

each time it performs a successful SC on S, it follows that pi can use Pool[i][l] again

only if it performs a successful SC instruction between SC1 and Cx. However, this would

contradict our assumption that no successful SC instruction is executed on S between SC1

and SC2.

Lemma 5.12 implies that S → applied[i] takes different values only when successful

SC instructions are executed on S. It follows that just before Ci
j a successful SC on S is

executed. Let SCij be this SC instruction and let LLij be its matching LL instruction. Let rij

be the Read of Toggles that is executed between LLij and SCij by the same thread (line 13)

for the ith bit. The following two lemmas are the analogs of Lemmas 5.4 and 5.5 of Sim.

Their proofs follow similar arguments as those of these lemmas.

Lemma 5.13. Consider any j, 0 < j ≤ mi. It holds that rij is executed after Qi
j and

reads j mod 2 in Toggles[i].

76

Lemma 5.14. Consider any j, 0 < j ≤ mi. At each configuration C following Ci
j−1 and

preceding Ci
j, it holds that S → applied[i] = (j − 1) mod 2.

We say that a request reqij is applied if there is some request req′ (that might be reqij

or some other request) for which all the following conditions hold: (1) the last Read on

Toggles that is executed by req′ returns a value for its ith bit which is different from the

value returned by the last Read on S.applied[i] (line 6) executed by the Attempt of req′,

(2) the Read on Announce[i] (line 16) by req′ returns reqij, and (3) the execution of the

SC of line 12 on S by req′ succeeds. If these conditions hold, we sometimes say that reqij

is applied when the SC of line 12 on S by req′ is executed.

Following similar arguments as those in the proof of Lemma 5.6, we can prove that

reqij is applied on the simulated object exactly once and this occurs just before Ci
j.

Lemma 5.15. For each j, 0 < j ≤ mi req
i
j is applied to the simulated object only once

and this occurs just before Ci
j.

Proof. By the pseudocode (lines 13, 14, 15, and 17) and by definition, it follows that

when some request req initiated by pi is applied, there is some successful SC on S which

toggles the value of S.applied[i]. Lemmas 5.11 and 5.14 imply that there should be at

least one integer m > 0 such that this SC is SCim. We argue that reqij is applied when

SCij is executed. By Lemma 5.13, rij is executed after Qi
j. By definition of Ci

j and by the

pseudocode (lines 13 and 18), it follows that rij is executed before the end of πi
j. By the

pseudocode, it follows that the read of Announce[i] on line 16 by the instance of Attempt

that executes SCij occurs between Qi
j and Ci

j. Since reqij is active between Qi
j and Ci

j, this

read returns reqij. Thus, reqij is applied at least once when SCij is executed. Since the

requests initiated by pi are distinct, reqij is not applied any other time.

We assign linearization points for P-Sim in the same way as we do for Sim. We can

then argue, as in Sim, that P-Sim is linearizable. Thus, the following theorem holds for

P-Sim.

Theorem 5.4. P-Sim is a linearizable implementation of a universal object.

77

5.2.3 Space and step complexity

P-Sim performs O(n + s) shared memory accesses. More specifically, the Read of the

structure of type State which is performed on line 10, results in reading the array rvals

of n return values, the bit vector applied which is stored in O(n/b) memory words, and

the entire state of the object, i.e. s memory words. Moreover, the Read of Toggles

on line 13 requires O(n/b) additional shared memory accesses. The algorithm performs

O(k) memory accesses to read the appropriate elements of Announce. Thus, the shared

memory accesses performed by P-Sim is O(n + s). P-Sim uses a pool of O(n) structures

of type State, each of size O(n + s). The algorithm also employs a bit vector of size n

and an array of n values. Thus, the space complexity of P-Sim is O(n2 + ns).

Theorem 5.5. P-Sim uses O(n/b) Add objects of size b bits each, one LL/SC object stor-

ing a single pointer, and O(n) Read-Write structures each of size O(n + s). The step

complexity of P-Sim is O(n+ s).

5.2.4 Making P-Sim adaptive

In this section, we discuss how we could modify P-Sim in order to get an adaptive version of

it in terms of both space and step complexity. The step complexity of P-Sim is determined

based on the following: (1) Toggles is a vector of n bits, so a Read on it (line 13) causes

O(n/b) shared memory accesses, (2) each struct of type State contains the simulated state

and a vector of n return values, so a Read on it (line 10) causes O(n+ s) shared memory

accesses, and (3) Pool contains O(n) structs. Below, we discuss how we can redesign each

of these data structures to get an adaptive version of P-Sim in terms of both space and

step complexity.

Herlihy, Luchangco and Moir present in [38, Algorithm 1], an adaptive implementation

of a collect object. The step complexity of this implementation is O(k) for collect and

O(1) for update, where k is the total contention. Its space complexity is O(k).

To avoid maintaining a vector of n bits, we can replace Toggles with the collect

implementation of [38, Algorithm 1]. Whenever a thread p wants to perform a request,

it calls update to write to its component the value of its bit and its request instead of

recording its request on Announce and executing an Add on Toggles to update the value

of its assigned bit (line 3). The Read of the bit vector performed on line 13 is replaced

78

with a collect on the collect object. This collect returns the set of bits and the

requests of all active threads.

Instead of storing an array of n return values, a set of structs (one for each thread

that has taken steps thus far) is maintained. Each of these structs contain a return value,

a thread identifier, and a toggle bit which is used to identify if a new request has been

initiated by this thread. Whenever a thread executes a request for the first time, the set

is updated with a struct containing the thread’s id. The set can be trivially implemented

as a linked list given that each thread works on its own copy of this list. By applying

these techniques the size of struct State is reduced to O(k + s) and making a copy of it

costs O(k + s).

By applying the two techniques discussed above, the step complexity of P-Sim becomes

O(k + s). However, the space complexity is still a function of n since Pool still contains

n+ 1 structs. Instead of allocating Pool statically at the beginning of the execution, each

thread dynamically allocates its two structs when it executes its first request. Instead

of storing an array of n return values, each struct stores a pointer which will point to

the first element of the list of return values. Thus, the number of such structs that are

allocated is 2k+ 1, each of size O(s). S is a pointer to one of the elements of Pool. When

a thread makes a local copy of a struct pointed by S, it should also make a local copy of

the current list of return values which is pointed to by the appropriate field of S. Thus,

the memory overhead for each thread is O(k+s). Therefore, by applying these techniques

the space complexity becomes O(k(k + s)).

The collect implementation presented in [38, Algorithm 1] has the disadvantage that

its step and space complexity is a function of the total contention since it cannot free

the memory that is not used any more. The collect implementation presented in [38,

Algorithm 2] could be used instead, the step and space complexity of which adapt to

operation’s complexity. However, the last implementation uses primitives that are not

supported by real machines. In case primitives are simulated using CAS instructions, the

resulting algorithm would not satisfy the wait-freedom property.

79

5.3 Performance evaluation of P-Sim

We run our experiments on a 32-core machine consisting of four AMD Opteron 6134 pro-

cessors (Magny Cours). Each processor consists of two dies and each of them contains

four processing cores and an L3 cache shared by its cores. Dies and thus processors are

connected to each other with Hyper Transport Links creating a topology with an average

diameter of 1.25 hops [21]. For the experiments presented here, we used the latest version

of the code of P-Sim (version 1.2) [45]. All codes were compiled with gcc 4.3.4, and the

Hoard memory allocator [18] was used to eliminate any bottlenecks in memory allocation.

The operating system was Linux with kernel 2.6.18. Thread binding was used in order to

get more reliable performance results; the i-th thread was bound to the i-th core of the

machine. In this way, we exploited first multi-core, then multi-chip and then multi-socket

configuration.

We first focus on a micro-benchmark which shows the performance advantages of P-

Sim over well-known synchronization algorithms. We have chosen to simulate a simple

Fetch&Multiply operation as a case study; each algorithm has simulated the execution of

107 Fetch&Multiply requests for different values of n, where each thread initiated 107/n

such requests. We measured the average throughput (i.e. the number of Fetch&Multiply

simulated per second) that each algorithm has exhibited. Specifically, the horizontal axis

of Figures 5.2-5.12 represents the number of threads n, and the vertical axis represents

the throughput (in millions of requests executed per second) that each synchronization

algorithm has performed. For each value of n, the experiment has been performed 10

times and averages have been calculated. Between two Fetch&Multiply requests by the

same thread, we have inserted a random number (up to 512) of dummy loop iterations in

order to simulate a random work load large enough to avoid unrealistically low cache miss

ratios and long runs; we remark that this load is not big enough to reduce contention.

A similar technique is employed by Michael and Scott in [50] for the same reasons. The

performance behavior of our algorithms for different values of random work (Figure 5.6)

will be discussed later.

We have performed this experiment to measure the performance of the following algo-

rithms: CLH spin locks∗∗ [23, 47], a simple lock-free algorithm with exponential backoff,

∗∗We experimentally saw that MCS spin locks [49] have similar performance to CLH spin locks, so we
present our results only for CLH locks.

80

�

�

�

�

�

�

�

�

� � � �� �� �� �� �� �� �� 	�

��
��
�
�
�
�
�
��
�	

�
�

�
�

�
��
�
�
�

�

�
�
�
��

�
��

�����������

��
� ���������
�
��

��������� ��
�������

�����
� !������

Figure 5.2: Performance of P-Sim.

flat-combining [33, 34], and OyamaAlg [52]. The simple lock-free algorithm uses a single

CAS object O, and executes CAS on O repeatedly until it successfully stores the new value

into it; the algorithm employs an exponential backoff scheme to reduce contention. We

also implemented a version of P-Sim, called CAS-Sim, where Add is simulated in a lock-free

way using a CAS object, as in the simple lock-free algorithm discussed above.

We carefully optimized these algorithms in our computing environment; for those

that use backoff schemes, we performed a large number of experiments to select the best

backoff parameters in each case. CLH spin locks and OyamaAlg have been evaluated for

only up to 32 threads (so that each thread runs on a distinct core), since otherwise they

result in poor performance. We used the flat-combining implementation provided by its

inventors [33, 34] and we applied similar optimizations on its code as for that of P-Sim;

we also carefully chose its parameters (i.e. polling level, number of combining rounds) to

optimize its performance in our computing environment.

Figure 5.2 shows the results of our experiment. P-Sim has been proved to be up to 2.5

times faster than spin-locks, and up to 1.7 times faster than the simple lock-free algorithm.

We remark that both P-Sim and flat-combining implement the combining technique, so

we expect both of them to enjoy the performance benefits of this technique. However,

flat-combining is blocking whereas P-Sim is wait-free. Since wait-freedom is expected

to come with some overhead, our first goal was to design a wait-free implementation of

the combining technique that performs the same well as flat-combining (which is however

blocking). Figure 5.2 shows that P-Sim achieves this goal and even performs slightly better

81

�

��

��

��

��

��

��

� � � �� �� �� �� �� �� �� ��

�
�
�
��
�
�
��
�
�
	

�

�
�
��
�
�
��
�

�����������

	
�

�
�������
�
��

Figure 5.3: Average combining degree of P-Sim and flat-combining for different numbers
of threads.

than flat-combining; it exhibits up to 1.20 times better throughput than flat-combining.

Finally, P-Sim outperforms OyamaAlg by a factor of up to 1.9.

As illustrated in Figure 5.2, when n > 4, the simple lock-free algorithm causes a lot of

contention and exhibits performance much worse than P-Sim or flat-combining. However,

it behaves well for up to 4 threads since then all the communication occurs within the same

die, which is much faster than achieving intra-communication between dies. As expected

for queue-locks, the performance of CLH remains almost the same as n increases. For

up to some number of threads, the performance of P-Sim and flat-combining is getting

better as the number of n increases. This is so, since the average degree of combining

that is achieved increases with the number of active requests in the system. We remark

that this enhancement in performance is noticed even for values of n > 32 where the

processing cores are over-subscribed. In contrast, OyamaAlg achieves lower throughput.

This is so since in OyamaAlg threads need to succeed on a CAS in order to have their

requests announced; this causes a lot of contention and leads to a significant performance

degradation. It is worth pointing out that P-Sim is at least 2 times faster than CAS-

Sim which, not surprisingly, exhibits similar performance to OyamaAlg; in CAS-Sim, as in

OyamaAlg, a thread repeatedly executes CAS to announce a request and therefore CAS-Sim

faces a similar performance penalty for the announcement of the requests as OyamaAlg.

Figure 5.3 shows the average number of requests, called average combining degree,

that are executed by the combiners in P-Sim and flat-combining. Specifically, to calculate

82

�

���

���

���

���

���

���

���

��	

��

�

���

���

���

���

���

� � 	 �� �� �� �� �	 �� ��
�

��
��
�
�
��
�
	
��

��

�
��
��

��
�
�

�

�
�
�
�
��

�������
����

��
��

��������������

���������

��
�
��

��������

Figure 5.4: Average number of failed CAS instructions per request for different numbers
of threads.

�

���

�

���

�

���

�

���

�

���

� � � �� �� �� �� �� �� �� 	�

�
�
�
��
�
�
��
��
�
	

�	�
��
�

�	
�
�
��
�
�
��
��
�

�
��

������������

��
� ���������
�
��

��������� ��
�������

�����
� !������

Figure 5.5: Average number of atomic instructions (excluding Read and Write operations)
per request performed by P-Sim for different numbers of threads.

the average combining degree of Sim, we add the number of requests that are applied

each time a successful CAS on S is executed and we divide this sum by the total number

of successful CAS instructions. As shown in Figure 5.3, flat-combining achieves better

combining degree in some cases. This is expected since no more than n requests (one

per thread) can be applied in P-Sim, each time a CAS on S succeeds. In contrast, in flat-

combining, a combiner may apply several requests of the same thread; this may happen, if

the thread initiates a new request before the combiner processes all other requests of the

request list. Because of this, it is reasonable to expect that flat-combining avoids moving

cache lines between the processing cores which is good in terms of performance. However,

83

the performance of flat-combining is not better than that of Sim, since the advantage in

the achieved combining degree of flat-combining is counterbalanced by other performance

factors that are discussed below. Moreover, as shown in Figure 5.3, when the processing

cores are lightly over-subscribed, the combining degree of P-Sim matches the combining

degree of flat-combining. As shown in Figure 5.2, this results in better performance for

P-Sim.

Figure 5.4 shows the average number of failed CAS instructions executed per request.

Notice that a large number of requests in P-Sim do not execute any unsuccessful CAS

instructions; this is mainly due to the validation that is performed on line 11. So, the

average number of unsuccessful CAS per request in P-Sim is very small. In contrast,

this number is close to one (or larger) for all other algorithms. The large number of

unsuccessful CAS instructions executed in flat-combining occur during the acquisition of

the global lock. This results in a performance degradation. We remark that our efforts

to overcome this problem by increasing the number of combining rounds†† (which reduces

the number of times the global lock is acquired) did not result in better performance.

This was so because after the first few combing rounds, flat-combining spent a lot of time

reading records of threads with no announced requests. On the contrary, P-Sim does not

perform non-useful Read operations.

Figure 5.5 shows the average number of atomic instructions (other than Read and

Write operations) per request that each algorithm executes. For large values of n, P-Sim

and flat-combining execute almost the same number of atomic instructions per request on

average. For smaller values of n, flat-combining executes slightly less atomic instructions

per request on average than P-Sim. However, all the atomic instructions executed in

flat-combining are CAS instructions on a single shared variable that implements the global

lock. In contrast, the atomic instructions that are executed by any request in P-Sim are

not applied on the same base object (one of them is an Add and if there is any other

it is a CAS on S). Moreover, the release of the global lock in flat-combining have not

been taken into consideration in the diagram of Figure 5.5 (since it is implemented with a

Write). However, these Write instructions cause more contention on the global lock and

additional cache misses.

††The number of combining rounds determines how many times the combiner (in flat-combining)
traverses the request list before it gives up serving other requests.

84

Algorithm average cpu cycles spent in cpu stalls per request

P-Sim 6121
flat-combining 6810

Table 5.3: Average cpu cycles spent in cpu stalls per request for P-Sim and flat-combining
for n = 16.

It is worth pointing out that the failed CAS instructions may cause branch miss-

predictions which are expensive since modern microprocessors usually have deep pipelines.

Table 5.3 shows that flat-combining pays more (in cpu cycles) for stalls due to cache misses

and branch miss-predictions.

In the experiment illustrated in Figure 5.6, we study the behavior of the evaluated

algorithms for different amounts of random work, i.e. for different numbers of dummy loop

iterations inserted between the executions of two Fetch&Multiply by the same thread. We

fix the number of threads to 32 and we perform the experiment for several different random

work values (0−8192). Figure 5.6 shows that, for a wide range of values (64−2048), there

are no big differences on the throughput exhibited by the evaluated algorithms. The reason

for this is that for all these values the synchronization cost is the dominant performance

factor. For small values of random work (0− 64), the simple lock-free algorithm achieves

unrealistically high throughput. The reason for this is that a thread can uninterruptedly

perform thousands of Fetch&Multiply. This phenomenon is known as a long run; as

discussed in previous work [50], such runs are unrealistic workloads. A similar behavior,

but in smaller scale, is observed in flat-combining. In cases that the random work is too

high (greater than 4096), the throughput of all algorithms degrades and the performance

differences among them become minimal since the amount of random work becomes then

the dominant performance factor.

Table 5.4 studies the throughput of P-Sim for different values of the backoff upper

bound. The performed experiment is the same Fetch&Multiply experiment studied in

Figure 5.2, where n = 32 and for a maximum workload of 512. The first row of Table 5.4,

shows the throughput achieved by P-Sim for different values of the backoff upper bound as

well. Notice that the best throughput is achieved when the backoff upper bound is equal

to 1000 dummy loop iterations. The second row of this table The third row shows how

much each of these values diverge from the optimal backoff upper bound value (of 1000)

and line 4 shows the performance degradation in each case. Notice that the performance

85

�

�

�

�

�

��

��

� �� �� ��� ��� ��� ���� ���� ���� ����

��
��
�
�
�
�
�
��
�	

�
�

�
�

�
��
�
�
�

�

�
�
�
��

�
��

�����	����������������
���������
�

	
��
 ���
����

����
��
������ ����
����

����������

Figure 5.6: Performance of P-Sim for different values of random work.

of P-Sim is very tolerant to overestimated values for the backoff upper bound. More

specifically, even a value greater by 120% than the optimal backoff upper bound cause

a performance drop of just 12.5%. However, P-Sim is less tolerant to smaller backoff

values. Notice that a value for the backoff upper bound smaller by 40% than the optimal

causes a 22.7% performance drop. Thus, if the amount of workload cannot be determined

precisely, overestimated backoff upper bounds is the preferable choice.

Our next experiment, illustrated in Figure 5.7, studies the performance of P-Sim and

flat-combining (the best two algorithms in terms of performance) when n takes values

larger than 96, i.e. when a large number of threads are active and the system is heavily

over-subscribed. The active threads execute 107 Fetch&Multiply in total, as in the

previous experiments. Figure 5.7 shows that both P-Sim and flat-combining scale well up

to thousands of threads.

Figure 5.8 illustrates how P-Sim performs in cases where an application initiates a

large number of threads from which only a small percentage are active, at any given point

in time. Specifically, we consider systems where the total number of threads ranges from

backoff upper bound (in hundreds of
dummy loop iterations)

6 8 10 12 14 18 22

throughput 4.10 5.00 5.03 5.02 4.95 4.70 4.47
% divergence from backoff upper bound −40% −20% 0% +20% +40% +80% +120%
% performance drop 22.7% ≈ 0% 0% ≈ 0% 1.6% 7% 12.5%

Table 5.4: Sensitivity of P-Sim to the backoff upper bound parameter.

86

�

�

�

�

�

�

�

�

�

��� ��� ��� ��� ��� ����

��
��
�
�
�
�
�
��
�	

�
�

�
�

�
��
�
�
�

�

�
�
�
��

�
��

�����������
���������
��

	
��

����
��
������

Figure 5.7: Performance of P-Sim for large numbers of threads.

�

�

�

�

�

�

�

��� ��� ��� ��� ����

��
��
�
�
�
�
�
��
�	

�
�

�
�

�
��
�
�
�

�

�
�
�
��

�
��

�����������
���������
���������
�
����

	
��

	
��
����������������������

����
��
������

Figure 5.8: Performance of P-Sim when a large number of threads are initiated but only
10% are active.

128 to 1024 and only 10% of them are active at each point in time. The active threads

execute 107 Fetch&Multiply in total, as previously. We remark that this experiment is

in favor of flat-combining: P-Sim requires to read all n bits of the Add object and copy

locally n return values independently of how many of the threads are active, whereas in

flat-combining inactive threads cause no overhead. Figure 5.8 shows there is indeed a

small performance advantage (by a factor of 1.05) of flat-combining in this case. In order

to discover the main overheads of P-Sim in this case, we have implemented an additional

version of it where no return values are calculated. Figure 5.8 shows that the calculation

of the return values is indeed an expensive part of the computation performed by P-Sim.

This shows that the overhead of having each thread performing an Add per request does

87

�

�

�

�

�

�

�

�

�

	

��

� � �� �� �� ��� ��� ��� ��� ��� ����

��
��
�
�
�
�
�
��
�	

�
�

�
�

�
��
�
�
�

�

�
�
�
��

�
��

�����������
���������
��

��
��
��

���������������������

Figure 5.9: Performance of SimActSet.

not cause any significant overhead even for large values of n. We remark that in the

implementation of several shared objects some of the simulated operations do not have

a return value. For instance, a push on a stack or an enqueue on a queue, etc., do not

require the calculation of a return value. We remark that in cases where the percentage

of active threads is larger than 10%, P-Sim achieves much better performance than that

shown in Figure 5.8.

We next explore in more detail the performance characteristics for the Add instruction.

We compare the performance of SimActSet (discussed in Section 5.1.3) to that of a simple

lock-free active set implementation that uses CAS objects to store a set of n bits, one for

each thread. Specifically, as in SimActSet, the algorithm uses n/b CAS objects. Whenever

a thread wants to apply a join (leave), it repeatedly executes CAS on the appropriate

object until it succeeds to change its bit to 1 (0, respectively). getSet simply reads the

CAS objects. An exponential backoff scheme is used to increase the performance of the

lock-free implementation.

We executed 107 join and leave requests, and 107 getSet requests in total; each

thread executed 107/n join or leave requests and 107/n getSet requests. We measured

the average throughput exhibited by each technique. To study the scalability of our

technique, we consider systems where the total number of threads is large, i.e. it ranges

from 128 to 1024. Again, a random number of (up to 512) dummy loop iterations are

executed between the execution of two requests by the same thread. Figure 5.9 illustrates

that SimActSet outperforms the active set based on CAS by a factor of up to 1.7. This

88

is due to the fact that getSet causes a small number of cache misses in SimActSet,

whereas the repeated execution of a CAS results in a larger number of cache misses.

Several modern shared memory machines (e.g. those that employ the x86 64 architec-

ture) include an atomic Add (CAS) instruction on up to 64 bit words in their instruction

set. In order to cope with more than 64 threads efficiently, we have implemented the

multi-word bit vector of Add (and CAS, for the lock-free algorithm) by storing its words

to the minimum possible number of cache lines. In this way, getSet causes a minimum

number of cache misses. Notice that the size of a typical cache line is usually 64 bytes;

thus, a single cache line can store one bit for each of up to 512 threads. So, getSet

causes more than one cache miss only if the number of threads is more than 512.

As illustrated in Figure 5.9, the throughput of both algorithms does not change for

values of n greater than 16 and smaller than 512, whereas it improves for values larger

than 512. This is because all toggle bits that comprise the active set fit in one cache-line

in case that n < 512. Thus, all processing cores access the same cache line in this case

which results in a lot of contention. On the other hand, when n > 512, the processing

cores work on two different cache-lines which reduces the contention (but increases the

number of cache misses). Figure 5.9 shows that in this experiment the contention is the

dominant performance factor.

5.4 L-Sim: A synchronization algorithm for large objects

In this section, we present a variation of Sim, called L-Sim, which avoids copying the entire

state and it can be used to handle objects with large (or even unbounded) state.

5.4.1 Algorithm description

Similarly to P-Sim, L-Sim (Algorithms 11 and 12) employs a shared vector Toggles of

n bits (one bit for each thread) and during its jth request, j > 0, thread pi adds 2i or

−2i to Toggles depending on whether j mod 2 = 1 or not. L-Sim also employs a set

of n single-writer base objects (Announce array on Algorithm 11), one base object for

each thread. Each thread starts the execution of a request req by announcing req in its

89

single-writer base object on Announce array (line 1) and by adding 2i or −2i to Toggles

(line 3).

The main difficulty in designing L-Sim was to ensure that at each point in time, all

”up-to-date” threads (i.e. those that have read the current version of State) that are

active and execute some request will help the same set of requests. This is achieved by

storing in State (S) two versions of the applied bit vector (the first one is called applied,

while the second one is called papplied). Each time an instance A of Attempt is executed,

papplied is updated to store the values found in applied at the beginning of A (line 15);

applied is updated based on the values recorded in Toggles (line 16). Whether a request

by a thread pi should be applied or not is determined based on the values read in the i-th

entry of the arrays applied and papplied of S; if the i-th entry of applied is different than

the ith entry of papplied (i.e. applied[i] 6= papplied[i]) then the request of thread pi has

not been applied yet and it should be simulated (line 18); otherwise, the request (if any)

has already been applied. In the initial value of S, both applied and papplied contain

false in all their entries. Thus, the first application of a successful Attempt will result in

the simulation of no requests. However, the execution of a successful Attempt stores in S

information about the requests that should be simulated by the threads that will read the

new value of S. Therefore, all these threads will try to simulate the same set of requests.

