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Abstract

OpenMP 4.0 represents a major upgrade in the language specifications of the
standard. Important constructs for the exploitation of SIMD parallelism, the sup-
port for dependencies among tasks and the ability to cancel the operations of a
team of threads have been added. What is arguably the most important addition,
however, is the introduction of the device model. A variety of computational units,
such as GPUs, DSPs and general or special purpose accelerators are viewed as at-
tached devices, where portion of a unified application code can be offloaded for
execution. In this work we present the infrastructure for device support in the
OMPi research compiler, one of the few compilers that currently implement the
new device directives. We discuss the necessary compiler transformations and the
general runtime organization. For the first time, special emphasis is placed on the
important problem of data environment handling. In addition, we present a proto-
type implementation on the popular Parallella board which exploits the dual-core
ARM host processor and the 16-core Epiphany accelerator of the system.

1 Introduction
OpenMP, the de facto standard for shared-memory programming, has been recently
augmented with new directives that target arbitrary accelerator devices [18]. In the
spirit of OpenACC [17], OpenMP 4.0 provides a higher level directive-based approach;
it allows the offloading of portions of the application code onto the processing ele-
ments of an attached accelerator while the main part executes on the general-purpose
host processor. In contrast, programming models such as OpenCL [13] and CUDA [14]
provide efficient but rather primitive mechanisms for an application to exploit the hard-
ware capabilities of GPGPUs and other devices. Such models project the heterogeneity
of hardware directly onto software, forcing different programming styles and multiple
code modules to accommodate each of the devices that is to be utilized.

∗S.N. Agathos is supported by the Greek State Scholarships Foundation (IKY)

http://dx.doi.org/10.1007/978-3-319-24595-9_15


Modern architectures present a mix of different processor organizations and mem-
ory hierarchies within the same system. Systems as small as a personal workstation
may pack many compute cores in a socket, and/or combine general purpose multi-
core CPUs with accelerator devices such as GPGPUs, DSPs and specialized, application-
specific FPGAs. Given the multiplicity of devices and the diversity of their architec-
tures, the real challenge is to provide programming models that allow the programmer
to extract satisfactory performance while also keeping his/her productivity at high lev-
els. OpenMP 4.0 strives to play a major role in this direction, letting the programmer
blend the host and the device code portions in a unified and seamless way.

Although support for the OpenMP 4.0 device model has been slow to be adopted
by both compiler and device vendors, it is gaining momentum. Currently, the Intel ICC
compiler [12, 16] and GNU C Compiler, GCC (as of the latest version [11]) support
offloading directives, with both of them only targeting Intel Xeon Phi as a device. GCC
offers a general infrastructure to be tailored and supplemented by device manufacturers.
Preliminary support for the OpenMP target construct is also available in the ROSE
compiler. Chunhua et al. [8] discuss their experiences on implementing a prototype
called HOMP on top of the ROSE compiler, which generates code for CUDA devices. A
discussion about an implementation of OpenMP 4.0 for the LLVM compiler is given by
Bertolli et al. [5] who also propose an efficient method to coordinate threads within an
NVIDIA GPU. Finally, in [15] the authors present an implementation on the TI Keystone
II, where the DSP cores are used as devices to offload code to.

In this work we present an infrastructure for device support in the context of the
OMPi OpenMP compiler [9], currently one of the few compilers that implement the
OpenMP 4.0 directives for offloading code onto a device. We discuss the necessary
compiler transformations and the general runtime organization, emphasizing the im-
portant problem of data environment handling. To the best of our knowledge, this is
the first time this problem is given detailed consideration in the open literature; we
present novel runtime structures to address it efficiently. While we deal mostly with
the device-agnostic parts of the infrastructure, we also discuss our experiences with
a concrete implementation on the highly popular Parallella board [2]. It is the first
OpenMP implementation for this particular system, and supports the concurrent exe-
cution of multiple independent kernels. In addition, it allows OpenMP directives in
each offloaded kernel, supporting dynamic parallelism within the system coprocessor.

The paper is organized as follows. In Section 2 we give the necessary background
material. We present the compiler transformations in Section 3, while the correspond-
ing runtime issues are discussed in Section 4. We then describe our prototype imple-
mentation for the Parallella board in Section 5. Finally, Section 6 concludes this work.