In contrast to Sim and P-Sim, the state of the simulated data structure is now shared

and it can be updated directly by any thread. For each data item x, L-Sim maintains

a struct of type ItemSV . This struct stores the old and the current value of the data,

a toggle bit that identifies the position in the val array of the struct where the current

data for x should be read from, and a sequence number. Consider that two threads p

and q simulate the same request req. It may happen that p is at some earlier point of

its execution (e.g., just before executing line 29), whereas q has finished the simulation

of req (lines 39-43) and has started updating the shared data structure. Then, it could

happen that p reads the updated version for a data item although it should have read

the old version. For this reason, q stores the old value (additionally to the current value)

in one of the entries of val array and uses the toggle bit appropriately to indicate the

updated version. If p discovers that this bad scenario has occurred (line 33), it reads

the old value of the data item found in the 1− toggle entry of its val array. Notice that

p should continue executing req to ensure wait-freedom (i.e. to help q in case it fails

90

struct NewVar { // list of newly allocated variables
ItemSV *var; // points to the actual struct of the variable
NewVar *next; // points to the next element of the list

};
struct NewList { // a stack object

ItemSV *first;
};
struct State { // this struct is stored in a single base object

boolean applied[1..n], papplied[1..n];
int seq;
NewList *var list; // indirection to a shared stack
RetVal RVals[1..n]; // return values

};
struct DirectoryNode {

Name name; // variable name
ItemSV *sv; // data item
Value val; // new value of the data item

};
struct ItemSV {

Value val[0..1]; // old and new values of data item
int toggle; // toggle shows which of val[0..1] is the current value
int seq;

};

shared Integer Toggles = < 0, ..., 0 >; // Toggles is implemented as an integer of n bits
shared State S = < F, ..., F >,< F, ..., F >, 0, < ⊥ >,< ⊥, ...,⊥ >>;
shared OpType Announce[1..n] = {⊥, ..., ⊥};

// Private local variables for thread pi
Integer togglei = 2i;

RetVal ApplyOp(request req){ // Pseudocode for thread pi
1 Announce[i] = req; // Announce request req
2 togglei = -togglei;
3 Add(Toggles, togglei); // 2i is added to toggle pi’s bit
4 Attempt();
5 Attempt(); // call Attempt to perform req
6 return S.rvals[i]; // pi returns
}

Algorithm 11: Data structures used in L-Sim and pseudocode for LSimApplyOp.

without having performed all the required updates). The seq field is used to discover

whether a helper is already obsolete. ‘ For each set of simulated requests “listed” in S,

the required updates are first performed by each thread pi in local copies of the data

items accessed (lines 19-37), and only later they are applied to the shared data structure

(lines 39-43). To implement this, each thread pi uses a local directory D containing

structs of type DirectoryNode, where it stores information about each item it accesses

during the execution of its current instance of Attempt (lines 33, 34), and performs all

its updates first on these copies (line 36). Only after it has finished the simulation of the

91

void Attempt()(request req){ // pseudocode for thread pi
Pindex q, j;
State ls, tmp;
Set lact;
DirectoryNode D;
NewVar *pvar = new NewVar(), *ltop;
ItemSV sv, *psv = new ItemSV();

7 psv→ 〈val, toggle, seq 〉 = << ⊥,⊥ >, 0, 0 >;
8 pvar→ 〈var, next, 〉 = <psv, null>;
9 for j=1 to 2 do {
10 D = ∅; // initialize direcory D
11 ls = LL(S); // read State struct
12 lact = Toggles; // read active set
13 ltop = ls.var list→first; // read pointer to the current variable list
14 tmp.seq = ls.seq + 1;
15 tmp.papplied[1..n] = ls.applied[1..n];
16 tmp.applied[1..n] = lact[1..n]; // p will attempt to update S with tmp
17 for q=1 to n do { // local loop
18 if (ls.applied[q] 6= ls.papplied[q]) { // apply request of thread q
19 foreach access of a variable x while applying request Announce[q]{
20 if (x is a newly allocated variable) {
21 if(CAS(ltop→next, null, pvar)){
22 psv = new ItemSV();
23 psv→ 〈val, toggle, seq 〉 = << ⊥,⊥ >, 0, 0 >;
24 pvar = new NewVar();
25 pvar→ 〈var, next, 〉 = <psv, null>;

}
26 ltop = ltop→next; // in any case, use ltop→ next as the new variable’s metadata
27 add <x, ltop→var, ltop→var.val[0]> to D; // add variable to local dictionary
28 } else { // x is not a newly allocated variable
29 let svp be a pointer to the ItemSV struct for x;
30 if (this access is a read instruction) {
31 if (x exists in D) read x from D; // perform the request on the local copy of x (if any)
32 else {sv = LL(*svp);
33 if (tmp.seq == sv.seq) add <x, svp, sv.val[1-sv.toggle]> to D;
34 else if (tmp.seq > sv.seq) add <x, svp, sv.val[sv.toggle]> to D;
35 else goto Line 38; // the State read by p is obsolete, start from scratch

}
36 } else if (this access is a write instruction) update x in D; // perform request on local copy

}
}

37 store into tmp.rvals[q] the return value;
}

}
38 if (!VL(S)) continue; // the State read by p is obsolete, start from scratch
39 foreach record <x, svp, v> in D {
40 if(svp→seq > tmp.seq) break; // if all requests have been applied, return
41 else if(svp→seq == tmp.seq) continue; // if the variable is modified, continue
42 else if(svp→toggle == 0) SC(*svp, <<svp→val[0],v>, 1, tmp.seq>);// make update visible
43 else SC(*svp, <<v, svp→val[1]>, 0, tmp.seq>); // make update visible

}
44 tmp.var list = new List(); tmp.var list→first = null; // re-initiate tmp.var list
45 SC(S, tmp); // try to modify S

}
}

Algorithm 12: Pseudocode for L-Sim.

set of requests described in Announce, it applies the changes listed in the elements of its

directory to the shared data structure (lines 39-43).

Some additional synchronization that should be achieved between different helpers of

the same set of requests is when new data items are allocated by these requests; Then,

all helpers should use the same allocated ItemSV struct for each of these data items. To

solve this problem, S stores a pointer (called var list) to a list of newly created data

92

items shared by all threads that read this instance of S. Each time a thread pi needs to

allocate the k-th, k ≥ 1, such data item, it tries to add a struct of type NewV ar as the

k-th element of the list (line 21). If it does not succeed, some other thread has already

done so, so p uses this struct (by moving pointer ltop to this element on line 13, and by

inserting ltop→ var in its dictionary on line 27).

5.4.2 Correctness proof

In this section, we present the correctness proof of L-Sim. We start by introducing a

similar notation to that of Section 5.2.2. Let α be any execution of L-Sim and assume

that some thread pi, i ∈ {1, ..., n}, executes mi > 0 requests in α. Let reqij be the

argument of the jth call of L-Sim by pi and let πi
j be the jth instance of Attempt executed

by pi in α (see Figure 5.10). Define as Qj
i Add instruction of line 3; let Qi

0 = C0. We use

Toggles[i], i ∈ {1, . . . , n}, to denote the i-th bit of Toggles. We denote by toggleij the

value of pi’s persistent local variable togglei at the end of reqij. The notation of this proof

is summarized in Table 5.5.

Lemma 5.16. Consider any j, 0 < j ≤ mi. There are at least two successful SC instruc-

tions in the execution interval of πi
j.

Proof. We prove that during the execution of each iteration of the for loop of line 9, at

least one successful SC instruction is performed. If the iteration is completed on line 38 of

the pseudocode, the VL instruction returns false. This implies that at least one successful

SC instruction occurred between the LL of line 11 and the execution of VL on line 38. Now,

suppose that the iteration executes the SC instruction on line 45. If this SC is successful,

the claim follows. Otherwise, at least one successful SC instruction was performed between

the execution of line 11 and line 45.

The following observation is an immediate consequence of the pseudocode (line 2).

Observation 5.1. Consider any j, 0 ≤ j ≤ mi. The following claims hold:

1. if j mod 2 = 0, toggleij = 2i;

2. if j mod 2 = 1, toggleij = −2i.

93

Notation Description

α Any execution of L-Sim
C Any configuration in α

C0 The initial configuration of α

pi The thread which its id is equal to i, i ∈ {1, . . . , n}
mi Thread pi executes mi requests in α

reqij The argument of the jth invocation of LSimApplyOp

πi
j The jth instance of Attempt executed by pi in α

Qi
j The Add instruction of line 3

Qi
0 The initial configuration C0

Toggles[i] The i-th bit of Toggles

toggleij
The value of pi’s persistent local variable togglei at the end
of reqij

Cl The configuration just after the execution of the lth Add in α

Ci
1

The first configuration between C0 and the end of πi
1 at which

S.applied[i] is equal to 1

Ci
j

The first configuration between the end of πi
2j−2 and the end

of πi
2j−1 such that S.applied[i] is equal to j mod 2

SCi
j The SC instruction executed just before Ci

j

LLi
j The matching LL instruction of Ci

j

T i
j

The Read on Toggles[i] executed between LLi
j and SCi

j by

the same thread that executes LLi
j and SCi

j

C̃i
j

The first configuration after Ci
j such that a successful SC in-

struction is executed

SCl The lth successful SC instruction on S in α

LLl The matching LL of SCl

Cl The configuration just after SCl

αl The prefix of α which ends at SCl

α0 The empty execution

Table 5.5: Notation used in the proof of L-Sim.

For each l > 0, let Cl be the configuration resulting after the execution of the lth Add

instruction in α.

Lemma 5.17. For each l ≥ 0, and for each i ∈ {1, . . . , n}, if pi has executed jli ≥ 0 Add

instructions by Cl, it holds that Toggles[i] = jli mod 2 at Cl.

Proof. We prove the claim by a (straightforward) induction on l.

Base case (l = 0). Fix any i ∈ {1, . . . , n}. By the way Toggles is initialized, it

follows that Toggles[i] = 0 at C0. Since pi has not performed any request at C0, it follows

that j0
i = 0 at C0, so that j0

i mod 2 = 0 and the claim follows.

Induction hypothesis. Fix any l > 0 and assume that the claim holds for Cl−1.

Induction step. We prove that the claim holds for Cl. Assume that the lth Add is

executed by some thread pi and let jli be the number of Add that has been executed by

94

pi until Cl. At Cl−1, pi has executed jl−1
i = jli − 1 Add. By the induction hypothesis,

Toggles[i] = jl−1
i mod 2 = (jli − 1) mod 2 at Cl−1.

Assume first that jli mod 2 = 1. In such a case, it follows that jli − 1 mod 2 = 0.

Induction hypothesis implies that Toggles[i] = 0 at Cl−1. By Observation 5.1, it follows

that togglei
jli−1

= 2i. During the lth Add instruction, togglei
jli−1

is added to Toggles.

Notice that Toggles is updated only by executing Add (line 3). Thus, Toggles remains

unchanged between Cl−1 and the lth Add. It follows that Toggles[i] = 0 just before the

execution of the lth Add. Thus, the only change that the lth Add causes on Toggles is to

set the ith bit to 1; all other bits remain unchanged.

Fix any k 6= i, k ∈ {1, . . . , n}. Since the lth Add is executed by pi, it follows that

jlk = jl−1
k . By the induction hypothesis, Toggles[k] = jl−1

k mod 2 = jlk mod 2, as needed.

The case where jli mod 2 = 0 is symmetric.

The following is an immediate consequence of Lemma 5.17.

Corollary 5.1. For each j, 0 ≤ j ≤ mi, the following claims hold:

1. Toggles[i] = j mod 2 at Qi
j;

2. Toggles[i] has the same value between Qi
j−1 and Qi

j.

Lemma 5.18. Consider any execution πi
j, j > 0, of function Attempt by some thread pi.

S.applied[i] is equal to v = dj/2e mod 2 just after the end of πi
j.

Proof. Assume, by the way of contradiction, that S.applied[i] 6= v at the end of πi
j. Since

S.applied[i] is a binary variable, it follows that S.applied[i] = 1− v at the end of πi
j. By

Lemma 5.16, there are at least two successful SC instructions in the execution interval

of πi
j. It follows that the last successful SC instruction executed in πi

j writes 1 − v into

S.applied[i]. Let SCx be this SC instruction, let LLx be its matching LL instruction, let

px be the thread that executes LLx and SCx, and let Tx be the read instruction of line 12

executed by px between LLx and SCx. Lemma 5.16 implies that there are at least two

successful SC instructions in the execution interval of πi
j. Since SCx is a successful SC

instruction, it follows that all LLx, Tx and SCx are executed in the execution interval

of πi
j. By the definition of πi

j, it follows that πi
j is executed by the request reqidj/2e.

Corollary 5.1, implies that Toggles[i] = dj/2e mod 2 between Qi
dj/2e and before the end

95

πi
2j−3

Qi
j−1

πi
2j−2

C̃i
j−1Ci

j−1

reqij−1

πi
2j−1

Qi
j

πi
2j

C̃i
jCi

j

reqij

time

Figure 5.10: An example of an execution of L-Sim.

of πi
j. Since Tx is executed after Qi

dj/2e and before the end of πi
j, it follows that Tx returns

v = dj/2e mod 2 for the ith component. The pseudocode (lines 12 and 45) implies that

SCx writes v = dj/2e mod 2 6= 1− v at S.applied[i], which is a contradiction.

For the rest of the proof we introduce the following notation. Let C0 be the initial

configuration. At C0, S.applied[i] is equal to false. Lemma 5.18 implies that just after

πi
1, S.applied[i] is equal to true. Let Ci

1 be the first configuration between C0 and the end

of πi
1 at which S.applied[i] is equal to true. Lemma 5.18 implies that just after the end

of πi
3, S.applied[i] is equal to false. Let Ci

2 be the first configuration after Ci
1 such that

S.applied[i] is equal to false. Obviously, Ci
2 precedes the end of πi

3. Consider any request

reqij, j > 1. Lemma 5.18 implies that just after πi
2j−2, S.applied[i] is equal to d(j − 2)/2e

mod 2 = (j − 1) mod 2, while just after πi
2j−1, S.applied[i] is equal to d(2j − 1)/2e

mod 2 = j mod 2 6= (j − 1) mod 2. Let Ci
j be the first configuration between the end

of πi
2j−2 and the end of πi

2j−1 such that S.applied[i] is equal to j mod 2. Lemma 5.18

implies that just after πi
2j−2, S.applied[i] is equal to (j − 1) mod 2. Let Ci

j be the first

configuration after the end of πi
2j−2 such that S.applied[i] is equal to j mod 2. Obviously,

Ci
j precedes the end of πi

2j−1. Figure 5.10 illustrates the above notation.

Since the value of S.applied[i] can change only by the execution of SC instructions on

S, it follows that just before Ci
j−1 a successful SC on S is executed. Let SCi

j be this SC

instruction and let LLi
j be its matching LL instruction. Let T i

j be the read of Toggles

that is executed between LLi
j and SCi

j by the same thread.

Lemma 5.19. Consider any j, 0 < j ≤ mi, it holds that T i
j is executed after Qi

j and

reads j mod 2 in Toggles[i].

Proof. Assume, by the way of contradiction, that T i
j is executed before Qi

j. Let πx be the

Attempt that executes T i
j .

Assume first that j = 1. Then, by its definition, SCi
1 (which is executed by πx after

T i
1) writes to S → applied[i] a value equal to dj/2e mod 2; the code (lines 12, 16) implies

96

that, in this case, T i
1 reads 1 in Toggles[i]. Corollary 5.1 implies that Toggles[i] = 0

between C0 and Qi
1. Thus, T i

1 could not read 1 in Toggles[i], which is a contradiction.

Assume now that j > 1. By our assumption that T i
j is executed before Qi

j, it follows

that LLi
j, which is executed before T i

j , precedes Qi
j. In case that T i

j follows Qi
j−1, Corollary

5.1 implies that T i
j reads (j − 1) mod 2 6= j mod 2 in Toggles[i]. By the pseudocode

(lines 12, 16 and 45), it follows that πx writes the value (j − 1) mod 2 into S.applied[i].

By its definition, SCi
j stores j mod 2 into S.applied[i], which is a contradiction. Thus, T i

j

is executed before Qi
j−1. By its definition, πi

2j−3 starts its execution after Qi
j−1 and finishes

its execution before Ci
j. Lemma 5.16 implies that at least two successful SC instructions

are executed in the execution interval of πi
2j−3. Recall that LLi

j precedes T i
j and therefore

also the beginning of πi
2j−3, while by definition SCi

j follows the end of πi
2j−3. It follows

that SCi
j is not a successful SC instruction, which is a contraction.

We next prove that the value of S.applied[i] remains the same between SCi
j−1 and

SCi
j.

Lemma 5.20. Consider any j, 0 < j ≤ mi. At each configuration C between Ci
j−1 and

Ci
j, it holds that S.applied[i] = (j − 1) mod 2.

Proof. Assume, by the way of contradiction, that there is at least one configuration be-

tween Ci
j−1 and Ci

j such that S → applied[i] is equal to some value vx 6= (j − 1) mod 2.

Let Cx be the first of these configurations. Since only SC instructions of line 45 write on

base object S, it follows that there is a successful SC instruction, let it be SCx, executed

just before Cx that stores vx at S.applied[i]. Let πx be the Attempt that executes SCx

and let Tx be the read instruction that πx executes on line 12 of the pseudocode. By the

definition of Ci
j−1 and Qi

j−1, it is implied that Ci
j−1 follows Qi

j−1 and precedes Qi
j. Corol-

lary 5.1 implies that Toggles[i] = (j− 1) mod 2 6= vx in any configuration between Qi
j−1

and Qi
j. Since SCx writes vx into S.applied[i], the pseudocode (lines 12 and 45) imply that

Tx precedes Qi
j−1. It follows that LLx precedes Qj−1, since LLx precedes Tx. Therefore

LLx precedes Cj−1. This implies that there is a successful SC instruction, which is SCi
j−1,

between LLx and SCx. Thus, SCx is a failed SC instruction, which is a contradiction.

By Lemma 5.20 and the pseudocode (line 15), it follows that S.papplied[i] = 1 − (j

mod 2) at Ci
j. Denote by C̃i

j be the first configuration after Ci
j such that a successful SC

instruction is executed.

97

Lemma 5.21. C̃i
j−1 precedes Ci

j and follows Ci
j−1.

Proof. By the definition of C̃i
j−1, it is implied that C̃i

j−1 follows Ci
j−1. Lemma 5.19 implies

that Ci
j follows Qi

j. By its definition, Qi
j follows π2j−2. By Lemma 5.18, it follows that

Ci
j−1 precedes the end of π2j−3. Thus, πi

2j−2 begins its execution after Ci
j−1 and ends its

execution before Ci
j. By Lemma 5.16, there are at least two successful SC instructions in

the execution interval of πi
2j−2. Since, C̃i

j−1 is the first successful SC just after Ci
j−1, it

follows that C̃i
j−1 precedes the end of πi

2j−2. Therefore, C̃i
j−1 precedes Ci

j.

Lemma 5.22. S.papplied[i] = S.applied[i] in any configuration between C̃i
j−1 and Ci

j (Ci
j

is not included).

Proof. By Lemma 5.20, it follows that S.applied[i] = (j−1) mod 2 between Ci
j−1 and Ci

j.

Assume by the way of contradiction that there at least one configuration between C̃i
j−1

and Ci
j such that S.papplied[i] 6= (j − 1) mod 2 and let Cx be the first of them. Let SCx

be the SC instruction executed just before Cx and let LLx be its matching LL instruction.

Since, SCx is a successful SC instruction, LLx follows C̃i
j−1. By Lemma 5.20, it follows

that S.applied[i] = (j−1) mod 2 between Ci
j−1 and Ci

j. Thus, LLx reads (j−1) mod 2)

in S.applied[i]. The pseudocode (lines 11 and 15) implies that the SC instruction at C̃i
j

stores a value equal to (j − 1) mod 2 into S.papplied[i], which is a contradiction.

By Lemma 5.22, and by the pseudocode (line 15), the following observation is derived.

Observation 5.2. S.papplied[i] = 1− S.applied[i] at Ci
j.

The following observation is an immediate derivation of the definition of C̃i
j and Ob-

servation 5.2.

Observation 5.3. S.papplied[i] = 1 − S.applied[i] in any configuration between Ci
j and

C̃i
j, C̃

i
j is not included.

We say that an request req by some thread pi is applied on the simulated object if

(1) the Read instruction on Toggles (line 12), executed by some request req′ (that might

be req or any other request), includes pi in the set of threads it returns, (2) procedure

Attempt, executed by req′ reads in Announce[i], the request type written there by pi for

req and considers it as the new request type for pi, (3) Attempt by req′ calls apply for

98

req (lines 19 - 37), and the execution of the SC at line 45 (let it be SCr) on S succeeds.

When these conditions are satisfied, we sometimes also say that req′ applies req on the

simulated object or that SCr applies req on the simulated object. We next prove that

each request req is applied on the simulated object exactly once.

Lemma 5.23. Request reqij is applied to the simulated object at configuration Ci
3j−1.

Proof. Let ph be the Attempt that executes the successful SC instruction (let it be SCh

this SC instruction) just before C̃i
j. Let LLh be the matching LL of SCh. Since, SCh is a

successful SC instruction, it is implied that LLh follows Ci
j. Observation 5.3 implies that

LLh reads for S.applied[i] a value different from that stored in S.papplied[i]. Therefore,

the if statement of line 18 returns true. Thus, a request for thread pi is applied at C̃i
j. Let

req′ be this request and assume, by the way of contradiction, that req′ 6= reqij. Lemma

5.19 implies that πh executes its read Th on Toggles after Qi
j. By the pseudocode (lines 12,

19), πh reads Announce[i] after Th, thus the reading of Announce[i] by πh is executed

between Qi
j and C̃i

j. Since reqij writes its request to Announce[i] before Qi
j, the reading of

Announce[i] by πh returns reqij. Thus, πh applies reqij as the request of pi in the simulated

object.

The following corollary is an immediate consequence of Lemma 5.22, Observation 5.3,

Lemma 5.23, and of the definition of C̃i
j.

Corollary 5.2. Each request req is applied exactly once.

We are now ready to assign linearization points. Let a be any execution. For each

i ∈ {1, ..., n} and j ≥ 1, we place the linearization point of reqij at C̃i
j; ties are broken by

the order imposed by identifiers of threads.

Lemma 5.24. Each request reqij is linearized within its execution interval.

Proof. Lemma 5.19 implies that Qi
j precedes Ci

j. Thus Qi
j precedes C̃i

j. Since C̃i
j is the

first sucessfull SC on S after Ci
j and (by its definition and by Lemma 5.18) Ci

j precedes

the end of πi
2j−1, C̃i

j precedes the end of πi
2j. Thus, C̃i

j is in the execution interval of reqij.

Thus, reqij is executed in its execution interval.

In order to prove consistency, we introduce the following notation. Denote by SCl

the l-th successful SC instruction on base object S. Obviously, between SCl−1 and SCl,

99

l > 1 base object S is not modified. Let iti be some iteration of for loop of line 9

executed by some thread pi. Let SVr(iti) be the sequence of base objects read by the LL

instructions of line 32 by iti. Denote by |SVr(iti)| the number of elements of SVr(iti).

For each 1 ≤ j ≤ |SVr(iti)|, denote by SV j
r (iti) the prefix of SVr(iti) containing the

j first elements of SVr(iti), i.e. SV j
r (iti) = 〈sv1

r(iti), . . . , sv
j
r(iti)〉, where svjr(iti) is the

jth LL instruction performed by iti on some base object r. Let SV 0
r (iti) = λ be the

empty sequence. Let Vr(iti) be the sequence of insertions in directory D (lines 33-34)

by iti. Denote by |Vr(iti)| the number of elements of Vr(iti). Obviously, it holds that

|SVr(iti)| = |Vr(iti)|. For each 1 ≤ j ≤ |Vr(iti)|, denote by vir(iti) the prefix of Vr(iti)

containing j first elements of Vr(iti), i.e. V j
r (iti) = 〈v1

r(iti), . . . , v
j
r(iti)〉, where vj(iti)

is the jth value inserted to directory D. Let V 0
r (iti) = λ be the empty sequence. Let

SVw(iti) be the sequence of shared base objects accessed by iti while executing lines 41-42.

Denote by |SVw(iti)| the number of elements of SVw(iti). For each 1 ≤ j ≤ |SVw(iti)|,

denote by SV j
w(iti) the prefix of SVw(iti) that contains the j last elements of SVw(iti), i.e.

SV j
w(iti) = 〈svw1(iti), . . . , svwj(iti)〉, where svwj(iti) is the jth operation (lines 41-42) by

iti. Let SV 0
w(iti) = λ be the empty sequence. Let SVa(iti) be the sequence of shared base

objects allocations during iti iteration (lines 20-26). Denote by |SVa(iti)| the number of

elements of SVa(iti). For each 1 ≤ j ≤ |SVa(iti)|, denote by SV j
a (iti) the prefix of SVa(iti)

that contains the j first elements of SVa(iti), i.e. SV j
a (iti) = 〈sva1(iti), . . . , svaj(iti)〉,

where svaj(iti) is the jth base object allocation by iti.

Let SVarw(iti) be the sequence of allocations/reads/writes that iti performs nf base

objects in lines 20-43 of the pseudocode. Denote by |SVarw(iti)| the number of elements of

SVarw(iti). Obviously, it holds that |SVarw(iti)| = |SVa(iti)|+ |SVr(iti)|+ |SVw(iti)|. For

each 1 ≤ j ≤ |SVarw(iti)|, denote by SV j
arw(iti) the prefix of SVarw(iti) that contains the

j first elements of sequence SVarw(iti) (i.e. SV j
arw(iti) = 〈svarw1(iti), . . . , svarwj(iti)〉)

where svarwj(iti) is the jth base object allocations/reads/writes of base objects performed

by iti.

Lemma 5.25. Let l > 0 be any integer such that S.applied[i] 6= S.papplied[i] at configu-

ration Cl−1. Let reqij be the value of Announce[i] at Cl−1. In any configuration between

Cl−1 and Cl, it holds that Announce[i] = reqij.

100

Proof. Assume, by the way of contradiction, that there is at least one configuration be-

tween Cl−1 and Cl, such that Announce[i] = reqij′ 6= reqij. Let C be the first of these

configurations. The pseudocode (line 1) implies that pi is the only thread that modifies

base object Announce[i]. Thus, pi starts the execution of a new request reqij′ at C, and

it holds that j′ = j + 1. Since the write on Announce[i] by pi is executed between Cl−1

and Cl, it is implied that either Ci
j+1 = Cl or Ci

j+1 follows Cl. Since the end of reqij pre-

cedes C, it follows that either C̃i
j = Cl−1 or C̃i

j precedes Cl−1. Lemma 5.22 implies that

S.applied[i] = S.papplied in any configuration between C̃i
j and Ci

j+1 (Ci
j+1 is excluded).

Thus, it holds that S.applied[i] = S.papplied in any configuration between Cl−1 and Cl,

which is contracts our claim that S.applied[i] 6= S.papplied[i] at Cl−1.

By the pseudocode (lines 9, 38 and 45) the following observation holds.

Observation 5.4. For each j > 0, it holds that S.seq = j − 1 in every configuration

between Cj−1 and Cj.

By lines 32, 39-42 and 45 of the pseudocode the following observation is derived.

Observation 5.5. Let iti be an iteration executed by pi such that the execution of the SC

instruction SCj on line 45 is successful. Let r be the base object accessed by svwj(iti),

1 ≤ j ≤ |SVw(iti)|. There is at least one successful SC on r instruction between SCj−1

and SCj.

Lemma 5.26. Let r be any shared base object other than S. For any l > 0, the following

claims are true:

1. At most one successful SC instruction is executed on r between Cl−1 and Cl.

2. In case that a successful SC instruction SCw is executed on r, it holds that r.seq < l

just before SCw and r.seq = l just after SCw.

3. Let iti be some iteration of the loop of line 9 executed by a thread pi that executes at

least one successful SC instruction SCr on r. If LLr is the LL instruction of line 11

executed by iti, then LLr is executed after Cl−1.

4. Let iti, iti′ be two iterations of the for loop of line 9 executed by threads pi and

pi′ respectively, such that that both iti, iti′ execute their LL instructions of line 11

101

somewhere between Cl−1 and Cl, l > 0, and |SVarw(iti)| ≥ |SVarw(iti′)|. If both iti,

iti′ execute line 39, just before Cl it holds that SVarw(iti) = SVarw(iti′).

Proof. We prove the claims by induction on l.

Induction hypothesis. Fix any l ≥ 1 and assume that the claims hold for l

Induction step. We prove that the claims hold for l + 1. We first prove Claim 1.

Let SC ′ be the first of the successful SC instruction on r between Cl−1 and Cl. We prove

that r.seq = l just after the execution of SC ′. Assume by the way of contradiction that

r.seq = l′ 6= j. Let ith be the iteration of line 11 executed by some thread ph that executes

SC ′. Let LL′ be the matching LL instruction of SC ′. Since iti executes successfully line 42

of the pseudocode, the pseudocode (lines 38 and 42) implies that the VL instruction of

line 38 returns true. Since LL′ is executed by iti before this VL instruction, it follows

that LL′ precedes SCj′ . Thus, the VL instruction of line 38 is executed before SCj′ . Let

iti′ be the iteration of the loop of line 11 at which SCj′ is executed and let pi′ be the

thread that executes SCj′ . Obviously, LLj′ has been executed between Cl′−1 and Cl′ .

Since LL′ is also executed between Cl′−1 and Cl′ , the induction hypothesis (Claim 2.ii)

implies that SVw(ith) = SVw(itq). Thus, itq has also executed an SC instruction on r. By

Observation 5.5, there is a successful SC instruction on r between SCl′−1 and SCl′ . Let

SCr be this instruction. By induction hypothesis (claim 1), it follows that r.seq = j′ just

after the execution of SCr. Since SC ′ is a successful SC instruction, LL′ follows SCr. By

the pseudocode (lines 41-42), it follows that SC ′ is not executed, which is a contradiction.

Therefore r.seq = j just after the execution of SCr. We now prove that there is no other

successful SC instruction between SC ′ and Cl on r. Assume by the way of contradiction

that at least one successful SC instruction takes place between SC ′ and Cl. Let SC ′′ be

the first of these instructions. Since, SC ′′ is a successful SC instruction, it follows that

its matching LL instruction LL′′ follows SC ′. By the pseudocode (lines 41-42), it follows

that SC ′′ is not executed since r.seq = S.seq, which is a contradiction.

Claim 2 is proved by following similar arguments to those of Claim 1.

We now prove Claim 3. Assume by the way of contradiction that LLp is executed

between SCj′−1 and SCj′ , j
′ < j. Let pi be the thread that executes SCj′ on some

iteration iti. By Claim 1 and by Claim 2, it follows that r.seq ≤ j′ just before SCj′ . Thus

SCr is not executed, which is a contradiction. Thus, Claim 3 holds.

102

We now prove Claim 4. It is enough to prove that svarwl′(iti) = svarwl′(iti′), for any

l′ ≤ |SVarw(iti)|. we prove this claim by induction on the number l′ ≤ |SVarw| of elements

of SVarw(iti). Induction hypothesis. Fix any l′ ≥ 1 and assume that the claims hold for

l′ − 1.

Induction step. We prove that the claim holds for l′. Distinguish the following cases.

1. In case that svarwl′(iti) = svaj(iti), j ≤ |SVa(iti)|, the induction hypothesis, the

fact that both iti and iti′ simulate the same deterministic object and the pseudocode

(lines 20-27) imply this.

2. In case that svarwl′(iti) = svwj(iti), j ≤ |SVw(iti)|, the claim is an immediate

implication of the induction hypothesis and the fact that both iti and iti′ simulate

the same deterministic object.

3. In case that svarwl′(iti) = svrj(iti), j ≤ |SVr(iti)|, the induction hypothesis and

the fact that both iti and iti′ simulate the same deterministic object imply that

svarwl′(iti) = svrj(iti) = svrj(iti′) = svarwl′(iti′). Claims 1 and 2 and the pseu-

docode (lines 39-43) imply that V l′
r (iti) = V l′

r (iti′). Thus, the claim holds.

Let α be any execution of the algorithm. Denote by αi, the prefix of α which ends at

SCi and let Ci be the first configuration following SCi. Let α0 be the empty execution.

Denote by li the linearization order of the requests in αi.

Lemma 5.27. For each i ≥ 0, (1) object’s state is consistent at Ci, and (2) αi is consis-

tent.

Proof. We prove the claim by induction on i.

Base case (i=0): The claim holds trivially; we remark that αi is empty in this case.

Induction hypothesis: Fix any i > 0 and assume that the claim holds for i− 1.

Induction step: We prove that the claim holds for i. By the induction hypothesis,

it holds that: (1) object’s state is consistent at Ci−1, and (2) αi−1 is consistent with

linearization li−1. Let req be the request that executes SCi. If req applies no request on

the simulated object, the claim holds by induction hypothesis. Thus, assume that req

applies j > 0 requests on the simulated object. Denote by req1, ..., reqj the sequence of

these requests ordered with respect to the identifiers of the threads that initiate them.

103

Notice that req performs LLi after Ci−1 since otherwise SCi would not be successful.

By the induction hypothesis, object’s is consistent at Ci−1. Lemma 5.26 and Corollary 5.2

imply that all threads that are trying to apply a set of requests between Ci−1 and Ci do

the following (1) apply the same set of requests with the same order, (2) all read the same

consistent state of the object, (3) write the same set of base objects with the same values

(although only one write succeeds), and (4) none of req1, . . . , reqj have been applied in

the past.

Given that req1, ..., reqj are executed by req sequentially, the one after the other in

the order mentioned above, it is a straightforward induction to prove that (1) for each

f , 0 ≤ f ≤ j, request reqf returns a consistent response; moreover, S → st is consistent

and once line 14 has been executed by req for all these requests. Therefore, S → st is

consistent after the execution of req’s successful SC. This concludes the proof of the claim.

Theorem 5.6. L-Sim is a linearizable, wait-free implementation of a universal object.

The number of shared memory accesses performed by L-Sim is O(kW).

5.5 SimStack: A wait-free implementation of a shared stack

In this section, we present a wait-free implementation of a stack based on P-Sim, which

is called SimStack (Algorithm 13). Performance evaluation of SimStack, is also provided.

5.5.1 Algorithm description

In SimStack, the stack is implemented as a linked list of nodes; a pointer top points to

the topmost element of this list. P-Sim is employed to atomically manipulate top. Thus,

the state st of the simulated object stores just this pointer and not the entire stack state.

This is accomplished by defining State to be a pointer to a struct of type node (line 2).

When a thread initiates a Push or a Pop request, it allocates a struct of type Request,

initiates it appropriately, and simply calls P-Sim with this struct as a parameter. The

pseudo-code for the sequential operations, push and pop, is also presented in Algorithm 13.

Theorem 5.7. SimStack is a linearizable wait-free implementation of a concurrent stack.

104

5.5.2 Performance Evaluation

We compare the experimental performance of SimStack with that of state-of-the-art

concurrent stack implementations, like the lock free stack implementation presented by

Treiber in [58], the elimination back-off stack [35], a stack implementation based on CLH

spin lock [23, 47], and a linked stack implementation based on flat-combining [33, 34]. We

remark that the implementation based on flat-combining uses the same pseudo-code for

Push and Pop, i.e. that presented in Algorithm 13.

Our experiment is of the same nature as that performed by Michael and Scott for

queues in [50]. More specifically, 107 pairs of a Push and a Pop, in total, were executed

1 typedef struct {
Data data;
Node *next;

} Node;

2 typedef struct {
Node *top;

} State;

void Push(ArgVal arg, ThreadId i){ // Code for Push
3 PSimApplyOp(<push, arg>, i);
}

Node *Pop(ThreadId i){ // Code for Pop
Node *ret;

4 ret = PSimApplyOp(<pop, ⊥>, i);
5 return ret;
}

void push(State *pst, ArgVal arg){
6 nd = allocate a new node; // Allocate a new node
7 nd→data = arg; // Write node’s information
8 nd→next = pst→top; // top→next points to the top of stack
9 pst→top = nd;
}

Node *pop(State *pst){
Node *ret;

10 ret = pst→top; // Compute the return value for thread pi
11 if (pst→top 6= ⊥)
12 pst→top=pst→top→next; // Pop a node from the list
13 return ret;
}

Algorithm 13: Implementation of Pop and Push for SimStack.

105

�

�

�

�

�

�

�

� � � �� �� �� �� �� �� �� ��

��
��
�
�
�
�
�
��
�	

�
�

�
�

�
��
�
�
�

�

�
�
�
��

�
��

�����������

	
�	�
�� ����������	�
��

����
�������
�� ��
����������
��

��
�
�
�
��

Figure 5.11: Performance of SimStack.

as the number of threads n increases. The average throughput was measured; the results

are illustrated in Figure 5.11. Again, for each value of n, the experiments have been

performed 10 times and averages have been taken. As in previous experiments for P-Sim,

we have simulated a random workload by executing a random number of (at most 512)

iterations of a dummy loop after the completion of each request. To reduce the overheads

for the memory allocation of the stack nodes, we use the Hoard memory allocator [18] to

allocate an entire pool of nodes (instead of allocating one node each time); when all the

elements of a pool have been used, we ask for the allocation of a new pool of nodes.

As shown in Figure 5.11, all algorithms scale well up to 4 threads but SimStack out-

performs all other implementations for n > 12. More specifically, SimStack is up to 2.94

times faster than the lock-free stack, up to 2.58 times faster than the spin-lock based

stack, up to 2.57 times faster than the elimination back-off stack, and up to 1.35 times

faster than flat-combining.

Similarly to the experiment of the Fetch&Multiply object (Figure 5.2), CLH spin

locks achieve almost constant throughput for different values of n. The lock-free imple-

mentation suffers from increased contention, so its performance degrades as n increases.

As expected, the elimination backoff stack achieves much better performance than the

lock-free implementation and the spin-lock based implementations in most cases. Sim-

Stack and flat-combining significantly outperform the other stack implementations. For

small numbers of n, flat-combining performs a little better than SimStack, but for n > 12,

106

SimStack exhibits better performance than flat-combining (for similar reasons to those

presented in Section 5.3).

5.6 SimQueue: A wait-free implementation of a shared queue

In this section, we present a wait-free implementation of a queue based on P-Sim, which

is called SimQueue (Algorithms 14 and 15). Performance evaluation of SimQueue, is also

provided.

5.6.1 Algorithm description

Designing a queue implementation using P-Sim is not as simple as implementing a stack,

basically because an efficient such implementation should allow the enqueuers and the

dequeuers to run independently. To achieve this, we employ two instances of a slightly

modified version of P-Sim (Algorithms 14 -16), one for the enqueuers, called Enq-PSim, and

one for the dequeuers, called Deq-PSim. The queue is linked using a next pointer field in

each node. We denote by EnqS and DeqS the variable S in each of the instances of P-Sim

for the enqueuers and the dequeuers, respectively (lines 3-4). Pointer DeqS → st.head

points to the first element of the simulated queue. The queue initially contains a dummy

node; the dummy node is always the first node of the queue. This allows the dequeuers

to work independently of the enqueuers. Specifically, the dequeuers manipulate the head

of the queue which is never updated by any enqueuer. Thus, DeqState is a struct which

contains just a pointer to the head of the queue.

Whenever a thread p performs an enqueue request, it helps only other active enqueuers

(ignoring currently active dequeuers). Thread p creates a local queue of nodes, one for

each enqueuer it helps. If the SC of line 35 by p is successful, a pointer to the first element

of p’s local queue and a pointer to its last element are stored in EnqS → st. These

pointers are EnqS → st.first and EnqS → st.last. Moreover, the previous value of

EnqS → st.last is stored in EnqS → st.tail. Thus, EnqState is a struct containing these

three pointers.

We remark that at configuration C resulting from the execution of the successful

SC by p, the simulated queue is supposed to contain not only the elements of the list

107

typedef struct {
Data data;
Node *next;

} Node;

1 typedef struct { // Implementation of State for enqueuers
Node *tail; // pointer to previous value of queue’s tail
Node *first; // pointer to the first element of the newly enqueued nodes
Node *last; // pointer to the last element of the newly enqueued nodes

} EnqState;

2 typedef struct { // Implementation of State for dequeuers
Node *head; // pointer to the head of the queue

} DeqState;

// Initially, EnqS points to a struct with value 〈〈nd0,⊥,⊥〉, 0, 〈⊥, . . . ,⊥〉〉,
// where nd0 is the dummy node that is initially placed in the queue

3 shared StRec *EnqS;
// Initially, DeqS points to a struct with value 〈〈nd0,⊥,⊥〉, 0, 〈⊥, . . . ,⊥〉〉

4 shared StRec *DeqS;

void Enqueue(ArgVal arg, ThreadId i){ // Code for Enqueue
5 Enq-PSim(<enqueue, arg>, i); // Call an instance of P-Sim for enqueuers
}

Node *Dequeue(ThreadId i){ // Code for Dequeue
6 Node *ret = Deq-PSim(<dequeue, ⊥ >, i); // Call an instance of P-Sim for dequeuers
7 return ret;
}

void enqueue(EnqState *pst, ArgVal arg) {
Node *new node;

8 new node = allocate a new struct Node;
9 new node→data = arg;
10 new node→next = ⊥;
11 if (pst→first == ⊥) pst→first = new node;
12 else pst→last→next = new node;
13 pst→last = new node;
}

Node *dequeue(DeqState *pst) {
Node *ret = ⊥;

14 ret = pst→head→next;
15 if (ret != ⊥)
16 pst→head = ret;
17 return ret;
}

Algorithm 14: Data structures for SimQueue, the implementation of Enqueue and De-
queue in SimQueue, and the implementations (enqueue and dequeue) of the sequential
versions of enqueue and dequeue.

108

void Attempt(ThreadId i) { // Code for Attempt
boolean ltoggles[1..n]; // ltoggles is implemented as an integer
StRec *ls ptr;
boolean dFlag;

18 for j=1 to 2 do{
19 ls ptr = LL(S); // read the pointer stored in S
20 Pool[i][indexi] = *ls ptr; // Create a copy of current state
21 if (VL(S) == 0)
22 continue;
23 ltoggles = Toggles; // Read the vector of toggles
24 if (Announce[i].func==enqueue) EnqLinkQueue(&Pool[i][indexi].st);
25 dFlag = true;
26 for l=1 to n do {

// If pi has a request that is not applied yet
27 if(ltoggles[l] 6= Pool[i][indexi].applied[l]) {
28 if (Announce[i].func== dequeue) {
29 if (dFlag == true) dFlag = DeqLinkQueue(Pool[i][indexi].st);
30 if (dFlag == true) {

// Apply the request and compute return value
31 apply Announce[l] on Pool[i][indexi].st

and store the return value into Pool[i][indexi].rvals[l];
32 } else store ⊥ to Pool[i][indexi].rvals[l];

} else {
// Apply the request and compute return value

33 apply Announce[l] on Pool[i][indexi].st
and store the return value into Pool[i][indexi].rvals[l];

}
34 Pool[i][indexi].applied[l] = ltoggles[l];

}
}

35 if(SC(S, &Pool[i][indexi])) // Try to change the contents of S
36 indexi=(indexi + 1) mod 2; // If success, pi uses the next struct
37 BackoffCalculate();

}
}

Algorithm 15: Pseudocode for the Attempt in SimQueue.

addressed by DeqS → st.head, but also the elements that are stored in p’s local queue

(addressed by EnqS → st.first), in the order they are met in these two lists with the

first element being that pointed to by DeqS → st.head. This is so, despite the fact that

at C, EnqS → st.tail→ next does not point to the node pointed to by EnqS → st.start.

However, an update on EnqS → st.tail → next to point to this node must occur before

the application of the next set of simulated requests. To achieve this, the enqueuers call

EnqLinkQueue, where they try to update (with the CAS of line 39) the next field of the

node pointed to by EnqS → st.tail to point to EnqS → st.start (connecting in this way

the two parts that store the state of the simulated queue).

109

void EnqLinkQueue(State *pst) {
38 if (pst→first 6= ⊥) {
39 CAS(pst→tail→next, ⊥, pst→first);
40 pst→tail = pst→last;
41 pst→first = ⊥;
42 pst→last = ⊥;

}
}

boolean DeqLinkQueue(State *pst) {
StRec *tmpS;
Node *first, *tail;

43 if (pst → head → next == ⊥) {
44 tmpS = LL(EnqS); // EnqS is the variable S of P-Sim’s instance for enqueuers
45 tail = tmpS→st.tail;
46 first = tmpS→st.first;
47 if (VL(EnqS))
48 if (first 6= ⊥) CAS(tail→next, ⊥, first);

}
49 if (pst → head → next == ⊥) return false;
50 else return true;
}

Algorithm 16: Pseudocode for EnqLinkQueue and DeqLinkQueue in SimQueue.

A dequeue helps only active dequeuers. To ensure consistency, each dequeue request

also executes a CAS (line 48 of DeqLinkQueue) to link the two parts of the simulated queue

in a way similar to what enqueue requests do (line 39). The pseudocode for SimQueue

appears in Algorithms 14-16. Notice that Enqueue simply calls Enq-PSim with param-

eters a pointer to enqueue, which is a function containing the enqueue sequential imple-

mentation, its argument, and the thread id. Similarly, Dequeue calls Deq-PSim with

parameters a pointer to dequeue, which is a function containing the dequeue sequential

implementation, and the thread id.

5.6.2 Correctness proof

Let α be any execution of SimQueue. Denote by SCm, m ≥ 0, the mth successful SC

instruction on EnqS executed in α, denote by LLm its matching LL, let pim be the thread

that executes SCm, and let lsim be the element of Pool used by pim during the instance

of Attempt that executes SCm. Denote by Cm the configuration that results from the

execution of SCm. Let tailm, firstm, and lastm be the values of EnqS → st.tail, EnqS →

st.first, and EnqS → st.last, respectively, at Cm. Let tail0 be a pointer to the dummy

110

node nd0 that is initially placed in the queue, and let first0 and last0 be ⊥. Obviously,

between SCm and SCm+1, EnqS is not modified. Denote by CASm the mth successful CAS

executed in α.

We remark that the proof of P-Sim up to Lemma 5.15 which states that each request

is applied exactly once, does not depend on the state of the object. Since EnqLinkQueue

does not access Toggles or the applied field of EnqS, it follows that each Enqueue

request req in α is applied exactly once. Let req′ be the Enqueue request that applies

req. By definition and by the pseudocode (line 33), it follows that req′ calls enqueue for

req. We call node allocated for req in α the node that is allocated by this instance of

enqueue.

As in the correctness proof of P-Sim, we linearize each Enqueue at the point that the

successful SC of the Attempt of the request that applies the Enqueue is executed; ties

are broken by the order imposed by threads’ identifiers.

Denote by αm the prefix of α which ends at SCm. Let α0 be the empty execution.

Denote by Em the sequence of the Enqueue requests applied up until Cm, in the order

defined by their linearization points; let E0 = λ, i.e. E0 is the empty sequence. Denote

by Em − Em−1 the suffix of Em that does not contain any of the instances of Enqueue

in Em−1.

Lemma 5.28. No thread executes lines 39-42 and lines 44-48 of the code between C0 and

C1.

Proof. Fix any request req (Enqueue or Dequeue) that is initiated between C0 and

C1 and let req′ be the request that applies req; denote by pi the thread that initiates

req′. Let lsi be the Pool element used by pi during the execution of the Attempt of

req′. By initialization, lsi → st.tail stores a pointer to the dummy node at C0; moreover,

lsi → st.first = ⊥ and lsi → st.last = ⊥ at C0.

Assume first that req is an Enqueue request. By the pseudocode, thread pi calls

EnqLinkQueue before executing the for loop of line 26. Since lsi → first can change only

if pi calls enqueue and this occurs only in the body of the for loop of line 26, it follows

that the condition of line 38 of EnqLinkQueue is evaluated by pi to false. Therefore, pi

does not execute lines 39-42 between C0 and C1.

111

Assume now that req is a Dequeue request. By initialization, lsi → st.head stores a

pointer to the dummy node at C0; moreover, the next field of this dummy node is equal to

⊥. Since head changes only by executing line 16, it is a straightforward induction to show

that each time the if statement of line 15 is executed between C0 and C1, its condition is

evaluated to false. It follows that the condition of line 48 of DeqLinkQueue is evaluated

to false. Therefore, lines 44-48 of DeqLinkQueue are not executed by pi between C0 and

C1.

Lemma 5.29. Fix any index m > 0. The following claims hold for Cm:

1. If m > 1, CASm−1 is the only successful CAS executed between SCm−1 and SCm; CASm−1

is performed on tailm−1 → next and writes the value firstm−1 there.

2. Let nd0, . . . , ndqm be the nodes that are traversed, in order, if, at Cm, the next

pointers are followed starting from node nd0. Then, for each j, 1 ≤ j ≤ qm, ndj is

the node allocated in α for the Enqueue that corresponds to the jth Enqueue in

Em−1; moreover, tailm points to ndqm at Cm.

3. Let nd′1, . . . , nd
′
fm

be the nodes that are traversed, in order, if, at Cm, the next

pointers are followed starting from the node pointed to by firstm. Then, fm > 0

and for each j, 1 ≤ j ≤ fm, nd′j is the node allocated in α for the Enqueue that

corresponds to the jth Enqueue in Em−Em−1, and nd′fm is the node pointed to by

lastm.

Proof. We prove the claim by induction on m.

Induction Base (m = 1). Claim (1) holds trivially. We continue to prove claim (2).

By the pseudocode and by Lemma 5.28, it follows that the value of lsi1 → st.tail does not

change until SC1. Recall that, initially, lsi1 → st.tail points to the dummy node. Since

each thread works on distinct elements of the Pool array, it follows that lsi1 → st.tail

points to the dummy node at C1. So, tail1 points to nd0 at C1. Moreover, Lemma 5.28

and the pseudocode (lines 8-10, 39, and 48) imply that the next field of the dummy node

points to ⊥ at C1, thus q1 = 0. This concludes the proof of claim (2).

We finally prove claim (3). Recall that lsi1 → st.first = ⊥ and lsi1 → st.last = ⊥

at C0. Lemma 5.28 implies that the values of lsi1 → st.first and lsi1 → st.last do not

112

change by executing lines 41 and 42 of EnqLinkQueue. Thus, claim (3) is implied by the

correctness of P-Sim.

Induction hypothesis. Fix any index m > 1 and assume that the claim holds for every

0 < m′ < m.

Induction step. We prove the claim for m.

We start by proving claim (1). We first prove that pim executes the CAS of line 39

during the execution of EnqLinkQueue. By induction hypothesis (claim (3)), fm−1 > 0,

so firstm−1 6= ⊥ at Cm−1. By the definition of Cm−1 and Cm, EnqS is not modified

between Cm−1 and Cm. Since SCm is a successful SC instruction, it follows that pim

executes LLm between Cm−1 and Cm. By the pseudocode (lines 19 and 20), it follows

that at the configuration C that results from the execution of line 21 by pim , it holds

that lsim → st.first = firstm−1, lsim → st.tail = tailm−1 and lsim → st.last = lastm−1;

moreover, the value of lsim → st.first does not change between C and the execution of

line 38 of EnqLinkQueue by pim . Thus, the condition of the if statement of line 38 is

evaluated to true and pim executes the CAS of line 39 (which we denote by CAS′ in the rest

of the proof).

We next argue that CAS′ is executed on tailm−1 → next. Recall that lsim → tail =

tailm−1 at C. By the pseudocode, it follows that between C and the execution of line 39

of EnqLinkQueue by pim , the value of lsim → st.tail does not change. Thus, by the

pseudocode (lines 19), it follows that CAS′ is executed on tailm−1 → next.

By the induction hypothesis (claim (2)), it follows that tailm−1 → next = ⊥ at Cm−1.

If CAS′ fails, it follows that at least one successful CAS is executed on tailm−1 → next

between Cm−1 and the execution of CAS′; let CASx be the first such CAS.

We next argue that CASx = CASm−1 by proving that each CAS on any variable other

than tailm−1 → next which is executed between Cm−1 and the execution of CASx fails. Let

CASy 6= CASx be any CAS that is executed between Cm−1 and the execution of CASx. By

the pseudocode (lines 19-21, and 44-47), it follows that CASy is executed on tailj for some

j, 1 ≤ j < m. Notice that once the next field of a node changes to a value which is not ⊥,

then it never becomes ⊥ again (since the structures of type Node are not recycled). This,

and induction hypothesis (claims (1), (2), and (3)) imply that for each j, 1 ≤ j < m,

tailj points to a distinct node; moreover, if j < m− 1, tailj → next 6= ⊥ after Cj+1. So,

for each j, 1 ≤ j < m − 1, tailj → next 6= ⊥ after Cm−1. It follows that CASy is not

113

successful. Thus, CASx = CASm−1. Therefore, CASm−1 is executed on tailm−1 → next and

writes the value firstm−1 there. Once tailm−1 → next changes to a non-⊥ value, no other

CAS on it can succeed. Recall that the same is true for all other CAS instructions that are

executed on variables other than tailm−1 → next. This concludes the proof of claim (1).

We continue to prove claim (2). Recall that pim executes the CAS of line 39 of

EnqLinkQueue, and therefore it also executes lines 40-42 of EnqLinkQueue. Let C ′ be the

configuration that results when pim finishes the execution of EnqLinkQueue. Since lsim

points to one of the Pool elements owned by pim (so no other thread can change lsim),

the pseudocode (lines 19-20) implies that lsim → st.tail = lastm−1, lsim → st.first = ⊥,

and lsim → st.last = ⊥, at C ′; moreover, the value of lsim → st.tail does not change

from C ′ to Cm. By the pseudocode (lines 39, 48) it follows that lastm−1 → next does

not change from Cm−1 to Cm. Thus, lsim → st.tail → next = ⊥ at Cm. Notice that

tailm = lsim → st.tail at Cm. Claim (2) now follows by induction hypothesis (claims (1),

(2), and (3)) and by the way linearization points are assigned to the Enqueue requests.

We finally prove (3). Recall that lsim → st.first = ⊥, and lsim → st.last = ⊥, at C ′.

By definition, C ′ precedes the execution of the for loop of line 26 by pim . It follows that

claim (3) can be derived by the correctness of P-Sim and by the way linearization points

are assigned to Enqueue requests.

We continue to study the behavior of the dequeuers. We first describe how to assign

linearization points to each instance of Dequeue executed in α.

Recall that DeqS → st.head initially points to nd0, i.e. to the initial dummy node.

Lemma 5.29 implies that, for each m, at Cm, the nodes which can be reached by fol-

lowing next pointers, starting from the initial dummy node, contain the same values, in

order, as those of the queue that would result if the Enqueue requests in Em−1 were

applied sequentially to a queue that initially contains only a dummy node initialized in

the same way as nd0. Moreover, the pseudocode of Attempt is different than that of

P-Sim in the following: (1) for each Dequeue that is simulated locally by any thread,

DeqLinkQueue may be called, and (2) if for some Dequeue request req, the execution of

DeqLinkQueue returns false, then the response value for it and for all Dequeue requests

that are simulated by the same Attempt after req are set to ⊥.

114

We say that a dequeue request req initiated by some thread pi is applied if there is

some request req′ (that might be req or some other request) for which all the following

conditions hold: (1) the last Read on Toggles that is executed by req′ returns a value for

its ith bit which is different from the value returned by the last Read on DeqS → applied[i]

(line 20) executed by the Attempt of req′, (2) req is recorded in Announce[i] when the

last read of Toggles is executed by the Attempt of req′, and (3) the execution of the SC

of line 35 on DeqS by the Attempt of req′ succeeds. When these conditions hold, we

sometimes say that req′ applies req.

Since the new version of Attempt handles Toggles and the applied field of DeqS in

the same way as the Attempt of P-Sim, it can be proved, by using the same arguments as

those presented for P-Sim up until Lemma 5.15, that each instance of Dequeue in α is

applied exactly once.

Fix any request req′ such that req′ applies a bunch of Dequeue requests all of which

return values different from ⊥. We linearize the bunch of requests applied by req′ at the

point that the successful SC (line 35) is executed by req′; ties are broken by the order

imposed by threads’ identifiers.

Fix any request req′ such that req′ applies a set ∆ of Dequeue requests that return

⊥ and possibly some other Dequeue requests that have a non ⊥ response. Let req be

the Dequeue request from ∆ that has been initiated by the thread with the smallest

identifier; let pi be this thread. Denote by DLQ the instance of DeqLinkQueue that is

executed during the ith iteration of the last execution of the for loop of line 26 performed

by the instance of Attempt executed by req′; the definition of req and the pseudocode

imply that DeqLinkQueue is indeed called during the ith iteration of this for loop, so DLQ

is well-defined. We linearize all the Dequeue requests applied by req′ (independently

of whether they return a value equal to ⊥ or not) at the point that line 43 of DLQ is

executed by req′; ties are broken by the order imposed by threads’ identifiers.

In order to prove consistency, we introduce the following notation. Denote by SC′m,

m > 0, the mth successful SC instruction in α and let LL′m be its matching LL; notice that

SC ′m may be an SC on either EnqS or on DeqS. Obviously, between SC′m and SC′m+1,

neither EnqS nor DeqS is modified. Denote by αm, the prefix of α which ends at SC′m

and let C ′m be the configuration that results from the execution of SC′m; let C ′0 = C0. Let

115

α0 be the empty execution. Denote by Lm the sequence of the requests in αm in the order

defined by their linearization points; let L0 = λ, i.e. L0 is the empty sequence.

Let EnqSm and DeqSm be the values of variables EnqS and DeqS, respectively, at Cm.

Let H ′m = nd1 . . . ndqm be the sequence of nodes that are traversed, in order, if, at Cm, we

follow the next pointers, starting from the node pointed to by DeqSm → st.head, up until

we reach a node whose next field is equal to NULL; nodes nd1, . . . , ndqm are the reachable

nodes from the node pointed to by DeqSm → st.head at Cm. Let H ′′m = nd′1 . . . nd
′
fm

be

the sequence of nodes that are traversed, in order, if, at Cm, we follow the next pointers

starting from the node pointed to by firstm up until we reach a node whose next field

is equal to NULL; nodes nd′1, . . . , nd
′
fm

are the reachable nodes from the node pointed to

by firstm at Cm. If at Cm, EnqSm → st.tail → next points to EnqSm → st.first, then

let Hm be the sequence of values, in order, contained in the nodes in H ′m (notice that in

this case H ′′m is a suffix of H ′m); otherwise, let Hm be the sequence of values, in order,

contained in the nodes in H ′m ·H ′′m.

Let Qm be the queue that is created if the requests in Lm are applied sequentially on

a queue that initially contains a dummy node initialized in the same way as the initial

dummy node in α. Let Sm be the sequence of values, in order, contained in the nodes

of Qm. Let H0 and S0 be sequences containing only one value each, that of the initial

dummy node.

Lemma 5.30. For each m ≥ 0, the following claims hold: (1) Hm = Sm, and Lm is a

linearization order for αm.

Proof. By induction on m.

Base Case. The claims hold trivially for m = 0.

Induction Hypothesis. Let m > 0, and assume that the claims hold for m− 1.

Induction Step. We prove that the claims hold for m. Suppose that Lm−1−Lm contains

Enqueue requests only. Then, SC′m is a successful SC on EnqS. In this case, the claims

hold by induction hypothesis, Lemma 5.29, and the fact that Enqueue returns ack.

Assume next that Lm−1 − Lm contains a set D of Dequeue requests. Let SC′d be the

first successful SC on DeqS after C ′m−1. Notice that d ≥ m. Let reqd be the Dequeue

request that executes SC′d, let pd be the thread that initiated reqd, and let lsd be the

element of Pool used by pd during the instance of Attempt that executes SC′d.

116

Assume first that all Dequeue requests in D return a value other than ⊥. Then, by

the way linearization points are assigned, it follows that d = m. In this case, the induction

hypothesis, Lemma 5.29, and the correctness of P-Sim, imply that the claims hold.

Assume finally that some requests applied by reqd return ⊥. We first argue that all

Dequeue requests in D are applied by reqd. Assume, by contradiction, that there is at

least one Dequeue request reqd′ 6= reqd that applies some of the Dequeue requests in

D. By definition of SC′d, reqd′ applies its SC which we denote by SC′d′ , after SC′d. However,

by the pseudocode (lines 19, 29, and 35) and by the way that linearization points are

assigned, it follows that reqd′ executes the LL that matches SC′d′ before SC′m and therefore

before SC′d. Thus, SC′d′ cannot be successful. This contradicts the assumption that reqd′

applies some of the Dequeue requests in D. Therefore, all Dequeue requests in D are

applied by reqd.

Let req be the Dequeue request among those that return ⊥ in D that has been

initiated by the thread with the smallest identifier; let pi be this thread. Denote by

DLQ the instance of DeqLinkQueue that has been executed during the ith iteration of

the last execution of the for loop of line 26 performed by the instance of Attempt of reqd;

the definition of i and the pseudocode imply that DeqLinkQueue is indeed called during

the ith iteration of this for loop, so DLQ is well-defined. Let C, C ′, and C ′′ be the

configurations just before the execution of lines 43, 48, and 49, respectively, of DLQ by

reqd. By the way linearization points are assigned, C precedes the execution of SC′m.

Denote by hi the value of lsd.st.head after the (i − 1)st iteration of the for loop of

line 26 has been executed by reqd. The induction hypothesis, Lemma 5.29, the correctness

of P-Sim, and the pseudocode, imply that after the execution of the first (i− 1) iterations

of the for loop of line 26 by reqd (i.e. after those iterations that cope with Dequeue

requests that return a value not equal to ⊥), the claims hold. Since the request that is

processed during the ith iteration is req which returns ⊥, the pseudocode (lines 43-49,

and 14-16) implies that lsd.st.head is equal to hi at C.

Let SCe be the last successful SC on EnqS preceding SC ′m. If there is no such SC, then

all Dequeue requests in D return ⊥ and are linearized before the first Enqueue request

is linearized. This and the induction hypothesis imply that the claims hold.

So, assume that SCe is well defined. Suppose that SCe writes the value EnqSe in

EnqS. Since C occurs between SC′m−1 and SC′m, it follows that SCe precedes C. We

117

first argue that at least one successful CAS is executed between SCe and C ′. Assume,

by contradiction, that this is not the case. Since the response value for req is ⊥, the

pseudocode (lines 43, 49, 25, 28 -30, and 14-16) implies that DLQ returns false. Since pd

is the only thread updating lsd and lsd.st.head→ next = ⊥ at C ′′, the pseudocode implies

that lsd.st.head→ next = ⊥ at C. Thus, DLQ evaluates the condition of the if statement

of line 43 to true. Since no successful CAS is executed after SCe, Lemma 5.29 implies that

EnqS → st.tail → next = ⊥ and EnqS → st.first 6= ⊥ at each configuration between

SCe and C ′. Since the LL of line 44 comes after C, DLQ reads the value for EnqS written

by SCd. Thus, the condition of the if statement of line 48 is evaluated to true and the CAS

of line 48 is executed by DLQ and it is successful. This contradicts our assumption that

no successful CAS is executed on between the execution of SCe and C ′. Thus, there is at

least one successful CAS that is executed between the execution of SCe and C ′. We remark

that this CAS is executed on EnqSe → st.tail → next. Notice that once a successful CAS

is executed on EnqSe → st.tail → next, no other CAS on it can succeed. Thus, there is

exactly one successful CAS on it between SCe and C ′. Denote by CASe this successful CAS.

We argue that CASe is executed before C. Assume, by contradiction, that CASe is

executed between C and C ′. Recall that the condition of the if statement of line 43

executed by DLQ is evaluated to true. Recall that lsd.st.head is equal to hi at C.

Lemma 5.29 implies that only EnqSe → st.tail→ next and EnqSe → st.last→ next can

be equal to ⊥ at C. Since CASe occurs after C, the induction hypothesis, the pseudocode,

and Lemma 5.29 imply that lsd.st.head 6= EnqSe → st.last at C. Therefore, lsd.st.head =

EnqSe → st.tail at C. Lemma 5.29 implies that CASe changes EnqSe → st.tail →

next to point to EnqSe → st.first. Recall that EnqSe → st.first 6= ⊥. Thus, in all

configurations between the execution of CASe and C ′′, it holds that lsd.st.head→ next 6=

⊥. It follows that the condition of the if statement of line 49 is evaluated to false by

DLQ, so DLQ returns true. This contradicts the fact that the response for req is ⊥. It

follows that CASe is executed before the execution of line 43 by DLQ. Then, Lemma 5.29

imply that lsd.st.head = EnqSe → st.last at C. Recall that we argued that the claims

hold until C.

We conclude that the sequential queue which is formed by applying sequentially all

the requests in Lm−1, in order, as well as those requests applied by reqd up until req

(excluding req), in the order of thread ids, is empty (i.e. contains only the dummy node).

118

�

�

�

�

�

�

�

�

�

� � � �� �� �� �� �� �� �� 	�

��
��
�
�
�
�
�
��
�	

�
�

�
�

�
��
�
�
�

�

�
�
�
��

�
��

�����������

��
����

��
����

���������������������

�

����

Figure 5.12: Performance of SimQueue.

Thus, linearizing req and all other requests applied by reqd after req at C does not violate

the claims.

We remark that if there are Enqueue requests in Lm − Lm−1 as well, they are all

linearized after the Dequeue requests in D because of the way that linearization points

are assigned. Given that the Dequeue requests in D return a consistent response, the

induction hypothesis, Lemma 5.29, and the fact that Enqueue returns ack imply that

the consideration of these Enqueue requests does not violate the claims.

This concludes the proof of the induction step and thus also the proof of the lemma.

Theorem 5.8. SimQueue is a linearizable wait-free implementation of a concurrent queue.

5.6.3 Performance evaluation

We now experimentally compare the performance of SimQueue with that of state-of-the-

art concurrent queue implementations, like the lock-based implementation using two CLH

locks by Michael and Scott [50], the lock-free algorithm (MSQueue) presented in [50], and

the queue implementation using flat-combining (FCQueue) presented in [33, 34]. Similarly

to the experiment performed in [50], 107 pairs of an enqueue and a dequeue were executed

as the number of threads n increases. The average throughput of each algorithm was

measured and the results are illustrated in Figure 5.12. As in previous experiments, we

simulate a random workload after the completion of each request.

119

As shown in Figure 5.12, SimQueue significantly outperforms all other implementa-

tions for n > 4. More specifically, SimQueue is up to 3.6 times faster than the lock-free

implementation, up to 2.25 times faster than the spin-lock based implementation, and up

to 1.5 times faster than flat-combining.

Similarly to the experiment of Figure 5.11, the queue implementation based on CLH

spin locks outperforms the lock-free algorithm. We remark that the queue implementa-

tion based on CLH locks performs much better than the CLH lock-based stack imple-

mentation, since in the queue implementation there are two CLH locks (one handling

enqueues and one handling dequeues) that are employed; this leads to increased par-

allelism. Flat-combining outperforms all queue implementations other than SimQueue.

However, SimQueue achieves much better performance than flat-combining for almost

any number of threads. In addition to the points discussed for the performance of P-Sim

and flat-combining in Section 5.3, this is due to the fact that SimQueue uses two instances

of P-Sim, thus achieving increased parallelism by having enqueuers and dequeuers run

concurrently.

120

Chapter 6

Highly-Efficient Blocking

Synchronization Algorithms

6.1 CC-Synch: An efficient synchronization algorithm for the CC model

6.2 H-Synch: A hierarchical synchronization approach based on CC-Synch

6.3 DSM-Synch: An efficient synchronization algorithm for the DSM model

6.4 Performance evaluation of CC-Synch, DSM-Synch and H-Synch

6.5 Highly-efficient blocking data structures

6.1 CC-Synch: An efficient synchronization algorithm for the CC

model

In this section, we present the CC-Synch synchronization algorithm. The time complexity

of CC-Synch is O(h+ t) RMRs, where h is an upper bound of the requests that a combiner

may serve and t is the size of the shared memory data that the combiner should access

in order to serve these h requests. The amortized time complexity is O(d), where d is

the average number of RMRs required to serve a single request. The space overhead of

CC-Synch is O(n).

121

6.1.1 Algorithm description

CC-Synch (Algorithm 17) maintains a list which contains, in addition to a dummy node

which is always the last node of the list, one node for each thread that has initiated an

active request. Each thread first announces its request by recording it in the last node of

the list (i.e. in the current dummy node) and by inserting a new node as the last node

of the list (which will comprise the new dummy node). We say that a node is assigned

to the thread that has written the request recorded in it; i.e. each thread is assigned the

previous node to the node that it inserts.

The thread that is assigned the head node of the list plays the role of the combiner,

so it is the only thread that is allowed to access the shared data. The combiner starts by

serving its own request. Other threads that have announced requests perform spinning on

the locked field of their assigned node. The combiner does not give up the lock when it

completes the execution of its request; it rather continues accessing the next elements of

the list, it serves the requests announced in these nodes, and sets the locked field of these

nodes to false to stop the threads that have been assigned these nodes from spinning.

It also changes their completed field to true to identify that their requests have been

completed.

The combiner completes its execution when it serves either all requests in the list

or a pre-specified number h of such requests. In the later case, the combiner identifies

the thread, which owns the next to the last node that the combiner helps, as the new

combiner; this is done by changing the locked field of this node to false while leaving its

completed field equal to false.

We now give a more detailed description of CC-Synch. Pointer Tail is a Swap object

which initially points to a dummy node. Whenever thread pi wants to announce a request

req, it executes a Swap operation to Tail (line 5) in order to read the pointer to the dummy

node pointed to by Tail and update Tail to point to its node (i.e. to the node pointed

to by pi’s local variable nexti). Once this has been performed, pi has been assigned the

node that was previously pointed to by Tail, so it announces its request by recording req

in the req field of this node (line 6) and then it sets the next field of this node to point to

the new dummy node (line 7). After that, pi starts spinning on field locked of its assigned

node until this field becomes false. When pi reads false in locked, either its request has

122

struct Node {
Request req;
RetVal ret;
boolean wait;
boolean completed;
Node *next;
};

// Tail initially points to a dummy node
// with value 〈⊥,⊥,false, false, null〉
shared Node *Tail;

// The following variable is private to each thread pi; it is a pointer to a
// struct of type Node; it initially points to a struct with
// initial value 〈⊥,⊥,true, true, null〉
private Node *nodei;

RetVal CC-Synch(Request req) { // Pseudocode for thread pi
Node *nextNode, *tmpNode, *tmpNodeNext;
int counter = 0;

1 nodei → wait = true;
2 nodei → next = null;
3 nodei → completed = false;
4 nextNode = nodei;
5 nodei = Swap(Tail, nodei); // curNode is assigned to pi
6 nodei → req = req; // pi announces its request
7 nodei → next = nextNode;
8 while (nodei → wait == true) // pi spins until it is unlocked

nop;
9 if (nodei → completed==true) // if pi’s req is already applied
10 return nodei → ret; // pi returns its return value
11 tmpNode = nodei; // otherwise pi is the combiner
12 while (tmpNode → next 6= null AND counter < h){
13 counter = counter + 1;
14 tmpNodeNext=tmpNode→next;
15 apply tmpNode→req to object’s state

and store the return value to tmpNode→ret;
16 tmpNode→completed = true; // tmpNode’s req is applied
17 tmpNode→wait = false; // unlock the spinning thread
18 tmpNode = tmpNodeNext; // and proceed to the next node

}
19 tmpNode→wait = false; // unlock next node’s owner
20 return nodei →ret;
}

Algorithm 17: Pseudocode for CC-Synch.

123

been executed by the combiner or pi’s record is the first in the list and therefore it owns

the lock. In the former case, pi simply returns (line 10), whereas in the later, pi becomes

the combiner.

We remark that the list could grow forever while the combiner thread p traverses it

since a thread may add a node at the end of the list more than once after its request has

been served by p. In order to prevent p from traversing a continuously growing list, an

upper bound h (lines 12 and 13) on the number of requests that p may serve is employed;

once p serves h requests, it identifies the thread that has been assigned the next node

of the list as the new combiner, and returns. Our experiments show that the choice of

h does not significantly impact the performance of the algorithm. Specifically, setting

h to a value equal to cn, where c > 0 is a small constant, is a good choice in terms of

performance.

6.1.2 Time and space complexity

By the pseudocode (Algorithm 17), it follows that each thread returns either on line 10

or on line 20. In case that pi returns on line 10, it follows that pi executes a constant

number of RMRs. Assume now that pi returns on line 20. By the pseudocode (lines 12

and 13), pi executes at most h iterations of the while loop (lines 13-18). Lines 14-18

contribute just a constant number of RMRs, and line 14 is a local request. Thus, pi

executes O(h+ t) RMRs, where t is the size of the shared memory data that they should

be accessed in order to serve these h requests, where we have assumed that the cache size

of pi’s processor is greater than t. Notice that the amortized time complexity is O(d),

where d is the average number of RMRs required to serve a single request. We remark

that in most cases, d equals a small constant. The space overhead of CC-Synch is O(n),

since each thread maintains a struct of type Node.

6.1.3 Required memory barriers

When implementing CC-Synch, memory barriers may need to be inserted in the code

to ensure its correct execution. In architectures that implement either the TSO (Total

Store Order) or the PO (Process Order) consistency model, we need to insert just one store

memory barrier. These memory consistency models are very common and they are used in

124

many contemporary multiprocessors, among which those that we used for our experiments.

The first model is implemented on SPARC machines of version v8 and newer [59], while

the second is implemented on AMD64 [1] and on Intel64 [22] architectures. SPARC

processors support weaker consistency memory models as well, but they are rarely used,

and the TSO model is the default option for the Solaris operating system [48]. Both of

these consistency models do not reorder two read operations, and the same holds for two

store operations [48]. However, a read can be reordered with an older store only in case

that the read and the store instructions access different memory locations [48]. Thus, for

the correct execution of lines 6-7 and lines 17-18, no store barrier is needed. Similarly, no

load barrier is needed for lines 9 and 10. A store memory barrier is inserted just before

the return instruction of line 21. In cases where a weaker memory model is considered,

additional memory barriers may have to be inserted; however, this is not the case in the

architectures we employed for our experiments.

6.1.4 Correctness proof

In this section, we present the correctness proof of CC-Synch. Let α be any execution.

Consider any configuration C in α. Let Tail(C) be the value of Tail at C. For each

i, 1 ≤ i ≤ n, denote by nodei(C) the value of variable nodei at C. Denote by C− the

configuration just preceding C and let C0 be the initial configuration. The notation of

this proof is summarized in Table 6.1.

We start by proving the following lemma which states that at each configuration C,

nodei points to a distinct node other than Tail(C).

Lemma 6.1. For any configuration C, the following claims hold:

1. for each i, Tail(C) 6= nodei(C);

2. for each i, j, i 6= j, nodei(C) 6= nodej(C).

Proof. We prove the lemma by induction on C.

Base case (C = C0). Recall that Tail(C0) points to a dummy node. Also, for each

i, 1 ≤ i ≤ n, nodei(C0) points to a distinct node (allocated for thread pi) other than that

pointed to by Tail(C0). Thus, the claim holds.

125

Induction hypothesis. Let C 6= C0 be any configuration in α and assume that the

claim holds at configuration C−.

Induction step. We now prove that the claim holds for C. Denote by s the step

taken at C− (that results in C) and let pj be the thread that executes s. If s is not the

execution of a Swap operation (line 5), the claim holds at C by the induction hypothesis

since neither Tail no any of the nodei variables, 1 ≤ i ≤ n, change their values from C−

to C. Thus, assume that s is the execution of a Swap operation (line 5).

Then, by the pseudocode we get the following: (1) nodej(C) = Tail(C−) and (2)

Tail(C) = nodej(C
−).

By the induction hypothesis, for each i, 1 ≤ i ≤ n, (1) Tail(C−) 6= nodei(C
−) and

(2) for each l, 1 ≤ l ≤ n, l 6= i, nodei(C
−) 6= nodel(C

−). Since s is a step of thread pj,

nodei(C) = nodei(C
−), for each i, 1 ≤ i ≤ n, i 6= j.

From the above, we get that (1) Tail(C) = nodej(C
−) 6= nodei(C

−) = nodei(C), for

each i, 1 ≤ i ≤ n, i 6= j; also, Tail(C) = nodej(C
−) 6= Tail(C−) = nodej(C). Thus, for

each i, 1 ≤ i ≤ n, Tail(C) 6= nodei(C), as needed by Claim 1.

By the induction hypothesis, for each i, l, 1 ≤ i, l ≤ n, i 6= l and i, l 6= j, it holds that

nodei(C) = nodei(C
−) 6= nodel(C

−) = nodel(C). Moreover, nodej(C) = Tail(C−) 6=

nodei(C
−) = nodei(C), for each i, 1 ≤ i ≤ n, i 6= j. This concludes the proof of Claim 2.

We next prove that as long as a thread pi is executing an instance of CC-Synch, no

other thread can write the next field of the node pointed to by nodei; notice that nodei

may not point to the same node during the course of the execution of an instance of

CC-Synch by pi.

Lemma 6.2. Consider any instance A of CC-Synch executed by some thread pi. Let Cf

and Cl be the first and the last configurations, respectively, of the execution of A. Then,

for each configuration C, Cf < C < Cl, no thread pj, 1 ≤ j ≤ n, j 6= i, writes into

nodei(C)→ next.

Proof. Assume that there is a configuration Cw between Cf and Cl at which a thread

pj, j 6= i, changes nodei → next. By the pseudocode, it follows that pj executes either

line 2 or line 7 at Cw and therefore pj writes nodej(Cw) at Cw. Lemma 6.1 implies that

126

Notation Description

α Any execution of CC-Synch
C Any configuration in α
C0 The initial configuration of α
C− The configuration just preceding C
Tail(C) The value of Tail at configuration C
pi The thread which its id is equal to i, i ∈ {1, . . . , n}
nodei(C) The value of nodei at configuration C
m The number of Swap operations executed in α
Sl The lth Swap in execution α
Al The instance of CC-Synch that executes Sl

pil The thread that executes Sl

Cl The configuration just after Sl

ndl The value returned by Sl

Table 6.1: Notation used in the proof of CC-Synch.

nodej(Cw) 6= nodei(Cw). Thus, pj does not change nodei at Cw, which is a contradiction.

We next prove that the next field of variable Tail is always equal to ⊥.

Lemma 6.3. In any configuration C of α, it holds that Tail(C)→ next = ⊥.

Proof. Assume, by the way of contradiction, that there is a configuration at which the

next field of Tail is not equal to ⊥. Denote by Cw the first such configuration. By the

pseudocode, it follows that the step applied at C−w must be the execution of one of the

lines 2, 5, or 7. Lemma 6.1 implies that for each i, 1 ≤ i ≤ n, Tail(C−w) 6= nodei(C
−
w).

Thus, s cannot be the execution of line 2 or line 7. So, it must be that s is the execution of

a Swap of line 5; let pj be the thread that executes this Swap. By the pseudocode (lines 2

and 5), Tail(Cw) = nodej(C
−
w) and pj sets the next field of nodej to ⊥ by executing

line 2 of its current instance of CC-Synch. By Lemma 6.1 and the pseudocode (lines 2-5),

it follows that nodej → next does not change after it is set to ⊥ and until C−w . Thus,

Tail(Cw) → next = nodej(C
−
w) → next = ⊥, which contradicts our assumption that

Tail(Cw)→ next = ⊥.

Let m ≥ 0, be the number of Swap operations that are executed in α∗. Denote by Sl,

0 ≤ l ≤ m, the lth Swap operation executed in α, let Al be the instance of CC-Synch that

executes Sl, let pil be the thread that executes Al, and denote by ndl the return value

of Sl. Let Cl be the configuration just after the execution of Sl and let Q0 = C0 be the

initial configuration.

∗We remark that m may be ∞ if α is an infinite execution.

127

Lemma 6.4. The following claims hold:

1. for each l, 0 ≤ l < m, and for each configuration C such that C follows Cl and Al

is active at C, it holds that either ndl → next = ⊥ or ndl → next = ndl+1 at C;

2. if m is finite, at each configuration C following Cm, it holds that either ndm →

next = ⊥ or ndm → next = Tail(C).

Proof. Fix any l >≥ 1. If m is finite, l is chosen so that l ≤ m. By the pseudocode

(line 5), it follows that ndl = Tail(C−l). By Lemma 6.3, Tail(C−l) → next = ⊥; since it

is a Swap that is executed at C−l and ndl = Tail(C−l), it follows that ndl → next = ⊥ at

Cl.

By the pseudocode (line 5), if follows that ndl = nodeil(Cl) = nodeil(C); it also follows

that Tail(Cl) = nodeil(C
−
l). Lemma 6.2 implies that no thread other than pil can change

nodeil → next between Cl and C. By the pseudocode, it is only through the execution of

line 7 that pil changes nodeil → next. Thus, if pil has not executed line 7, it holds that

ndl → next = ⊥ at C (and the claim follows). Assume now that pil executed line 7 in

Al at some configuration C ′. By the pseudocode (lines 14-18), nodeil → next is set to be

equal to nodeil(C
−
l) = Tail(Cl) at C ′.

By the pseudocode, it follows that ndl+1 = Tail(Cl). Thus, if l < m, nodeil → next =

Tail(Cl) = ndl+1 at C ′. Lemma 6.2 implies that no thread can change nodeil → next

between C ′ and C. Thus, ndl → next = ndl+1 at C, as needed by Claim 1.

We continue to consider the case that l = m. Recall that nodeim → next is set

to be equal to Tail(Cm) at C ′. Since no Swap operation is executed from Cm to C,

Tail(C) = Tail(Cm). Thus, at C, nodeim → next = Tail(C), as needed by Claim 2.

Consider a thread pi that executes an instance A of CC-Synch at some configuration

C. We say that pi is the combiner at C if there is a configuration C ′ in A such that: (1) C ′

precedes C, and (2) it holds that nodei(C
′)→ wait = false and nodei(C

′)→ completed =

false. Let Cf be the first such configuration in A. We also say that pi is a combiner from

Cf until (and including) the execution of line 19 in A (we show below that a combiner

always returns on line 20).

We say that an instance A of CC-Synch visits a node nd, if A executes line 11 or 18 and

sets its tmpNode variable to point to nd; if A is executed by thread pi, we sometimes say

128

that pi visits nd (if A visits nd). If A visits a node nd, then there is an execution fragment

starting from the configuration at which A executes line 11 (or 18) to set tmpNode to

point to nd until the configuration that A executes line 18 for the next time (or until A

executes line 19 if this was the last time that line 18 was executed by A or if line 18 was

not executed by A).

Lemma 6.5. In each configuration C,

1. exactly one of the following conditions (i or ii) holds:

(i) Tail(C) points to a node nd such that nd→ completed = false and nd→ wait =

false, there is no combiner at C and there is no thread poised to execute any of

lines 11-19.

(ii) Tail(C) points to a node nd such that nd → completed = false and nd →

wait = true, there is exactly one combiner at C and only the combiner is

poised to execute any of lines 11-19.

2. if there is a combiner pi at C, the following claims hold:

(i) pi is poised to execute one of the lines 6-19 at C and it is not poised to execute

line 10 at C;

(ii) no thread other than pi executes lines 11-19 at C;

(iii) suppose that pi is poised to execute one of the lines 11-19 at C, let k be the

number of nodes that have been visited by pi until C, denote by nd′l, 1 ≤ l ≤ k,

the lth such node, and let βl be the execution fragment at which pi is visiting nd′l;

then, for each l, 1 ≤ l ≤ k and for each configuration C ′ in βl, if nd′l 6= Tail(C ′)

there is one active thread pl such that nodel(C
′) = nd′l, and either pl = pi or pl

executes one of the lines 6-10 at C ′;

(iv) if C is the configuration just after pi has executed line 19 of the pseudocode and

k is the number of nodes that have been visited by pi until C, then the following

hold: if nd′k 6= Tail(C−), then pk is the unique combiner in the system at C,

otherwise there is no combiner in the system at C.

129

3. if lines 16-17 have been executed m times in total until C, then for each l, 1 ≤ l ≤ m,

lines 15-17 for the lth time were executed by a combiner that had its tmpNode

variable equal to ndl.

Proof. We prove the claim by induction on C.

Base Case (C = C0). No node is active at C0 so there is no combiner at C0. Moreover,

Tail(C0) points to a dummy node which has its completed and wait fields equal to false,

since no Swap operation has been executed at C0. Thus, Claim 1 holds. Claim 2 trivially

holds, since there is no combiner ar C0. Furthermore, Claim 3 holds, since no thread has

executed lines 15-17.

Induction Hypothesis. Let C be any reachable configuration and assume that the

claim holds in all configurations that precede C.

Induction Step. We prove that the claim holds at C. The induction step is proved by

a case analysis on the step s that is applied from C− to get C. Let pj be the thread that

executes s.

1. s is the execution of any of the lines 1, 2 and 4.

In case s is the execution of line 1, Lemma 6.1 implies that nodej(C
−) 6= Tail(C−).

Thus, Claim 1.i holds by induction hypothesis. The rest of the claims also hold by

the induction hypothesis.

In case s is the execution of either line 2 or line 4, the claims hold by the induction

hypothesis.

2. s is the execution of line 3.

Lemma 6.1 implies that nodej(C) 6= Tail(C). Thus, Claim 1 holds by the induction

hypothesis. To prove Claim 2, it suffices to argue that pj does not become the

combiner by executing s. Let C1 be the configuration at which pj executes line 1 of

the pseudocode. Assume by the way of contradiction that nodej(C)→ wait = false

in some configuration Cw between C1 and C. By the pseudocode (lines 1 and 2),

nodej does not change value between C1 and C by pj. Since nodej(C) → wait =

false, there must be a thread that writes nodej → wait = false between C1 and C.

Let pm be a thread that does so. By the pseudocode, it follows that pm must execute

130

either line 17 or line 19 at Cw. Since pm is active at Cw, Claim 1.i does not hold

at Cw and by the induction hypothesis (for Cw) it follows that Claim 1.ii must hold

at Cw. Moreover, the induction hypothesis (Claim 2.ii) implies that pm must be

the combiner at Cw. However then, the induction hypothesis (Claim 2.iii) implies

that pj should be a thread executing lines 6-10 at Cw. This is a contradiction since

pj executes line 3 at Cw. We conclude that pj is not a combiner at C, which is a

contradiction.

3. s is the execution of line 5.

By the pseudocode (line 5), it follows that nodej(C) = Tail(C−) and Tail(C) =

nodej(C
−). Let C1 be the configuration at which pj executes line 1. By the pseu-

docode, it follows that the value of the nodej variable does not change from the

configuration C1 until C− by thread pj. We start by proving that no thread other

than pj can change the fields nodej → wait and nodej → completed from C1 to C−.

Assume, by the way of contradiction, that there is some configuration Cw following

C1 and preceding C− at which some thread pm 6= pj changes one of the next or

completed fields of the node pointed to by nodej. Lemma 6.1 and the pseudocode

imply that this may happen only if pm executes any of lines 16, 17, or 19 at Cw

(with its tmpNode variable equal to nodej); since pm is active at Cw, Claim 1.i does

not hold at Cw. Thus, by the induction hypothesis (for Cw) it follows that Claim

1.ii must hold at Cw. Thus, there is a combiner at Cw. The induction hypothesis

(Claim 2.ii) implies that pm must be the combiner at Cw. However then, the induc-

tion hypothesis (Claim 2.iii) implies that pj should be a thread executing lines 6-10

at Cw. This is a contradiction since pj is poised to execute line 5 at Cw. Thus, no

thread other than pj writes nodej(C
−) → wait and nodej(C

−) → completed from

C1 to C−, so nodej(C
−)→ wait = true and nodej(C

−)→ completed = false.

We now prove that Claim 1 holds. By the induction hypothesis (Claim 1), one

of the following conditions hold at C−: (Claim 1.i) Tail(C−) points to a node nd

such that nd → completed = false and nd → wait = false, there is no combiner at

C−, and no active thread is executing any of the lines 6-19 at C−, or (Claim 1.ii)

Tail(C−) points to a node nd such that nd→ completed = false and nd→ wait =

true, and there is exactly one combiner at C−.

131

• Assume first that (1.i) is true at C−. Since Tail(C−) → completed = false,

Tail(C−) → wait = false, and nodej(C) = Tail(C−), it follows that pj is a

combiner at C. Recall that there was no combiner at C−, so pj is the only

combiner in the system at C. Moreover, pj is poised to execute line 6 at

C (as needed by 2.i). Recall that no active thread is executing any of the

lines 11-19 at C−, so no thread other than the combiner is executing these

lines at C (as needed by 2.ii). Recall that nodej(C
−) → wait = true and

nodej(C
−) → completed = false. Since Tail(C) = nodej(C

−), it follows that

Tail(C)→ wait = true and Tail(C)→ completed = false (as needed by 1).

• Assume now that condition (1.ii) is true at C−. Since Tail(C−) points to

a node nd such that nd → completed = false and nd → wait = true, and

nodej(C) = Tail(C−), it follows that pj is not a combiner at C; notice that pj

could not be a combiner at C− since by induction hypothesis (Claim 2.i), the

combiner is poised to execute one of the lines 6- 18 at C− (whereas pj is poised

to execute line 5 at C−).

Recall that nodej(C
−) → wait = true and nodej(C

−) → completed = false.

Since Tail(C) = nodej(C
−), it follows that Tail(C) → wait = true and

Tail(C)→ completed = false. This completes the proof of Claim 1.

The rest of the claims in each case, hold by the induction hypothesis.

4. If s is the execution of any of the lines 6-8, the claim holds trivially by induction

hypothesis and Lemma 6.1.

5. If s is the execution of line 9. We distinguish the following two cases.

• Assume first that pj is the combiner at C−. It suffices to argue that pj is not

poised to execute line 10 at C (as needed by Claim 2.i). By definition, there

is some configuration C ′′ that precedes C (and occurs during the course of the

execution of the current instance of CC-Synch by pj) at which nodej(C
′′) →

wait = false and nodej(C
′′) → completed = false. By the pseudocode, the

wait or completed field of nodej can change only if some thread pm executes

one of the lines 1, 3, 16, 17, or 19 after C ′′. Lemma 6.1 implies that the wait or

completed field of nodej cannot change by threads other than pj that execute

132

line 1 or line 3. Moreover, the induction hypothesis (Claims 1 and 2.ii) implies

that no thread other than pj can change the wait or completed fields of nodej

by executing lines 16, 17, or 19. Thus, no thread other than pj can change

these fields of nodej from C ′′ to C−. It follows that pj evaluates the condition

of line 9 to false and therefore, it is not poised to execute line 10 at C (as

needed by 2.i).

• Assume now that pj is not a combiner at C−. Let C5 be the configuration at

which pj executed its Swap instruction of line 5. Obviously, C5 precedes C−.

This and the fact that pj is not a combiner at C− implies that pj was not a

combiner at configuration C5. Since nodej(C5) = Tail(C−5), it follows that one

of the wait, completed fields pointed to by Tail(C−5) was equal to true. Since

C5 precedes C, the induction hypothesis (Claim 1) implies that Tail(C−5) →

wait = true and Tail(C−5) → completed = false. Thus, nodej(C5) → wait =

true. Since pj executes line 9 at C−, it must be that there is some configuration

C8 preceding C− at which pj evaluates the condition of the while statement

of line 8 to true. It follows that there must be a configuration between C5 and

C8, at which nodej → wait becomes equal to false. By the pseudocode and

by Lemma 6.1, it follows that the only way for this to happen, is if a thread

executes line 17 just before that configuration (with its tmpNode variable equal

to nodej). By the induction hypothesis (Claims 1 and 2.ii), this thread (let it be

pm 6= pj) should be a combiner. By the pseudocode, it follows that pm executes

line 16 just before executing line 17; let C ′′ be the configuration at which this

occurs. The execution of line 16 by pm results in changing nodej → completed

to true. By the induction hypothesis (Claim 2.iii), pj should execute one of

the lines 6-10 at C ′′. By the pseudocode, it follows that pj does not change

nodej → completed to false from C ′′ to C−. Also, Lemma 6.1 imply that no

thread other than pj may change nodej → completed to false between C ′′ and

C− by executing line 3. Thus, nodej → completed = true at C−. Therefore,

pj evaluates the condition of the if statement of line 9 to true and is poised

to execute line 10 (and return) at its next step.

The rest of the claims in each case, hold by the induction hypothesis.

133

6. s is the execution of line 11.

By the induction hypothesis (Claims 1 and 2), it follows that it is only the combiner

pi that can be poised to execute line 11 at C−; thus, pj = pi and pj has not executed

any iteration of the while loop (lines 12-18) yet. By the pseudocode (line 11) it

follows that the node assigned to tmpNode is equal to nodej. Thus, Claim 2.iii

holds. The rest of the claims hold by the induction hypothesis.

7. s is the execution of one of the lines 12-15. In this case the claim holds by induction

hypothesis.

8. s is the execution of line 16. It is enough to prove that Claim 3 holds at C. Suppose

that this is the kth time, k ≥ 1, that pi executes line 16 during Ai and assume that

line 16 has been executed m times in total until C. By the induction hypothesis

(Claim 2.iii) there is a thread pk such that nodek(C−) = nd′k, and either pk = pi or

pk is executing one of the lines 6-10 at C−.

• Assume first that k = 1. Let C5 be the configuration resulted when pi executes

line 5. By the induction hypothesis (Claim 2.i), pi cannot be a combiner before

C5.

– Assume first that pi is not a combiner at C5.

Since pi is active at all configurations between C5 and C, by the induction

hypothesis (Claim 1), it follows that there is always some combiner in

the system between C−5 and C. Assume that pi became the combiner

at some configuration C ′ preceding C, and let pj be the thread that was

the combiner at C ′−; let Aj be the instance of CC-Synch executed by

pj at C ′−. Since pi becomes the combiner after pj and pi is executing

line 16 for the last time at C, it follows that the (m − 1)st time that

lines 15-17 were executed was the last time that pj executed those lines

during Aj. Suppose that pj visits k′, k′ ≥ 1 nodes. Let nd′k′ be the last

node visited by Aj. The induction hypothesis (Claim 2.iv) implies that

nd′k′ = nodei(C
′) (since pi is the unique combiner in the system right

after pj). The pseudocode (lines 11-14) imply that nd′1 = nodej(C
′−) 6=

nodei(C
′−); thus, k′ > 1. By the pseudocode, pi becomes a combiner

134

when pj executes line 19 (i.e. at configuration C ′). By the pseudocode,

nodei(C
′) = nd′k′ = nd′k′−1 → next. We distinguish the following two

cases. In case that pk′−1 = pj, the induction hypothesis (Claim 3), implies

that nd′k′−1 = ndm−1. Pseudocode (lines 14, 18 and 19) implies that nd′k′ =

nd′k′−1 → next = ndm−1 → next and nd′k′ = nodei(C) 6= ⊥, it follows that

ndm−1 → next 6= ⊥. Thus, Lemma 6.4 implies that nodei(C) = nd′1 =

ndm−1 → next = ndm, as needed (by Claim 3). In case that pk′−1 6=

pj, by the induction hypothesis (Claims 2.iii), there is some thread pk′−1

such that at each configuration C̃ in βk′−1, pk′−1 was executing one of the

lines 6-10 at C̃ and nodek′−1(C̃) = nd′k′−1; specifically, pk′−1 was active at

configuration C14 at which line 14 was executed by pj during βk′−1. Also, by

the induction hypothesis (Claim 3), it follows that nd′k′−1 = ndm−1. Since

nd′k′ = nd′k′−1 → next = ndm−1 → next and nd′k′ = nodei 6= ⊥, it follows

that ndm−1 → next 6= ⊥. Thus, Lemma 6.4 implies that nodei(C) =

nd′1 = ndm−1 → next = ndm, as needed (by Claim 3).

– Assume now that pi is a combiner at C5. Thus, nodei(C5) → wait =

false and nodei(C5)→ completed = false. Since nodei(C5) = Tail(C−5), it

follows that Tail(C−5)→ wait = false and Tail(C−5)→ completed = false.

By the induction hypothesis (Claim 1), it follows that there is no combiner

at C−5 and no active thread is executing any of the lines 11-19 at C−5 . Let

C ′ be the last configuration preceding C−5 at which there was a combiner

pc in the system; let Ac be the instance of CC-Synch executed by pc at C ′.

Notice that pc has executed line 19 in Ac just before configuration C ′. By

the induction hypothesis (Claim 2.iv), it follows that there is no combiner

in the system at C ′. By definition of pc, there is no combiner in the

system between C ′ and C−5 . We first prove that there no Swap operation

is executed between C ′ and C−5 . Assume by the way of contradiction that

at least one Swap is executed between C ′ and C−5 . Let s be the first such

Swap and let C ′′ be the configuration just after the execution of s. Assume

that s is executed by some thread ps. Since there is no combiner between

C ′ and C−5 , induction hypothesis (Claim 1.i) implies that Tail(C ′−) →

completed=false and Tail(C ′−) → wait=false. The pseudocode (line 5)

135

and the definition of combiner implies that nodes(C
′)→ completed=false

and nodes(C
′)→ wait=false. Therefore, ps is a combiner at C ′′, which is a

contradiction. Thus, the Swap instruction executed by pi at C−5 is the first

Swap instruction executed between C ′ and C−5 . Assume that pc visited k′

nodes in Ac; and denote by nd′k′−1 and nd′k′ the last two nodes visited by

pc in Ac. Induction hypothesis (Claim 3) implies that nd′k′−1 = ndm−1.

It is enough to prove that nd′k′ = Tail(C ′5) = nd′1 = nd′m. Induction

hypothesis (Claim 1.i) implies that Tail(C ′−) → completed =false and

Tail(C ′−) → wait =true. Induction hypothesis (Claim 1.ii) also implies

that Tail(C ′) → completed =false and Tail(C ′) → wait =false. Since pc

executes line 19 at node nd′k′ at C ′, it follows that nd′k′ = Tail(C ′). Since

there is no Swap executed between C ′ and C5 other than that of pi at C5, it

follows that Tail(C ′) = Tail(C5). Lemma 6.1 implies that Tail(C5) = nd′1.

Thus, nd′k′ = Tail(C5) = nd′1 = ndm, as needed.

• Assume now that k > 1. By the pseudocode, nd′k−1 → next (in Ai instance)

cannot be equal to ⊥ since otherwise the kth (and the (k − 1)th) iteration

of the while loop would not be executed by pi. By the induction hypothesis

(Claims 2.iii), either pk−1 = pi or there is some thread pk−1 6= pi such that

at each configuration C ′ in βk−1, pk−1 was executing one of the lines 6-10 at

C ′. By the induction hypothesis (Claim 3), it follows that nd′k−1 = ndm−1. By

the pseudocode, it follows that nd′k = nd′k−1 → next = ndm−1 → next. Since

nd′k 6= ⊥, it follows that ndm−1 → next 6= ⊥. Thus, Lemma 6.4 implies that

nd′k = ndm−1 → next = ndm, as needed (by Claim 3).

9. s is the execution of line 17.

Assume that line 17 is executed for the kth time, k ≥ 1. Recall that it is only the

combiner that can be poised to execute line 16 at C−. By the induction hypothesis

(Claim 2.iii) there is a thread pk such that nodek(C−) = nd′k, and either pk = pi or

pk is executing one of the lines 6-10 at C−. Lemma 6.1 implies that Tail(C−) 6=

nodek(C−). Since Tail(C) = Tail(C−) and nodek(C) = nodek(C−), it follows that

Tail(C) 6= nodek(C−). Since s changes either the wait field of nodek(C−), Claim 1

holds by induction hypothesis. The rest of the claims hold by induction hypothesis.

136

10. s is the execution of line 18.

It is enough to argue that Claim 2.iii holds after the execution of s. The rest

of claims hold by induction hypothesis. Assume that the execution of s by pi

identifies the kth node visited by pi, k > 1 (notice that the first node visited by pi

is identified by executing line 11 and not line 18; thus, k > 1). If nd′k = Tail(C),

Claim 2.iii holds (by induction hypothesis for each l < k). Thus, assume that

nd′k 6= Tail(C). Denote by S1 the Swap operation executed by pi in req and denote

by Sk the Swap operation executed by pk. We first prove that S1 precedes Sk.

By the pseudocode, nd′k−1 → next = nd′k cannot be equal to ⊥ since otherwise

the (k − 1)th iteration of the while, where the kth node to be visited by pi is

identified (this occurs when pi executes line 18 of that iteration), would not be

executed. By the induction hypothesis (Claim 2.iii), either pk−1 = pi or there is

some thread pk−1 such that at each configuration C ′ in βk−1, pk−1 was executing

one of the lines 6-10 at C ′ and nodek−1(C ′) = ndk−1. In case that pk−1 = pi, the

pseudocode implies that nd′1 → next = nd′k. Lemma 6.4 implies that the Swap

operation S1 executed by pi precedes the execution of the Swap operation Sk by pk.

In case that pk−1 6= pi, (Claim 2.iii) implies that pk−1 was active at configuration

C14 at which line 14 was executed by pi during βk−1. The pseudocode implies that

nd′k−1 → next = nodek−1(C14)→ next. Since we have assumed that nd′k 6= Tail(C),

it follows that nodek−1(C14)→ next 6= ⊥. Thus, Lemma 6.4 implies that there is a

thread pk that has executed line 5 before C14 such that nodek(C) = nd′k; moreover,

Lemma 6.4 implies that the Swap operation Sk−1 executed by pk−1 precedes the

execution of the Swap operation Sk by pk. By the pseudocode, pi executes lines 15-

17 for itself during the first iteration of the while loop of lines 12-18, i.e. before

executing it for pk−1. Since pi executes lines 15-17 later on for pk−1, the induction

hypothesis (Claims 2.iii and 3) implies that S1 has occurred before Sk−1. It follows

that S1 has occurred before Sk.

We continue to prove that pk is active at C−. Assume, by the way of contradiction,

that the instance Ak of CC-Synch executed by pk is not active at C−. Recall that

pk executed Sk after S1. Thus, pi was active while executing one of the lines 6-18

when Sk was executed; let Ck be the configuration just after the execution of Sk.

137

Apparently, Ck precedes C. Since pi is active between C1 and C, by the induction

hypothesis (Claim 1), it follows that there is always some combiner in the system

in all configurations between C1 (which results by applying S1) and C. Thus, there

is some combiner in all configurations between C−k and C. By induction hypothesis

(Claim 1.ii), Tail(C−k) → wait = true and Tail(C−k) → completed = false. By the

pseudocode, nodek(Ck) = Tail(C−k), so nodek(Ck) → completed = false. By the

pseudocode, the completed field of nodek must be equal to true when pk terminates.

By the pseudocode, this can happen only if there is some thread ph that executes

lines 15-17 with tmpNode = nodek at some configuration before C. Suppose that

lines 15-17 have been executed h′ times in total until the configuration that ph

executed line 17 with tmpNode = nodek. Since S1 is performed before Sk, the

induction hypothesis (Claim 3) implies that lines 17-19 have been executed for pi

before being executed for pk (assume that this has happened the h′′th time that

lines 15-17 were executed). By the induction hypothesis (Claim 3), nodei = ndh′′ .

However, by the pseudocode, it follows that lines 15-17 are executed for nodei by

pi during the execution of the first iteration of the while loop of lines 12-18; let this

be the hth time that lines 15-17 are executed. Since pi has not visited nodek before

C, it follows that h > h′′, which contradicts the induction hypothesis (Claim 3).

Thus, pk is still active at C−. By the induction hypothesis (Claim 2.ii), no thread

other than the combiner pi executes lines 11-20 at C−. Thus, pi executes one of

the lines 6-10 at C−. Since it is thread pi that executes s, pk executes one of the

lines 6-10 at C. This completes the proof of Claim 2.iii.

11. s is the execution of line 19. Recall that it is only the combiner that can be poised

to execute this line at C−. Assume that pi visits k nodes during the execution of

Ai.

• If nd′k 6= Tail(C−), the induction hypothesis (Claim 2.iii) implies that nd′k =

nodek(C−) for some thread pk that is poised to execute one of the lines 6-10

at C−. By the induction hypothesis (Claim 3), nodek is visited for the first

time since Ak was initialized. This and Lemma 6.1 imply that nodek(C−) →

completed = false. Since s changes nodek(C−) → wait to false it follows that

pk is a combiner at C. Since pi was the unique combiner in the system at C−

138

and by definition, it is not a combiner anymore after the execution of line 19,

it follows that the unique combiner in the system at C is pk, as needed by

Claim 2.iv. Moreover, Lemma 6.1 implies that Tail(C−) 6= nodek(C−), so

Tail(C) = Tail(C−). Since pi is a combiner at C−, the induction hypothesis

(Claim 1) implies that Tail(C−)→ wait = true and Tail(C−)→ completed =

false. Thus, Tail(C) → wait = true and Tail(C) → completed = false. So,

Claim 1 follows. The rest of claims hold by induction hypothesis.

• We first prove that Tail(C)→ completed = false and Tail(C)→ completed =

false. Assume now that nd′k = Tail(C−). By the induction hypothesis (Claim

3), nodek is visited for the first time since Ak was initialized. This and

Lemma 6.1 imply that nodek(C−) → completed = Tail(C−) → completed =

false. The pseudocode (line 19) implies that tmpNodek → wait = nd′k →

wait = Tail(C−)→ wait = false at C. We now prove that no thread is poised

to execute any of lines 11-19 at C. Induction hypothesis (Claim 1.i), there is

no thread other than pi poised to execute any of lines 11-19 at C−. Since pi

executes line 19 just before C, it follows that no thread is poised to execute

any of lines 11-19 at C. We finally prove that there is no combiner at C.

Assume, by the way of contradiction that there is a combiner pc at C that ex-

ecutes some instance Ac of CC-Synch. By combiner’s definition, it follows that

there is a configuration C ′ preceding C such that nodec(C
′)→ wait =false and

nodec(C
′) → completed =false. Lemma 6.1 implies that nodec(C) 6= Tail(C).

It follows that C ′ precedes C−. Thus, pc is also a combiner at C−. Induction

hypothesis (Claim 1.ii) implies that the only combiner at C− is pi, which is a

contradiction. So, Claim 1 follows.

The rest of the claims in each case hold by the induction hypothesis.

Let ndi be the node of the list that is assigned to pi for reqi. Thread pi completes

the execution of CC-Synch for reqi either on line 10 or on line 20. Assume first, that pi

returns on line 10. Lemma 6.5 (Claim 2.iii) implies that a combiner thread pj has served

reqi before the execution of line 10 by pi. Therefore, pj has executed line 15 for ndi at

some iteration l > 1 of its while loop (lines 12-18). Request reqi is linearized just before

the execution of this instance of line 15 by pj. Assume now that pi returns on line 20.

139

Lemma 6.5 (Claim 2.iii) implies that pi serves its request on its own when it executes

line 15 at the first iteration of its while loop (lines 12-18). In this case, reqi is linearized

just before the execution of line 15 of the first iteration of pi’As while loop. Obviously,

in both cases the linearization point of reqi is within its execution interval. Consistency

is immediately implied by Claims 2.iii and 3 of Lemma 6.5. Thus, the following theorem

holds.

Theorem 6.1. CC-Synch is a linearizable synchronization algorithm.

6.2 H-Synch: A hierarchical synchronization algorithm based on

CC-Synch

We now discuss how we can modify CC-Synch to get an hierarchical approach of it, called

H-Synch. We consider a system of m processors which are partitioned into C clusters;

each cluster consists of m/C processors. In such a system, communication among the

processors of the same cluster is performed much faster than among processors residing

in different clusters. A characteristic example of such a system is the Niagara 2 machine,

in which we have executed some of the experiments in Section 6.4.

In H-Synch, the threads use C instances of CC-Synch one per cluster (Algorithm 18).

Each instance of CC-Synch is used, as described in Section 6.1, to identify at each point

in time, the combiner thread of each cluster and the list of announced requests of the

threads that are executed at processors of the cluster. In addition to the C instances of

CC-Synch, a queue lock L [23, 47] is used; L is accessed only by the combiner threads

of the clusters. The CLH lock [23, 47] is a good choice for implementing L in systems

where the intra-cluster communication is achieved with a cache coherent (CC) protocol,

whereas the MCS lock [49] is expected to be a better choice in other systems.

Whenever a thread q has a newly activated request, it calls H-Synch. If q does not

become the combiner of its cluster, it waits until its request has been served by a com-

biner of the cluster. Otherwise, before q starts serving requests, it executes an acquire

operation on L (line 13) in order to ensure that it is the only combiner (among those

of the different clusters) that has access to the shared data. A combiner q serves only

140

requests initiated by threads that are running on its local cluster. By doing so, intra-

cluster communication is kept low. After finishing its work as a combiner, q releases L

(line 21), so that a combiner of some other cluster can acquire L and have access to the

shared data. In cases that the communication between clusters is performed through a

more complex interconnection network (for instance, one that has an hierarchical struc-

ture), H-Synch can be easily modified to exploit the characteristics of the communication

hierarchy by using more levels of queue locks (one queue lock per communication level).

// Assume that thread pi runs at some processor of cluster ci
shared Node *Tail[1..C] = { 〈⊥,⊥,false, false, null〉 };

// L is a CLH [23, 47] or MCS [49] queue lock
shared QueueLock L;

// The following variable is private to each thread pi; it is a pointer to a
// struct of type Node with initial value 〈⊥,⊥,false, false, null〉
private Node *nodei = {〈null,⊥,⊥,false, false〉};

RetVal H-Synch(Request req) { //Pseudocode for thread pi
Node *nd, *cur, *next node, *ndnext;
int counter = 0;

1 next node = nodei; // pi uses a (possibly recycled) node
2 next node → next = ⊥; // pi initializes the fields of this node
3 next node → locked = true;
4 next node → completed = false;
5 cur = Swap(Tail[ci], next node);
6 cur → req = req; // pi announces its request
7 cur → next = next node;
8 nodei = cur; // reuse this node in future request
9 while (cur → locked == true) // pi spins until its request

nop; // is applied or until is unlocked
10 if (cur → completed == true) // if pi’s request is already applied
11 return cur → ret; // pi returns its return value
12 nd = cur;
13 lock(L); // acquire the lock
14 while (nd → next 6= null AND counter < h) {
15 counter = counter + 1;
16 ndnext = nd→next;
17 apply nd→req to object’s state and store the return value to nd→ret;
18 nd → completed = true // nd’s request is applied
19 nd → locked = false; // pi unlocks the spinning thread
20 nd = ndnext; // and proceeds to the next node

}
21 unlock(L); // release the lock
22 nd → locked = false; // unlocks the next node’s owner
23 return cur → ret; // thread returns
}

Algorithm 18: Pseudocode for H-Synch.

141

H-Synch ensures that requests initiated by threads of the same cluster are served in FIFO

order and that the combiners acquire the global lock in FIFO order but, apparently, it

does not globally ensure the FIFO property.

6.3 DSM-Synch: An efficient synchronization algorithm for the

DSM model

In this section, we present DSM-Synch (Algorithm 19) which performs O(hd) RMRs in

the DSM model, where h is an upper bound on the number of requests that a combiner

may serve and d is the maximum number of RMRs required to serve a single request. The

space overhead of DSM-Synch is O(n).

6.3.1 Algorithm description

DSM-Synch maintains a list of announced requests which is updated in a manner similar

to that of CC-Synch (and which also implements the lock). In contrast to CC-Synch, the

list is initially empty and its last node is a valid (not dummy) node. Each thread p

maintains two list nodes; p announces each request it wants to perform in one of these

nodes, it inserts this node at the end of the list by using Swap, and if its record is not the

first in the list, it performs spinning on the wait field of its node. If p’s node is the first

in the list, p becomes the combiner and serves up to h requests of the list in FIFO order.

A thread that appends a node in the list updates the next field of the previous node to

point to the inserted node. The combiner serves requests recorded in list nodes up to the

second last element of the list (see condition of the if statement of line 19). It does so

to avoid arriving to a node where its next field has not yet been updated although this

node is not the last node in the list any more. Thus, a combiner will execute lines 22-25

only if its node is the only node in the list. In this way, a combiner performs a bounded

number of RMRs (whereas spinning on the last node of the list on line 25 would cause an

unbounded number of RMRs).

We explain now why it is not enough to have each thread pi using just one node. Let’s

assume that pi has a single node that it reuses each time it initiates a new request. Let

142

q be a combiner thread that serves pi’s request. Assume that there is a thread pj whose

assigned node is the next node of pi’s node in the list. Assume also that there is no other

active request and thus pj’s node is the last node in the list. After serving pi’s request, q

sees that less than two nodes are left in the list and stops the execution of its while loop

(lines 19-20). Suppose that q stalls before executing line 26 of the pseudocode (pointer

nd points to the node assigned to pi). Assume now that pi wants to immediately apply

a new operation. Thus, pi initializes its node again and inserts it at the end of the list

by executing a Swap instruction on Tail. Then, q continues by executing line 26 of the

pseudocode and makes an invalid memory reference.

6.3.2 Time and Space complexity

DSM-Synch performs O(hd) RMRs when executing the while loop of line 14. The only

extra piece of code that may cause DSM-Synch to perform more RMRs is that consisting

of lines 22-25. However, as explained above a thread p executes these code lines only

when the node it inserts is the single node of the list. So, if these lines are executed, p’s

local variable called nd is equal to nodei, and therefore spinning on p → next on line 25

is local. The space overhead of DSM-Synch is O(n).

6.3.3 Required memory barriers

Similarly to CC-Synch, memory barriers may need to be inserted in the code of DSM-Synch

to ensure its correct execution in architectures that implement either the TSO (Total Store

Order) or the PO (Process Order) consistency model. Remind that both of TSO an PO

consistency models do not reorder two read operations, and the same holds for two store

operations [48]. Remind also that a read can be reordered with an older store only in case

that the read and the store instructions access different memory locations [48]. Thus, for

the correct execution of lines 3-6 and lines 17-18, no store barrier is needed. Similarly, no

load barrier is needed for lines 9 and 10. A store memory barrier is inserted just before

the return instruction of line 12.

143

struct LockNode {
Request req;
RetVal ret;
boolean wait, completed;
LockNode *next;

};

shared LockNode *Tail = null;
// The following variables are private to each thread pi
private LockNode MyNodesi[0..1] = {〈⊥, ⊥, false, false, null 〉};
private int togglei = 0;

RetVal DSM-Synch(Request req) { // pseudocode for thread pi
LockNode *nd, *nodei, *MyPred;
int counter = 0;

1 togglei = 1 - togglei; // pi toggles its toggle variable
2 nodei= MyNodesi[togglei]; // pi chooses to use one of its nodes
3 nodei→wait = true; // pi initializes the node
4 nodei→completed = false;
5 nodei→next = null;
6 nodei→req = req; // pi announces its request
7 MyPred = Swap(Tail, nodei); // pi inserts nodei in the list
8 if (MyPred 6= null) { // if a node already exists in the list
9 MyPred→next = nodei; // fix next of previous node
10 while(nodei→wait == true) // perform spinning

nop;
11 if(nodei→completed == true) // if combiner has applied pi’s req
12 return nodei→ret;

}
13 nd = nodei;
14 while(true) { // pi is the combiner
15 counter++;
16 apply nd→req and store the return value to nd→ret;
17 nd→completed = true; // announce that nd→ req is applied
18 nd→wait = false; // unlock the spinning thread
19 if (nd→next == null or nd→next→next == null or counter ≥ h)
20 break; // pi helped h threads or fewer than 2 nodes are in list
21 nd = nd→next; // proceed to the next node

}
22 if (nd→next == null) { // pi’s req is the single record in list
23 if(CAS(Tail, nd, null)==true) // try to set Tail to null
24 return nodei→ret;
25 while (nd→next == null) // some thread is appending a node

nop; // wait until it finishes its operation
}

26 nd→next→wait = false; // A new combiner is identified
27 return nodei→ret;

}

Algorithm 19: Pseudocode for DSM-Synch.

144

Notation Description

α Any execution of DSM-Synch
C Any configuration in α
C0 The initial configuration of α
C− The configuration just preceding C
Tail(C) The value of base object Tail at configuration C
pi The thread which its id is equal to i, i ∈ {1, . . . , n}
nodei(C) The value of nodei at configuration C
m The number of Swap operations executed in α
Sl The lth Swap in execution α
Al The instance of DSM-Synch that executes Sl

pil The thread that executes Sl operation
Cl The configuration just after Sl

ndl The value returned by Sl

Table 6.2: Notation used in the proof of DSM-Synch.

6.3.4 Correctness proof

In this section, we present the correctness proof of DSM-Synch. Let α be any execution.

Consider any configuration C in α. Let Tail(C) be the value of Tail at C. For each

i, 1 ≤ i ≤ n, denote by nodei(C) the value of variable nodei at C. Denote by C− the

configuration just preceding C and let C0 be the initial configuration. The notation of

this proof is summarized in Table 6.2.

Let m ≥ 0, be the number of Swap operations that are executed in α†. Denote by Sl,

0 ≤ l ≤ m, the lth Swap operation executed in α, let Al be the instance of DSM-Synch

that executes Sl, let pil be the thread that executes Al, and denote by ndl the return value

of Sl. Let Cl be the configuration just after the execution of Sl and let Q0 = C0 be the

initial configuration.

Let m ≥ 0, be the number of Swap operations that are executed in α‡. Denote by Sl,

0 ≤ l ≤ m, the lth Swap operation executed in α, let Al be the instance of CC-Synch that

executes Sl, let pil be the thread that executes Al, and denote by ndl the return value

of Sl. Let Cl be the configuration just after the execution of Sl and let Q0 = C0 be the

initial configuration.

Consider a thread pi that executes an instance A of DSM-Synch at some configuration

C. In case that the Swap instruction of line 7 in A returns ⊥, denote by Cf the first con-

figuration just after the execution of line 7; in case that there is at least one configuration

C ′ in A such that either nodei(C
′) → wait = false and nodei(C

′) → completed = false,

†We remark that m may be ∞ if α is an infinite execution.
‡We remark that m may be ∞ if α is an infinite execution.

145

denote by Cf the first of these configurations. We say that pi is a combiner at C if Cf is

well defined and C follows Cf ; pi is a combiner from Cf until it executes either line 24 or

line 27 in A (we show below that a combiner always returns either on line 24 or line 27).

We say that an instance A of DSM-Synch visits a node nd, if A executes line 13

or 21 and sets its tmpNode variable to point to nd; if A is executed by thread pi, we

sometimes say that pi visits nd (if A visits nd). If A visits a node nd, then there is an

execution fragment starting from the configuration at which A executes line 13 (or 21) to

set tmpNode to point to nd until the configuration that A executes line 21 for the next

time (or until A executes line 26 if this was the last time that line 21 was executed by A

or if line 21 was not executed by A).

The following observation is an immediate consequence of the pseudocode (lines 7,8

and 9).

Observation 6.1. Let Aj be any instance of CC-Synch executed by some thread pj and

Sl, l > 1 be the Swap instruction executed by Aj. Let nodej be the value written by Aj on

some base object nodex → next while executing line 9 of the pseudocode. Sl−1 is executed

by some thread pj′ that writes nodex to Tail.

The pseudocode (lines 1, 2 and 7) implies the following observation.

Observation 6.2. Let Aj and A′j be two consecutive instances executed by some thread pj;

let nodej and node′j be the values written while line 7 is executed by Aj and A′j respectively.

It holds that nodej 6= node′j.

Lemma 6.6. In each configuration C,

1. exactly one of the following conditions (i or ii) holds:

(i) Tail(C) = ⊥, there is no combiner at C and there is no thread poised to execute

any of lines 13-23 and 25-26.

(ii) Tail(C) 6= ⊥ and there is exactly one combiner at C.

2. if there is a combiner pi at C, the following claims hold:

(i) pi is poised to execute one of the lines 8-23 or one of the lines 25-26 at C and

it is not poised to execute line 12 at C.

146

(ii) No thread other than pi executes lines 13-23 and lines 25-26 at C.

(iii) Suppose that pi is poised to execute one of the lines 13-26 at C, let k be the

number of nodes that have been visited by pi until C, denote by nd′l, 1 ≤ l ≤ k,

the lth such node, and let βl be the execution fragment at which pi is visiting nd′l;

then, for each l, 1 ≤ l ≤ k and for each configuration C ′ in βl, if nd′l 6= Tail(C ′)

there is one active thread pl such that nodel(C
′) = nd′l, and either pl = pi or pl

executes one of the lines 8-12.

(iv) assume that C is the configuration just after pi has executed line 26 of the

pseudocode; if nd′k 6= Tail(C−), then pk is the unique combiner in the system

at C otherwise there is no combiner in the system at C.

3. if lines 17-18 have been executed m times in total until C, then for each l, 1 ≤ l ≤ m,

lines 16-18 for the lth time were executed by a combiner that had its tmpNode

variable equal to ndl.

4. let pj be the thread that executes the Sm,m > 0 instruction; for each l, 0 ≤ l < m,

and for each configuration C such that C follows Cl and Al is active at C, it holds

that either ndl → next = ⊥ or ndl → next = ndl+1 at C; if m is finite, at each

configuration C following Cm, it holds that either ndm → next = ⊥ or ndm →

next = Tail(C).

Proof. We prove the claim by induction on C.

Base Case (C = C0). No thread is active at C0 so there is no combiner at C0. Moreover,

Tail = ⊥ at C0. Thus, the Claim 1 holds. Claim 2 obviously holds, since there is not any

combiner ar C0. Furthermore, Claim 3 holds, since no thread has executed lines 16-18.

Induction Hypothesis. Let C be any reachable configuration and assume that the

claim holds in all configurations that precede C.

Induction Step. We prove that the claim holds for C. This is proved by a case analysis

on the step s that is applied from C− to get C, let pj be the thread that executes s.

1. In case that s is the execution of any of s is the execution any of lines 1-3 and 5-6,

the claims hold by the induction hypothesis.

147

2. s is the execution of line 4.

It suffices to argue that pj does not become the combiner by executing s. Let C4 be

the configuration at which pj executes line 4 of the pseudocode. Assume by the way

of contradiction that nodej(C) → wait = false in some configuration Cw between

C3 and C. By the pseudocode (lines 3 and 4), nodej → wait does not change

value between C3 and C by pj. Since nodej(C) → wait = true, there must be a

thread that writes nodej → wait = false between C3 and C. Let pm be a thread

that does so. By the pseudocode, it follows that pm must execute either line 18 or

line 26 at Cw. Since pm is active at Cw, Claim 1.i does not hold at Cw and by the

induction hypothesis (for Cw) it follows that Claim 1.ii must hold at Cw. Moreover,

the induction hypothesis (Claim 2.ii) implies that pm must be the combiner at Cw.

However then, the induction hypothesis (Claim 2.iii) implies that pj should be a

thread executing lines 8-12 at Cw. This is a contradiction since pj executes any of

line 4 at Cw. We conclude that pj is not a combiner at C, which is a contradiction.

3. s is the execution of line 7.

We first prove that Claim 1 holds. By the induction hypothesis (Claim 1), one of the

following conditions hold at C−: (Claim 1.i) Tail(C) = ⊥, there is no combiner at

C− and there is no thread poised to execute any of lines 13-23 and 25-26 or (Claim

1.ii) Tail(C−) points to a node nd 6= ⊥ and there is exactly one combiner at C−.

• Assume first that (1.i) is true at C−. Since Tail(C−) = ⊥, the Swap instruction

of line 7 returns a value equal to ⊥ and thus, it follows that pj is a combiner

at C. Since condition (1.i) guarantees that there was no combiner at C−, pj is

the only combiner in the system at C.

• Assume now that condition (1.ii) is true at C−. Since Tail(C−) 6= ⊥ and

nodej(C) = Tail(C−), it follows that pj is not a combiner at C; notice that pj

could not be a combiner at C− since the combiner is poised to execute some

of the lines 8-26 at C− (whereas pj is poised to execute line 7 at C−).

The rest of the claims in each case, hold by the induction hypothesis.

4. If s is the execution of any of the lines 8 or 10, the claim holds by induction hy-

pothesis.

148

5. s is the execution of line 9.

It suffices to prove that Claim 4 holds. Let nodex be the value of MyPred of pj

at C. Observation 6.1 implies that there is some thread pj′ that executes the Sl−1

instruction and uses nodex as parameter in Sl−1. Assume that pj′ executes its Sl−1

instruction in some instance Ax of CC-Synch. The pseudocode (line 9) implies that

pj writes a value equal to nodej at nodex → next at C. Let C5 be the configuration

after the execution of line 5 by pj′ . We first prove that pj′ executes at most one

Swap instruction between Sl−1 and C. Assume by the way of contradiction that pj′

executes two or more Swap instructions between Sl−1 and C. Let Sw1 (Sw2) be the

first (second) of these Swap instructions. Assume that Sw1 is executed by some Aw1

instance of CC-Synch. By the definition of Aw1, it follows that finishes its operation

before the execution of Sw2 an thus before configuration C−. Furthermore, the

definitions of Aw1, Aw2 and Aj imply that Aj executes its Swap instruction before

Sw1 and a combiner executes lines 16-18 for servicing Aj after the execution of

lines 16-18 for servicing Aw1. This contradicts the induction hypothesis (Claim 3).

Thus, at most one Swap instruction is executed between Sl−1 and C by pj′ .

In case that nodex(C−) → next = ⊥, the claim holds trivially since pj writes

nodej = ndl to nodex → next = ndl−1 → next. The claim also trivially holds in

case that nodex → next = nodej at C−. We now prove that at configuration C−, it

holds that either nodex → next = ⊥ or nodex → next = nodej. Assume, by the way

of contradiction, that at configuration C−, it holds that nodex → next = nodew,

where nodew 6= nodej and nodew 6= ⊥. Let pw be the thread that writes nodew

into nodex → next at some configuration Cw between C5 and C−. Let Sh be the

Swap instruction of line 7 executed by pw. Observation 6.1 implies that pj′ executes

the Sh−1 instruction that writes nodex at Tail. Since, pw 6= pj, it follows that

Sh−1 6= Sj−1. Observation 6.2 and the fact that at most one Swap instruction is

executed between Cl−1 and C− by pj′ , imply that Sh−1 precedes Sj−1. Therefore,

Sh is executed between Sh−1 and Sj−1.

6. If s is the execution of line 11, we distinguish the following two cases.

149

• Assume first that pj is the combiner at C−. It suffices to argue that pj is

not poised to execute line 12 at C (as needed by Claim 2.i). By definition,

there is some configuration C ′′ that precedes C (and occurs during the course

of the execution of the current instance of DSM-Synch by pj) at which either

nodej(C
′′) → wait = false and nodej(C

′′) → completed = false or the Swap

instruction (notice that pj is not the combiner due to a returned ⊥ of line 7,

since in a such a case the line 11 could not be executed). By the pseudocode,

the wait or completed field of nodej can change if a thread pm executes one

of the lines 3, 4, 17, 18, or 26 after C ′′. Pseudocode (lines 1-3) implies that

the wait or completed field of nodej cannot change when threads other than pj

execute any of the lines 3 or 4. Moreover, the induction hypothesis (Claims 1

and 2.ii) implies that no thread other than pj can change the wait or completed

fields of nodej by executing lines 17, 18, or 26. Thus, no thread other than pj

can change these fields of nodej from C ′′ to C−. It follows that pj evaluates the

condition of line 11 to false and therefore, it is not poised to execute line 12 at

C (as needed by 2.i).

• Assume now that pj is not a combiner at C−. It suffices to argue that pj is

poised to execute line 12 at C (as needed by Claim 2.i). Assume by the way of

contradiction that pj is not poised to execute line 12. Since pj executes line 11

at C−, it must be that there is some configuration C10 preceding C− at which

pj evaluates the condition of the while statement of line 10 to true. Since pj

is not the combiner, it follows that nodei()→ completed = true at C10. Since

pj evaluates the if condition of line 11 to false, it follows that there is a config-

uration, let it be Cw, between C10 and C at which nodei(Cw) → complete =

false. The pseudocode (lines 4 and 17) implies that only pj writes a value

equal to false on nodei → completed by executing line 4 of the pseudocode.

The pseudocode (lines 10-11) implies that pj does not perform any Write op-

eration at Cw. Thus, pj evaluates the if condition of line 11 to true, which is a

contradiction.

The rest of the claims in each case, hold by the induction hypothesis.

7. s is the execution of line 13.

150

By induction hypothesis (Claims 1 and 2), it follows that only the combiner pi can

be poised to execute line 13 at C−; thus, pj = pi, and pj has not executed any

iteration of the while loop (lines 14-21) yet. By the pseudocode (line 13) it follows

that the node assigned to nd is equal to nodej. Thus, Claim 2.iii holds. The rest of

the claims hold by the induction hypothesis.

8. In case that s is the execution of any of the lines 14-16, the claims hold by induction

hypothesis.

9. s is the execution of line 17. Suppose that this is the kth time, k ≥ 1, that pi

executes line 17 during Ai and assume that line 17 has been executed m times in

total until C. By the induction hypothesis (Claim 2.iii) there is a thread pk such

that nodek(C−) = ndk, and either pk = pi or pk is executing one of the lines 6-12 at

C−.

• Assume first that k = 1. Let C7 be the configuration resulted when pi executes

line 7. By the induction hypothesis (Claim 2.i), pi cannot be a combiner before

C7.

– Assume first that pi is not the combiner at C7.

Since pi is active at all configurations between C7 and C, by the induction

hypothesis (Claim 1), it follows that there is always some combiner in

the system between C−7 and C. Assume that pi became the combiner at

some configuration C ′ preceding C, and let pj be the thread that was the

combiner at C ′−; let Aj be the instance of DSM-Synch executed by pj at

C ′−. Since pi becomes the combiner after pj and pi is executing line 17 for

the last time at C, it follows that the (m− 1)st time that lines 16-18 were

executed was the last time that pj executed those lines during Aj. Suppose

that pj visits k′, k′ ≥ 1 nodes. Let nd′k′ be the last node visited by Aj.

The induction hypothesis (Claim 2.iv) implies that nd′k′ = nodei(C
′) (since

pi is the unique combiner in the system right after pj). The pseudocode

(lines 13-21) imply that nd′1 = nodej(C
′−) 6= nodei(C

′−); thus, k′ > 1.

By the pseudocode, pi becomes a combiner when pj executes line 26 (i.e.

at configuration C ′). By the pseudocode, nodei(C
′) = nd′k′ = nd′k′−1 →

151

next. We distinguish the following two cases. In case that pk′−1 = pj, the

induction hypothesis (Claim 3), implies that nd′k′−1 = ndm−1. Pseudocode

(lines 21 and 26) implies that nd′k′ = nd′k′−1 → next = ndm−1 → next

and nd′k′ = nodei(C) 6= ⊥, it follows that ndm−1 → next 6= ⊥. Thus,

Claim 4 implies that nodei(C) = nd′1 = ndm−1 → next = ndm, as needed

(by Claim 3). In case that pk′−1 6= pj, by the induction hypothesis (Claims

2.iii), there is some thread pk′−1 such that at each configuration C̃ in βk′−1,

pk′−1 was executing one of the lines 8-12 at C̃ and nodek′−1(C̃) = nd′k′−1;

specifically, pk′−1 was active at configuration C21 at which line 21 was

executed by pj during βk′−1. Also, by the induction hypothesis (Claim 3),

it follows that nd′k′−1 = ndm−1. Since nd′k′ = nd′k′−1 → next = ndm−1 →

next and nd′k′ = nodei 6= ⊥, it follows that ndm−1 → next 6= ⊥. Thus,

Claim 4 implies that nodei(C) = nd′1 = ndm−1 → next = ndm, as needed

(by Claim 3).

– Assume now that pi is a combiner at C7. It follows that the Swap instruc-

tion of line 7 returns ⊥ to pi. By the induction hypothesis (Claim 1), it

follows that there is no combiner at C−7 and no active thread is executing

any of the lines 8-27 at C−7 . Let C ′ be the last configuration preceding C−7

at which there was a combiner pc in the system; let Ac be the instance of

DSM-Synch executed by pc at C ′. Notice that pc has executed line 26 in Ac

just before configuration C ′. By the induction hypothesis (Claim 2.iv), it

follows that there is no combiner in the system at C ′. By definition of pc,

there is no combiner in the system between C ′ and C−7 . By the induction

hypothesis (Claim 2.iv), it follows that there is no combiner in the system

at C ′. By definition of pc, there is no combiner in the system between C ′

and C−7 . We first prove that there no Swap operation is executed between

C ′ and C−7 . Assume by the way of contradiction that at least one Swap is

executed between C ′ and C−7 . Let s be the first such Swap and let C ′′ be

the configuration just after the execution of s. Assume that s is executed

by some thread ps. Since there is no combiner between C ′ and C−7 , induc-

tion hypothesis (Claim 1.i) implies that Tail(C ′′) 6= ⊥. Therefore, there

is a combiner at C ′′. This contradicts our assumption that there is no

152

combiner between C ′ and C−7 . Thus, the Swap instruction executed by pi

at C−7 is the first Swap instruction executed between C ′ and C−7 . Assume

that pc visited k′ nodes in Ac; and denote by nd′k′ the last node visited

by pc in Ac. By the pseudocode (lines 19-20), it follows that ndk′ 6= ⊥;

Obviously, the (m− 1)th time that lines 17-18 were executed was for node

ndk′ . By the induction hypothesis (Claim 3), ndk′ = ndm−1, as needed.

• Assume now that k > 1. By the pseudocode, ndk (in Ai instance) cannot be

equal to ⊥ since otherwise the kth iteration of the while loop would not be

executed by pi (see lines 19-20 of pseudocode). By the induction hypothesis

(Claims 2.iii), either pk−1 = pi or there is some thread pk−1 6= pi such that

at each configuration C ′ in βk−1, pk−1 was executing one of the lines 6-12 at

C ′. By the induction hypothesis (Claim 3), it follows that nd′k−1 = ndm−1. By

the pseudocode, it follows that nd′k = nd′k−1 → next = ndm−1 → next. Since

nd′k 6= ⊥, it follows that ndm−1 → next 6= ⊥. Thus, Claim 4 implies that

nd′k = ndm−1 → next = ndm, as needed (by Claim 3).

10. s is the execution either of line 18.

Assume that either line 18 is executed for the kth time, k ≥ 1. Remind that it is

only the combiner that can be poised to execute this line of code at C−. By the

induction hypothesis (Claim 2.iii) there is a thread pk such that nodek(C−) = ndk,

and either pk = pi or pk is executing one of the lines 8-12 at C−. Since s changes

either the completed or the wait field of nodek(C−), Claim 1 holds by induction

hypothesis. The rest of the claims hold by induction hypothesis.

11. In case that s is the execution either of line 19 or line 20, the claims hold trivially.

12. s is the execution of line 21.

It is enough to argue that Claim 2.iii holds after the execution of s. The rest of

claims hold by induction hypothesis. Assume that the execution of s by pi identifies

the kth node visited by pi, k > 1 (notice that the first node visited by pi is identified

by executing line 13 and not line 21; thus, k > 1). If nd′k = ⊥, Claim 2.iii holds (by

induction hypothesis for each l < k). Thus, assume that nd′k 6= ⊥. Denote by S1 the

Swap operation executed by pi in req and denote by Sk the Swap operation executed

153

by pk. We first prove that S1 precedes Sk. By the pseudocode, nd′k−1 → next = nd′k

cannot be equal to ⊥ since otherwise the (k−1)th iteration of the while, where the

kth node to be visited by pi is identified (this occurs when pi executes line 21 of that

iteration), would not be executed. By the induction hypothesis (Claim 2.iii), either

pk−1 = pi or there is some thread pk−1 such that at each configuration C ′ in βk−1,

pk−1 was executing one of the lines 6-12 at C ′ and nodek−1(C ′) = ndk−1. In case that

pk−1 = pi, the pseudocode implies that nd′1 → next = nd′k. Claim 4 implies that the

Swap operation S1 executed by pi precedes the execution of the Swap operation Sk by

pk. In case that pk−1 6= pi, (Claim 2.iii) implies that pk−1 was active at configuration

C21 at which line 21 was executed by pi during βk−1. The pseudocode implies that

nd′k−1 → next = nodek−1(C21) → next. Since we have assumed that nd′k 6= ⊥, it

follows that nodek−1(C21)→ next 6= ⊥. Thus, Claim 4 implies that there is a thread

pk that has executed line 7 before C21 such that nodek(C) = nd′k; moreover, Claim 4

implies that the Swap operation Sk−1 executed by pk−1 precedes the execution of

the Swap operation Sk by pk. By the pseudocode, pi executes lines 16-18 for itself

during the first iteration of the while loop of lines 14-21, i.e. before executing it

for pk−1. Since pi executes lines 16-18 later on for pk−1, the induction hypothesis

(Claims 2.iii and 3) implies that S1 has occurred before Sk−1. It follows that S1 has

occurred before Sk.

We continue to prove that pk is active at C−. Assume, by the way of contradiction,

that the instance Ak of CC-Synch executed by pk is not active at C−. Recall that

pk executed Sk after S1. Thus, pi was active while executing one of the lines 6-21

when Sk was executed; let Ck be the configuration just after the execution of Sk.

Apparently, Ck precedes C. Since pi is active between C1 and C, by the induction

hypothesis (Claim 1), it follows that there is always some combiner in the system

in all configurations between C1 (which results by applying S1) and C. Thus, there

is some combiner in all configurations between C−k and C. By the pseudocode,

the completed field of nodek must be equal to true when pk terminates. By the

pseudocode, this can happen only if there is some thread ph that executes lines 16-

18 with tmpNode = nodek at some configuration before C. Suppose that lines 16-18

have been executed h′ times in total until the configuration that ph executed line 18

154

with tmpNode = nodek. Since S1 is performed before Sk, the induction hypothesis

(Claim 3) implies that lines 18-26 have been executed for pi before being executed

for pk (assume that this has happened the h′′th time that lines 16-18 were executed).

By the induction hypothesis (Claim 3), nodei = ndh′′ . However, by the pseudocode,

it follows that lines 16-18 are executed for nodei by pi during the execution of the

first iteration of the while loop of lines 14-21; let this be the hth time that lines 16-18

are executed. Since pi has not visited nodek before C, it follows that h > h′′, which

contradicts the induction hypothesis (Claim 3).

Thus, pk is still active at C−. By the induction hypothesis (Claim 2.ii), no thread

other than the combiner pi executes lines 13-27 at C−. Thus, pi executes one of

the lines 6-12 at C−. Since it is thread pi that executes s, pk executes one of the

lines 6-12 at C. This completes the proof of Claim 2.iii.

13. In case that s is the execution of line 22 claims hold trivially.

14. s is the execution of line 23.

In case that the CAS instruction of line 23 fails, Tail(C) 6= ⊥ and line 24 is not

executed by pi. Thus, Claim 1.i holds. In case that the CAS instruction of line 23

succeeds, a value equal to ⊥ is set and pi, which is the unique combiner, is poised

to execute line 24. Thus, Claim 1 holds.

15. In case that s is the execution of line 25 claims hold trivially.

16. s is the execution of line 26. Recall that it is only the combiner that can be poised

to execute this line of code at C−. Assume that pi visits the (k − 1)th node at the

execution of line 22. The pseudocode (lines 22-25) implies that nd′k = nd′k−1 →

next 6= ⊥ at C. Induction hypothesis (Claim 2.iii) implies that nd′k = nodek(C−)

for some thread pk that is poised to execute one of the lines 8-12 at C−. By the

induction hypothesis (Claim 3), nodek is visited for the first time since Ak was

initialized. This implies that nodek(C−) → completed = false. Since s changes

nodek(C−) → wait to false it follows that pk is a combiner at C. Since pi was the

unique combiner in the system at C− and it is not a combiner anymore after the

execution of line 26, it follows that the unique combiner in the system at C is pk, as

needed by Claim 2.iv. Moreover, induction hypothesis implies that Tail(C−) 6= ⊥,

155

as needed by Claim 1. The rest of the claims in each case hold by the induction

hypothesis.

Let ndi be the node of the list that is assigned to pi for reqi. Thread pi completes

the execution of DSM-Synch for reqi in any of lines 12, 24 and line 27. Assume first,

that pi returns on line 12. Lemma 6.6 (Claim 2.iii) implies that a combiner thread pj has

served reqi before the execution of line 12 by pi. Therefore, pj has executed line 16 for

ndi at some iteration l > 1 of its while loop (lines 14-21). Request reqi is linearized just

before the execution of this instance of line 16 by pj. Assume now that pi returns either

on line 27 or on line 24. Lemma 6.6 (Claim 2.iii) implies that pi serves its request on its

own when it executes line 16 at the first iteration of its while loop (lines 14-21). In this

case, reqi is linearized just before the execution of line 16 of the first iteration of pi’As

while loop. Obviously, in both cases the linearization point of reqi is within its execution

interval. Consistency is immediately implied by Claims 2.iii and 3 of Lemma 6.6. Thus,

the following theorem holds.

Theorem 6.2. DSM-Synch is a linearizable synchronization algorithm.

6.4 Performance evaluation of CC-Synch, DSM-Synch and H-Synch

We evaluated CC-Synch and DSM-Synch in two different multiprocessor machine archi-

tectures. The first is a 32-core machine consisting of four AMD Opteron 6134 processors

(Magny Cours). Each processor consists of 2 dies and each die contains 4 processing cores.

Communication among the cores of the same die is achieved with a fast L3 cache. Dies

communicate with Hyper-Transport links which create a complex topology that resembles

a hypercube [21]. The second machine is a 128-way Sun consisting of 2 UltraSPARC-T2

processors (Niagara 2). Each processor consists of 8 processing cores, each of which is able

to handle 8 threads. Communication among the cores of the same processor is achieved

with a fast L2 cache. All experiments on the Magny Cours machine were performed us-

ing the gcc 4.3.4 compiler, while experiments on the Niagara 2 machine were performed

using gcc 4.5.1. In order to avoid bottlenecks in memory allocation, the Hoard memory

allocator [18] was used. The operating system running on the Magny Cours machine was

156

Linux with kernel 2.6.18, while the operating system running on the Niagara 2 machine

was Solaris 10.

Thread binding is employed for the following reason. Assume that the number of

threads is smaller than the number of cores and suppose that two threads are running.

The scheduler may decide to run them either on different processors (chips) or within

the same chip. In the first case the communication cost is an order of magnitude more

than in the second. Thus, if thread binding is not used, a significant uncertainty factor is

introduced which may lead to an unreliable experiment. We observed that this was a usual

phenomenon. So, on the Magny Cours machine, the i-th thread was bound to the i-th

core of the machine; we first exploited multi-core, then multi-chip and then multi-socket

configuration. On the Niagara 2 machine, we follow a slightly different scheduling similar

to that used in [24] in order to better explore the performance properties of hierarchical

algorithms. More specifically, we split threads into two groups, one for each socket.

In order to evaluate CC-Synch and DSM-Synch, we compare their performance with

that of state-of-the-art synchronization algorithms. Specifically, they are compared with

P-Sim (the wait-free universal construction presented in [28]), flat-combining [33, 34],

the CLH spin-lock [23, 47]§, OyamaAlg [52], and a simple lock-free implementation. The

lock-free implementation was implemented using a CAS object. Specifically, whenever a

thread wants to apply a Fetch&Multiply, it repeatedly executes CAS until it succeeds; a

backoff scheme is employed to increase the scalability of this implementation. Since the

Niagara 2 machine does not support Add which is employed by P-Sim and is necessary,

as shown in [28], for its good performance, no experiment was performed for P-Sim on

the Niagara 2 machine. We also evaluated a variation of CC-Synch (called CAS-Synch),

in which Swap is simulated with a CAS object in a lock-free manner. This allows us to

explore the performance advantages of Swap over CAS.

On the Niagara 2 machine, H-Synch, the hierarchical NUMA lock (called FCMCS be-

low) presented in [24] , and the hierarchical lock called C-BO-MCS presented in [25] were

also evaluated. On the Magny Cours machine, experiments show no performance ben-

efit when using any of the hierarchical algorithms. This is rational to the fact that the

machine consists of many but very small clusters of cores. Thus, we have not included

§As expected for cache-coherent NUMA architectures, we experimentally saw that MCS [49] spin
locks have slightly worse performance than CLH locks in both machines, so we present experimental
results for CLH locks.

157

�

�

�

�

�

�

�

�

	

� � 	 �� �� �� �� �	 ��

��
��
�
�
�
�
�
��
	

��
��
�

��
�
�
�
��
��
�

��
�
�
��
��
��

���������	
�

���
���� �
��
����

��
�� ��������

�������������� ��!��"##

� $ ��
�
����

Figure 6.1: Average throughput of CC-Synch and DSM-Synch on the Magny Cours machine
while simulating a Fetch&Multiply object.

any performance measurements for the hierarchical algorithms on the Magny Cours ma-

chine. All algorithms were carefully optimized and for those that use backoff schemes,

we performed a large number of experiments in order to choose the best backoff pa-

rameters. We used the flat-combining implementation that was provided by its inven-

tors [33, 34] and we choose its parameters very carefully in order to achieve the best

performance. We further optimized the code of flat-combining to run faster than its

original version [33, 34] on the Magny Cours machine. We used the latest version of

P-Sim code (version 0.8) [45, 28]. The source code of our implementations is provided at

http://code.google.com/p/sim-universal-construction/.

The first experiment we performed is a synthetic benchmark (Figures 6.1, 6.2), where

a simple Fetch&Multiply object is simulated. We measure the average throughput

(Fetch&Multiply per second) that each synchronization algorithm achieves when it exe-

cutes 107 Fetch&Multiply operations (i.e. always the same amount of work), for different

values of n; each thread executes 107/n Fetch&Multiply. Specifically, the horizontal axis

of Figures 6.1, 6.2 represents the number of threads n, while the vertical axis displays the

throughput (in millions of operations per second) that each synchronization algorithm

has performed. For each value of n, the experiment has been performed 10 times and

averages have been calculated. A random number of dummy loop iterations (up to 64)

have been inserted between the execution of two Fetch&Multiply by the same thread;

specifically, in each iteration a volatile counter is increased. In this way, we simulate a

random work load large enough to avoid unrealistically low cache miss ratios and long

158

http://code.google.com/p/sim-universal-construction/

�

�

�

�

�

��

��

��

� � � �� �� �� �� �� �� ��� ���

��
��
�
�
�
�
�
��
�	

�
�

�
�

�
�
�
�
��
�

�
�

�
�
�
��

�
��

�����������

�	
��
�

��	
��
�

�
�	
��
�

��	��

����	���������

��������

��
�	��

���

�	!�	��

Figure 6.2: Average throughput of CC-Synch, DSM-Synch and H-Synch on the Niagara 2
machine while simulating a Fetch&Multiply object.

runs (but not too big to reduce contention). Figure 6.6 studies the performance behavior

of our algorithms for different values of the random work.

In the experiments performed on the Magny Cours machine (Figure 6.1), CC-Synch

outperforms all other synchronization algorithms. Specifically, CC-Synch achieves up to

1.54 higher throughput than flat-combining and outperforms P-Sim by a factor of up to

1.52. The lock free implementation of Fetch&Multiply is slightly slower than P-Sim and

flat-combining. Also, CC-Synch is up to 2.7 times faster than OyamaAlg [52]. DSM-Synch

performs also very well; its performance is close to that of CC-Synch, despite the fact

that it is designed for machines following the DSM model. Figure 6.1 also shows that

simulating Swap using CAS (in a lock-free way) induces a serious performance penalty;

specifically, CAS-Synch is two times slower than CC-Synch.

Similarly to the experiments performed on the Magny Cours machine, CC-Synch out-

performs all algorithms other than H-Synch and C-BO-MCS on the Niagara 2 machine

(Figure 6.2). More specifically, CC-Synch outperforms flat-combining by a factor of up to

1.4. It is noticeable that even CC-Synch itself (not its hierarchical version) outperforms

FCMCS [24] by a factor of up to 1.65, despite the fact that FCMCS exploits the hierarchi-

cal characteristics of communication in the machine. In contrast to FCMCS, C-BO-MCS

slightly outperforms CC-Synch in case of 32−112 threads, exploiting its hierarchical char-

acteristics in the Niagara 2 machine. However, C-BO-MCS is vastly outperformed by

H-Synch. The relatively small performance gap between flat-combing and FCMCS may

seem surprising at first; however, this result is rational to the fact that FCMCS causes more

159

�

�

�

�

�

�

�

�

��� �	� ��� ��	 ����

��
��
�
�
�
�
�
��
	

��
��
�

��
�
�
�
��
��
�

��
�
�
��
��
��

���������	
�

��
��� ����
���

�����
��� ��������������

�
������ ��� ��!""

Figure 6.3: Average throughput of CC-Synch, DSM-Synch and H-Synch on the Niagara 2
machine for n > 128 (over-subscribing) while simulating a Fetch&Multiply object.

cache misses when accessing the shared data. Specifically, in FCMCS, combining is not

used in applying the requests, so each request may be applied by a different thread; thus,

each time a thread accesses the shared data cache misses may occur. This is avoided when

combining is employed in serving the requests, as done by the other studied combining-

based synchronization algorithms. DSM-Synch exposes almost the same performance to

CC-Synch on the Niagara 2 machine. H-Synch which is the hierarchical version of CC-

Synch outperforms FCMCS by a factor of up to 2.65 and flat-combining itself by a factor

of up to 3.0. CC-Synch is up to 2.55 times faster than OyamaAlg [52], while H-Synch is

more than 6 times faster. The performance of CAS-Synch is not illustrated in Figure 6.2

since CAS-Synch results in very poor performance on the Niagara 2 machine.

As shown in Figure 6.1, on the Magny Cours machine, all algorithms perform faster

in case n = 1 than for larger values of n. On the contrary, Figure 6.2 shows that, on the

Niagara 2 machine, the performance of all algorithms is always better for larger values

of n. The Magny Cours machine implements atomic instructions (CAS, Swap, etc.) in

the private L1 cache which is very fast. This and the fact that the local workload is

small (up to 64) are the reasons for the very high performance that the Magny Cours

machine achieves in case of n = 1. In contrast, a Niagara 2 processor implements atomic

instructions in the shared L2 cache which is slower (Niagara 2 processor is optimized for

contented workloads, i.e. in case of n > 1).

In Figure 6.3, we study the performance of each implementation on the Niagara 2

machine for n > 128, i.e. when n is larger than the number of threads that the machine

160

�

��

��

��

��

��

��

� � � �� �� �� �� �� �� �� ��

�
�
�
��
�
�
��
�
�
	

�

�
�
��
�
�
��
�

�����������

	
�

�
�������
�
��

Figure 6.4: Average degree of combining of CC-Synch, DSM-Synch and H-Synch while
simulating a Fetch&Multiply object.

is able to handle simultaneously; thus, the machine is over-subscribed. We do not include

any measurement from FCMCS and CLH locks since in this experiment they do not

achieve good performance. As illustrated in Figure 6.3, H-Synch, CC-Synch and DSM-

Synch achieve better performance than any other synchronization algorithm for any value

of n.

Figures 6.4 - 6.5 aim at investigating the reasons for the good performance of CC-

Synch and DSM-Synch. More specifically, from Figure 6.5, it follows that on the Magny

Cours machine, P-Sim and flat-combining execute slightly more (up to 10% more) atomic

instructions than CC-Synch and OyamaAlg [52]. The experiments showed that to achieve

the best performance for the lock-free algorithm, the back-off should not be too high. By

appropriately choosing the back-off to get the best performance, it turned out that the

average number of CAS performed by each instance of the algorithm is two which is bigger

than the average number of atomic instructions executed by each instance of CC-Synch

and DSM-Synch. Thus, the lock-free algorithm has a performance disadvantage compared

to these algorithms.

Figure 6.4 displays the average degree of combining, i.e. the average number of requests

that are executed by a combiner. It shows that CC-Synch and DSM-Synch achieve better

degree of combining which is almost 3 times more than that of P-Sim and flat-combining¶.

Our efforts to increase the average degree of combining for flat-combining by carefully

¶In Figure 6.4, we have not included results for OyamaAlg since the variance of the combining degree
in this algorithm was too high to get a realistic view. This is due to the fact that a combiner thread in
this algorithm may be enforced to help an unbounded number of operations.

161

�

���

�

���

�

���

�

���

�

���

� � � �� �� �� �� �� �� �� 	�

�
�
�
��
�
�
��
��
�
	

�	�
��
�

�	
�
�
��
�
�
��
��
�

�
��

������������

��
� ���������
�
��

��������� ��
�������

�����
� !������

Figure 6.5: Average number of atomic instructions (CAS, Swap and Add) that CC-
Synch, DSM-Synch and H-Synch execute on the Niagara 2 machine while simulating a
Fetch&Multiply object.

tuning its parameters (i.e. by increasing the combining rounds or by changing the polling

level), revealed that when the combining degree was increased the average throughput

was decreased. On the contrary, P-Sim operates in a way that it can help as much threads

as the system’s point contention (i.e. as the maximum number of threads that can be

simultaneously active at any point in time which might be equal to n).

In the experiment of Figure 6.6, we studied the behavior of the competing algorithms

for different amounts of random work. This experiment was executed on the Magny

Cours machine; the number of threads was fixed to 32. Figure 6.6 shows that for a wide

range of values for random work (64 − 2048), most algorithms have a small difference

in the exhibited throughput. This shows that the communication cost is the dominant

factor, whereas the time invested to execute the local random work does not play any

significant role. An exception is the lock-free algorithm, which, in case the random work

is equal to zero, has unrealistically high performance. This is due to the fact that, in

this case, a thread could uninterruptedly execute thousands of Fetch&Multiply before

some other thread starts its execution. This phenomenon (called long runs) has been

also discussed in [28, 50] as an unrealistic workload. Figure 6.6 shows that by slightly

increasing the random work, the performance of the lock-free algorithm rapidly decreases.

The same phenomenon, although in a smaller scale, was also noticed for flat-combining.

Similarly to the lock-free implementation, flat-combining has high throughput for very

small amounts of random work, although its performance vastly decreases when the ran-

162

�

�

�

�

�

��

��

� �� �� ��� ��� ��� ���� ���� ��	� ��	�

��
��
�
�
�
�
�
��
	

��
��
�

��
�
�
�
��
��
�

��
�
�
��
��
��

����������	�
���
����������������������������

��
��� �����
���

����� �
������

�����
�������� ��� ��!""

Figure 6.6: Average throughput of CC-Synch, DSM-Synch and H-Synch for different values
of random work.

Algorithm cache misses cpu cycles spent in memory stalls

CC-Synch 4.1 2747
Sim 4.9 6328

flat-combining 5.8 6501

Table 6.3: Cache misses and memory stalls per operation for n = 16 of CC-Synch, P-Sim
and flat-combining.

dom work is slightly increased. In cases that the number of iterations is 2048 or more,

the time needed to execute this loop becomes the dominant performance factor, i.e. ex-

ecuting the loop becomes more expensive than executing the algorithm for applying a

FetchAndMultiply instruction. Thus, the performance of all algorithms starts to decrease

and the performance gap between them becomes insignificant. We remark that the scale

of the horizontal axis of Figure 6.6 is logarithmic.

Table 6.3 shows some measurements from performance counters. We observed that

the extra cache misses incurred by P-Sim and flat-combining was caused due to the num-

ber of failed CAS instructions; this number becomes worse if these algorithms are not

properly tuned. Since failed CAS instructions cause cache misses and branch mispredic-

tions, we conclude that a combining algorithm that avoids them has a serious performance

advantage.

163

6.5 Highly-efficient blocking data structures

We further investigate the performance of CC-Synch, DSM-Synch and H-Synch by imple-

menting common concurrent data structures (i.e. shared stacks and queues). We compare

the performance of these implementations with state-of-the-art shared stack and queue

implementations. Specifically, the shared stack implementation based on CC-Synch, called

CC-Stack, was evaluated against SimStack [28], the lock-free stack implementation pre-

sented by Treiber in [58], a stack implementation based on CLH spin locks [23, 47], and a

linked stack implementation based on flat-combining [33, 34] (called FCStack). Both CC-

Stack and FCStack eliminate pairs of push and pop whenever possible; the performance of

elimination [35] has been studied in [28] and [34] where experiments show that elimination

is outperformed by SimStack and FCStack. We also implemented a shared stack based on

H-Synch and FCMCS [24] and evaluated their performance on the Niagara 2 machine.

The experiment we perform is similar to that performed by Michael and Scott for

queues in [50]. We measure the average throughput (operations per second) that each

algorithm achieves (every thread executes 107/n pairs of Enqueue and Dequeue op-

erations) for different values of n. Again, the experiments have been performed several

times and averages have been taken; we have simulated a random workload by executing

a random number of iterations (up to 64) of a dummy loop after each operation.

As it is shown in Figure 6.7, on the Magny Cours machine, CC-Stack performs up to

1.68 times faster than FCStack, and up to 1.59 times faster than SimStack. The stack

implementation based on the CLH spin lock had much lower performance. The stack

�

�

�

�

�

�

� � � �� �� �� �� �� ��

��
��
�
�
�
�
�
��
	

��
��
�

��
�
�
�
��
��
�

��
�
�
��
��
��

���������	
�

		
��
�� ���
��
��

�����
�� �	
��
��

	��
��
�� ����
����

Figure 6.7: Average throughput of CC-Stack and DSM-Stack on the Magny Cours machine.

164

�

�

�

�

�

�

�

�

	

� � 	 �� �� �	 �� 	�
� ��� ��	

��
��
�
�
�
�
�
��
	

��
��
�

��
�
�
�
��
��
�

��
��
�
��
��
��

���������	
�

��
����

���
����

�
��
����

����
�
����

���
����

���������

����
����

Figure 6.8: Average throughput of CC-Stack, DSM-Stack and H-Stack the Niagara 2
machine.

�

�

�

�

�

�

�

� � � �� �� �� �� �� ��

��
��
�
�
�
�
�
��
	

��
��
�

��
�
�
�
��
��
�

��
�
�
��
��
��

���������	
�

	
��
�
� ����
�
�

�����������
�
� ����
�
�

�	���
�
� �	��
�
�

Figure 6.9: Average throughput of CC-Queue and DSM-Queue on the Magny Cours ma-
chine.

implementation based on DSM-Synch, called DSM-Stack, performs slightly worse than

CC-Synch but it is much better than all other algorithms. On the Niagara 2 machine, the

shared stack based on CC-Synch performs 1.4 times faster than FCStack (Figure 6.8). The

stack implementation based on DSM-Synch performs worse than CC-Stack but it is again

better than all other algorithms. It is noticeable that the stack implementations based

on CC-Synch and DSM-Synch outperform by a factor of up to 1.49 the shared stack based

on FCMCS of [24]. The stack implementation based on H-Synch significantly outperforms

all other implementations, being up to 2.0 times faster than FCStack and up to 2.1 times

faster than the stack based on FCMCS [24].

We also implement and experimentally analyze shared queues based on CC-Synch,

DSM-Synch and H-Synch, which are called CC-Queue, DSM-Queue and H-Queue, respec-

165

�

�

�

�

�

��

��

� � � �� �� �� �� �� �� ��� ���

��
��
�
�
�
�
�
��
	

��
��
�

��
�
�
�
��
��
�

��
�
�
��
��
��

���������	
�

	
��
�

��
��
�

���
��
�

�����
��
�

��
��
�

���
��������
�

��
��
�

Figure 6.10: Average throughput of CC-Queue, DSM-Queue and H-Queue on the Niagara
2 machine.

tively. Specifically, the two-locks queue implementation presented in [50] is enhanced by

replacing the ordinary locks with instances of CC-Synch, DSM-Synch and H-Synch, re-

spectively. These implementations are compared (Figures 6.9-6.10) with SimQueue [28],

the lock free queue implementation and the two-locks implementation presented in [50],

and the queue implementation based on flat-combining [33, 34] (called FCQueue). On the

Niagara 2 machine, we additionally implemented and evaluated a two-locks queue variant

using FCMCS [24]. The queue experiment was similar to that for stacks.

As illustrated in Figure 6.9, on the Magny Cours machine, SimQueue exhibits better

performance than any algorithm other than CC-Queue and DSM-Queue, as expected based

on results in [28]. CC-Queue performs up to 2.53 times faster than FCQueue (Figure 6.9)

and 2.1 times faster than SimQueue. DSM-Queue performs slightly worse than CC-Queue

but better than all other algorithms. On the Niagara 2 machine (Figure 6.10), FCQueue

performs better than all algorithms other than CC-Queue, DSM-Queue and H-Queue (recall

that SimQueue has not been implemented in this machine since Add instructions are not

included in its instruction set). CC-Queue performs up to 1.8 times faster than FCQueue

and up to 1.55 times faster than the queue based on [24]. The queue implementation

based on H-Synch greatly outperforms all other candidates by being up to 2.25 times

faster than the queue implementation based on FCMCS [24]. It is also noticeable that the

performance gap between FCQueue and the two-locks queue is smaller on the Niagara 2

machine. This is due to the fact that the CLH locks perform very well in this machine

and the parallel use of two different locks (one for enqueues and one for dequeues) gives

166

a performance boost in the two-locks algorithm. Again, DSM-Queue performs slightly

worse than CC-Queue but better than all other algorithms except from H-Queue on the

Niagara 2 machine.

167

Chapter 7

Conclusions and Future Work

In this dissertation the RedBlue, Sim and Synch families of synchronization algorithms are

presented.

The RedBlue algorithms are adaptive synchronization algorithms using Read/Write

and LL/SC base objects. The RedBlue synchronization algorithms achieve better step

complexity than all previously presented algorithms. F-RedBlue which is the first al-

gorithm of the RedBlue synchronization algorithms, matches the Ω(log n) lower bound

presented by Jaynati in [41].

The Sim synchronization algorithms achieve better step complexity by using other base

objects than LL/SC or CAS. More specifically, Sim achieves constant step complexity by

using Add additionally to LL/SC and Read/Write base objects. It is noticeable that P-Sim,

which is a practical version of Sim outperforms the state-of-the-art synchronization algo-

rithms and ensures stronger progress guarantees. P-Sim also shows that the architectures

that support Add base objects have significant performance benefits.

The Synch synchronization algorithms are blocking implementations of the combin-

ing technique. Synch synchronization algorithms achieve much better performance than

all other synchronization algorithms, while having nice complexity features. H-Synch is

an hierarchical version of CC-Synch that provides improved performance in hierarchical

systems.

The universal synchronization algorithm presented by Chuong, Ellen and Ramachan-

dran in [20], is transaction friendly. Making a transaction-friendly version of L-Sim is left

168

as future work; however, we believe that this can be easily achieved by applying similar

techniques to those in [20]. The experimental analysis of L-Sim is also left as future work.

Since one of the goals of Sim is wait-freedom, each active thread executes all pending

requests; this might be inefficient in terms of energy consumption. In contrast, in CC-

Synch and in flat-combining, threads perform spinning until their requests have been

executed (which seems to be less expensive in terms of resource usage). Measuring energy

consumption is an interesting but not an easy task since several parameters (e.g., the time

required to perform the computation, the resource usage, the way the thread library is

implemented, etc.) should be considered. So, we leave this as future work.

In [8], Agathos, Kallimanis and Dimakopoulos present a highly efficient implementa-

tion of OpenMP tasks [51] for the OMPi OpenMP/C compiler [26]. This OpenMP tasking

environment uses a work-stealing queue implementation based on CC-Synch. In synthetic

benchmarks, OMPi achieves up to a 5 times better performance than other OpenMP task

implementations, while for task-based real-world applications it achieves up to 87% better

performance comparing to other OpenMP compilers [8]. We expect that the synchroniza-

tion algorithms of the Synch and Sim families will be used in other practical applications

as well.

Similarly to flat-combining [34], Sim and Synch synchronization algorithms have the

same applicability limitations. Efficient implementations of data structures like search

trees, where m lookups can be executed in parallel by performing just a logarithmic

number of shared memory accesses each, are expected to outperform Sim/Synch(since

these synchronization algorithms perform each request sequentially like most previous

universal constructions [20, 27, 34, 36, 37]). This limitation could be overcome by using

multiple instances of them, as it is done in our queue implementation of Section 5.6 and

the queue implementation of Section 6.5. For more complicated data structures, this will

be part of our future work.

169

Bibliography

[1] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual Volume 2:

System Programming, June 2010.

[2] Yehuda Afek, Hagit Attiya, Arie Fouren, Gideon Stupp, and Dan Touitou. Long-lived

renaming made adaptive. In Proceedings of the 18th ACM Symposium on Principles

of Distributed Computing, pages 91–103, 1990.

[3] Yehuda Afek, Pazi Boxer, and Dan Touitou. Bounds on the shared memory require-

ments for long-lived & adaptive objects. In Proceedings of the 19th ACM Symposium

on Principles of Distributed Computing, pages 81–89, 2000.

[4] Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made fast. In Proceedings

of the 27th ACM Symposium on Theory of Computing, pages 538–547, 1995.

[5] Yehuda Afek, Michael Merritt, and Gadi Taubenfeld. The power of multi-objects.

Information and Computation, 153:213–222, 1999.

[6] Yehuda Afek, Michael Merritt, Gadi Taubenfeld, and Dan Touitou. Disentangling

Multi-object Operations. In Proceedings of the 16th ACM Symposium on Principles

of Distributed Computing, pages 262–272, 1997.

[7] Yehuda Afek, Gideon Stupp, and Dan Touitou. Long-lived Adaptive Collect with

Applications. In Proceedings of the 40th Symposium on Foundations of Computer

Science, pages 262–272, 1999.

[8] Spiros N. Agathos, Nikolaos D. Kallimanis, and Vassilios V. Dimakopoulos. Speeding

up OpenMP tasking. In Euro-Par 2012 Parallel Processing, pages 650–661. Springer,

2012.

170

[9] Gene Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale

Computing Capabilities. In AFIPS Conference Proceedings, pages 483–485, 1967.

[10] James H. Anderson and Mark Moir. Universal constructions for multi-object op-

erations. In Proceedings of the 14th ACM Symposium on Principles of Distributed

Computing, pages 184–193, 1995.

[11] James H. Anderson and Mark Moir. Universal Constructions for Large Objects. IEEE

Transactions on Parallel and Distributed Systems, 10(12):1317–1332, dec 1999.

[12] James Aspnes and Maurice Herlihy. Fast, Randomized Consensus Using Shared

Memory. 11(2):441–461, September 1990.

[13] Hagit Attiya and Arie Fouren. Adaptive and Efficient Wait-Free Algorithms for

Lattice Agreement and Renaming. SIAM Journal on Computing, 31(2):642–664,

2001.

[14] Hagit Attiya and Arie Fouren. Algorithms adapting to point contention. Journal of

the ACM (JACM), 50:444–468, July 2003.

[15] Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial snapshot objects. In

Proceedings of the 20th Annual ACM Symposium on Parallel Algorithms and Archi-

tectures, pages 336–343, 2008.

[16] Hagit Attiya, Nancy Lynch, and Nir Shavit. Are Wait-free Algorithms Fast? Journal

of the ACM (JACM), 41(4):725–763, July 1994.

[17] Greg Barnes. A method for implementing lock-free shared data structures. In Pro-

ceedings of the 5th ACM Symposium on Parallel Algorithms and Architectures, pages

261–270, 1993.

[18] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson.

Hoard: A Scalable Memory Allocator for Multithreaded Applications. In Proceed-

ings of the 9th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 117–128, 2000.

171

[19] Tushar Deepak Chandra, Prasad Jayanti, and King Tan. A polylog time wait-free

construction for closed objects. In Proceedings of the 17th ACM Symposium on

Principles of Distributed Computing, pages 287–296, 1998.

[20] Phong Chuong, Faith Ellen, and Vijaya Ramachandran. A universal construction

for wait-free transaction friendly data structures. In Proceedings of the 22nd Annual

ACM Symposium on Parallel Algorithms and Architectures, pages 335–344, 2010.

[21] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak, and Bill

Hughes. Blade Computing with the AMD Opteron Processor (Magny-Cours). Hot

chips 21, August 2009.

[22] Intel Corporation. Intel(R) 64 and IA-32 Architectures Software Developer’s Manual

Volume 3A: System Programming Guide, Part1, January 2011.

[23] Travis S. Craig. Building FIFO and priority-queueing spin locks from atomic swap.

Technical Report TR 93-02-02, Department of Computer Science, University of Wash-

ington, February 1993.

[24] Dave Dice, Virendra J. Marathe, and Nir Shavit. Flat-Combining NUMA Locks.

In Proceedings of the 23nd Annual ACM Symposium on Parallel Algorithms and

Architectures, pages 65–74, 2011.

[25] Dave Dice, Virendra J. Marathe, and Nir Shavit. Lock Cohorting: A General Tech-

nique for Designing NUMA Locks. In Proceedings of the 17th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming, 2012.

[26] Vassilios V Dimakopoulos, Elias Leontiadis, and George Tzoumas. A portable c

compiler for openmp v. 2.0. In Proceedings of the European Workshop on OpenMP

(EWOMP’A03), Aachen, Germany, 2003.

[27] Panagiota Fatourou and Nikolaos D. Kallimanis. The RedBlue Adaptive Universal

Constractions. In Proceedings of the 23rd International Symposium on Distributed

Computing, pages 127–141, 2009.

172

[28] Panagiota Fatourou and Nikolaos D. Kallimanis. A Highly-Efficient Wait-Free Uni-

versal Construction. In Proceedings of the 23nd Annual ACM Symposium on Parallel

Algorithms and Architectures, pages 325–334, 2011.

[29] Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the Combining Syn-

chronization Technique. In Proceedings of the 17th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2012.

[30] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient synchronization

primitives for large-scale cache-coherent multiprocessors. In Proceedings of the Third

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 64–75, April 1989.

[31] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry

Rudolph, and Marc Snir. The NYU Ultracomputer - Designing an MIMD Shared

Memory Parallel Computer. IEEE Trans. Computers, 32(2):175–189, 1983.

[32] Rajiv Gupta and Charles R. Hill. A scalable implementation of barrier synchro-

nization using an adaptive combining tree. In Proceedings of the Third International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS III), pages 54–63, 1989.

[33] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. The Code for Flat-

Combining. http://github.com/mit-carbon/Flat-Combining.

[34] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and

the synchronization-parallelism tradeoff. In Proceedings of the 22nd Annual ACM

Symposium on Parallel Algorithms and Architectures, pages 355–364, 2010.

[35] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack al-

gorithm. In Proceedings of the 16th ACM Symposium on Parallel Algorithms and

Architectures, pages 206–215, 2004.

[36] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming

Languages and Systems (TOPLAS), 13:124–149, jan 1991.

173

[37] Maurice Herlihy. A methodology for implementing highly concurrent data objects.

ACM Transactions on Programming Languages and Systems (TOPLAS), 15(5):745–

770, nov 1993.

[38] Maurice Herlihy, Victor Luchangco, and Mark Moir. Space and Time Adaptive Non-

blocking Algorithms. Electronic Notes in Theoretical Computer Science, 78, 2003.

[39] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition

for concurrent objects. ACM Transactions on Programming Languages and Systems

(TOPLAS), 12:463–492, 1990.

[40] Damien Imbs and Michel Raynal. Help When Needed, But No More: Efficient

Read/Write Partial Snapshot. In Proceedings of the 23rd International Symposium

on Distributed Computing, pages 142–156. Springer, 2009.

[41] Prasad Jayanti. A lower bound on the local time complexity of universal construc-

tions. In Proceedings of the 17th ACM Symposium on Principles of Distributed Com-

puting, pages 183–192, 1998.

[42] Prasad Jayanti. A time complexity lower bound for randomized implementations of

some shared objects. In Proceedings of the 17th ACM Symposium on Principles of

Distributed Computing, pages 201–210, 1998.

[43] Prasad Jayanti. F-arrays: implementation and applications. In Proceedings of the

21th ACM Symposium on Principles of Distributed Computing, pages 270–279, 2002.

[44] Prasad Jayanti and Srdjan Petrovic. Efficient Wait-Free Implementation of Multi-

word LL/SC Variables. In Proceedings of the 25th IEEE International Conference

on Distributed Computing Systems, pages 59–68, 2005.

[45] Nikolaos D. Kallimanis and Panagiota Fatourou. The Code for Sim Universal Con-

struction. http://code.google.com/p/sim-universal-construction/.

[46] Victor Luchangco, Daniel Nussbaum, and Nir Shavit. A Hierarchical CLH Queue

Lock. In Proceedings of the 12th International Euro-Par Conference, pages 801–810,

2006.

174

[47] Peter S. Magnusson, Anders Landin, and Erik Hagersten. Queue Locks on Cache

Coherent Multiprocessors. In Proceedings of the 8th International Parallel Processing

Symposium, pages 165–171, 1994.

[48] Paul E. McKenney. Memory Barriers: a Hardware View for Software Hackers, June

2010.

[49] John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchro-

nization on Shared-Memory Multiprocessors. ACM Transactions on Computer Sys-

tems, 9(1):21–65, 1991.

[50] Maged M. Michael and Michael L. Scott. Simple, Fast, and Practical Non-Blocking

and Blocking Concurrent Queue Algorithms. In Proceedings of the 15th ACM Sym-

posium on Principles of Distributed Computing, pages 267–275, 1996.

[51] ARB OpenMP. Openmp application program interface, v. 3.1, 2008.

[52] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. Executing parallel pro-

grams with synchronization bottlenecks efficiently. In Proceedings of International

Workshop on Parallel and Distributed Computing for Symbolic and Irregular Appli-

cations (PDSIA ’99), pages 182–204, 1999.

[53] Zoran Radovic and Erik Hagersten. Hierarchical Backoff Locks for Nonuniform Com-

munication Architectures. In Proceedings of the 9th IEEE International Symposium

on High-Performance Computer Architecture, pages 241–252, 2003.

[54] Ori Shalev and Nir Shavit. Predictive log-synchronization. In EuroSys, pages 305–

315, 2006.

[55] Nir Shavit and Asaph Zemach. Diffracting Trees. ACM Transactions on Computer

Systems, 14(4):385–428, 1996.

[56] Nir Shavit and Asaph Zemach. Combining Funnels: A Dynamic Approach to Software

Combining. Journal of Parallel and Distributed Computing, 60(11):1355–1387, 2000.

[57] Gadi Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pren-

tice Hall, Inc., Upper Saddle River, NJ, USA, 2006.

175

[58] R. K. Treiber. Systems programming: Coping with parallelism. Technical Report RJ

5118, IBM Almaden Research Center, April 1986.

[59] David L. Weaver and Tom Germond. The SPARC Architecture Manual, Version 9,

1994.

[60] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing Hot-

Spot Addressing in Large-Scale Multiprocessors. IEEE Transactions on Computers,

36(4):388–395, 1987.

176

Author’s Publications

1. Panagiota Fatourou and Nikolaos D. Kallimanis, ”A Highly-Effcient Wait-Free Im-

plementation of a Universal Object”, Theory of Computing Systems (TOCS). Spe-

cial issue of SPAA 2011. In press.

2. Spiros N. Agathos. Nikolaos D. Kallimanis and Vassilios V. Dimakopoulos, ”Speed-

ing Up OpenMP Tasking”, In proceedings of the International European Confer-

ence on Parallel and Distributed Computing (Euro-Par 2012), pp. 650-661, Rhodes,

Greece, August 2012.

3. Panagiota Fatourou and Nikolaos D. Kallimanis, ”Revisiting the Combining Syn-

chronization Technique”, In Proceedings of the 17th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP 2012), pp. 257-266,

New Orleans, LA, USA, February, 2012.

4. Panagiota Fatourou and Nikolaos D. Kallimanis, ”A Highly-Efficient Wait-Free Uni-

versal Construction”, In Proceedings of the 23rd ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA 2011), pp. 325-334, San Jose, California,

USA, June 2011. Invited to Theory of Computing Systems as special issue

of SPAA 2011.

5. Panagiota Fatourou and Nikolaos D. Kallimanis, ”The RedBlue Adaptive Universal

Constructions”, In Proceedings of the 23rd International Symposium on Distributed

Computing (DISC 2009), pp. 127-141, Elche/Elx, Spain, September 2009.

6. Panagiota Fatourou and Nikolaos D. Kallimanis, ”Time-Optimal, Space-Efficient

Single-Scanner Snapshots & Efficient Multi-Scanner Snapshots using CAS”, In Pro-

ceedings of the 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing (PODC 2007), pp. 33-42, Portland, Oregon, USA, August

2007.

7. Panagiota Fatourou and Nikolaos D. Kallimanis, Single-Scanner Multi-Writer Snap-

shot Implementations are Fast!”, In Proceedings of the 25th Annual ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing (PODC 2006), pp.

228-237, Denver, Colorado, USA, July 2006.

178

Short Vita

Nikolaos Kallimanis was born in Amalias, Greece in 1983. He is a PhD candidate in the

Department of Computer Science at the University of Ioannina since January 2008. He

entered with the 3rd best grade (after participating in the national exams) among the

students that entered at the Department of Computer Science of University of Ioannina in

2001 and he obtained his Degree in 2005. He also obtained his MSc in 2007 from the same

department. During his undergraduate and postgraduate studies he received scholarships

and awards. Specifically, he received a scholarship and the best student award during the

3rd year of his undergraduate studies from Greek State Scholarship Foundation (IKY).

His PhD studies were supported by a scholarship from Empirikion Foundation.

His research interests focus on theoretical and practical aspects on parallel and dis-

tributed computing, with emphasis in the design and analysis of concurrent data struc-

tures. He has published papers in top tier conferences in the domain of distributed and

parallel computing, such as ACM PODC, ACM SPAA, ACM PPoPP and DISC.

	Introduction
	Related Work
	Model
	General
	Pseudocode conventions

	Adaptive Wait-Free Synchronization Algorithms
	The F-RedBlue algorithm
	Algorithm description
	Correctness proof

	Modified version of F-RedBlue that uses small base objects
	Adaptive synchronization algorithms for large objects

	Practical Wait-Free Synchronization Algorithms
	The Sim algorithm
	Algorithm description
	Correctness proof
	An efficient implementation of collect
	Space and step complexity
	Derived lower bounds

	P-Sim: A practical version of Sim
	Algorithm description
	Correctness proof
	Space and step complexity
	Making P-Sim adaptive

	Performance evaluation of P-Sim
	L-Sim: A synchronization algorithm for large objects
	Algorithm description
	Correctness proof

	SimStack: A wait-free implementation of a shared stack
	Algorithm description
	Performance Evaluation

	SimQueue: A wait-free implementation of a shared queue
	Algorithm description
	Correctness proof
	Performance evaluation

	Highly-Efficient Blocking Synchronization Algorithms
	CC-Synch: An efficient synchronization algorithm for the CC model
	Algorithm description
	Time and space complexity
	Required memory barriers
	Correctness proof

	H-Synch: A hierarchical synchronization algorithm based on CC-Synch
	DSM-Synch: An efficient synchronization algorithm for the DSM model
	Algorithm description
	Time and Space complexity
	Required memory barriers
	Correctness proof

	Performance evaluation of CC-Synch, DSM-Synch and H-Synch
	Highly-efficient blocking data structures

	Conclusions and Future Work