2 Background
One of the goals of version 4.0 of the OpenMP API [18] was to provide a state of the
art, platform-agnostic model for heterogeneous parallel programming by extending its
widely accepted shared-memory paradigm. The extensions introduced are designed to
support multiple devices (accelerators, coprocessors, GPGPUs, etc.) without the need
to create separate code bases for each device. Portions of the unified source code are
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simply marked by the programmer for offloading to a particular device; the details of
data and code allocations, mappings and movements are orchestrated by the compiler.
The execution model is a host-centric one: execution starts at the host processor, which
is also considered a device, until one of the new constructs is met; this may cause the
creation of a data environment and the execution of a specified portion of code on a
given device.

The target directive is used to transfer control flow to a device. The code in the
associated structured block (kernel) is offloaded and executed directly on the device,
while the host task waits until the kernel finishes its execution. Each target directive
may contain its own data environment which is initialized when the kernel starts and
freed when the kernel ends its execution. In order to avoid repetitive creation and
deletion of data environments, the target data directive allows the definition of
a data environment which persists among successive kernel executions. Furthermore,
the programmer may use the target update directive between successive kernel
offloads to explicitly update the values of variables shared between the host and the
device.

The execution of an OpenMP program has a set of initial device data environments
(that is, a set of variables associated with a given code region), one for each available
device. The data environment can be manipulated through map clauses within target
data and target directives. These clauses determine how the specified variables are
handled within the data environment. Finally, the variables declared within declare
target directives are also allocated in the global scope of the target device, and their
lifetime equals the program execution time.

The original and the corresponding variables, have common name, type and size
but the task that executes in the context of a device data environment, refers to the cor-
responding variable instead of the original one. Data environments can be nested and
a corresponding variable of a device data environment is inherited by all enclosed data
environments. This means that a variable can not be re-mapped during the definition
of nested data environments.

3 Compiler Transformations
The OMPi compiler [9] is a lightweight OpenMP C infrastructure, composed of a
source-to-source compiler and a flexible, modular runtime system. The input of the
compiler is C code annotated with OpenMP pragmas and the output is an intermedi-
ate multithreaded code augmented with calls to the runtime system. A native compiler
is used to generate the final executable. OMPi is an open source project and targets
general-purpose SMPs and multicore platforms. It adheres to V3.1 of the OpenMP
specifications, but support for V4.0 is under way. In addition to the device con-
structs presented here, initial implementations exist for the cancellation constructs, the
taskgroup construct and task dependencies.

The main transformation step of OMPi for parallel, task and target direc-
tives is outlining. A new function is created, containing the transformed body, and the
construct is replaced by a runtime call with the new function and a struct as parameters.
The struct contains any variables declared before the construct but used in the body of
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the construct, and is initialized according to the data-sharing attribute clauses. In the
following sections, we will use the code in Fig. 1 as an example in order to illustrate
the transformation details.

When outlining a target region, we store a copy of the outlined function along
with any other outlined functions that may occur during the transformation of its body
(e.g. when having a parallel region inside the target), in a global list. After the
main transformation phase of the code, we use the information stored in that list to
produce kernel files, one for each target construct.

3.1 Target Data
According to the specifications, if a variable that appears in a map clause, already exists
in the device data environment, no new space should be allocated and no assignments
should occur. Since the device clause is an arbitrary expression and there is no
restriction on the device clause of nested target data directives, the compiler is
unaware of the devices that a variable has already been mapped on. For example, there
could be a target data that adds variable a in device 1 and then another target
data with the same variable that does not contain a device clause, and therefore
will use the default device which, however, can be changed during execution.

To overcome this subtle problem we inject calls to the runtime for creating, initial-
izing and finalizing environments with variables that appear in map clauses, regardless
of whether they have appeared or not in an enclosing target data directive, and let
the runtime handle it, as described in Section 4.1. In Fig. 1, this occurs for variables x
and y in lines 12 and 13.

When transforming the target data directive, a start and an end call are
injected before and after the body of the directive. If the directive is nested in an-
other target data directive, the latter data environment is passed in the start
call (Fig. 1, line 10). For each variable, depending on the map type, an alloc (for
alloc/from) or an init (for to/tofrom) call is inserted at the start of the body (Fig. 1,
lines 12–13). If the variable is from/tofrom a finalize call is inserted at the end of
the body (Fig. 1, lines 28–29).1

3.2 Target
Each target directive is outlined similarly to parallel and task directives, al-
beit with different handlers for the variables. We create a new data environment, as if
the construct was a target data one (lines 8–13 in Fig. 1). All variables that have
already appeared in any enclosing data environment are inserted in the new one. Point-
ers to these variables are then placed in the devdata-struct, which will be passed to the
outlined function. The pointers are initialized using runtime calls to get the address of
the variables on the device space (lines 20–21). As an optimization, if a variable does
not appear in any enclosing target data directive, space for the variable is created
directly within the devdata-struct, instead of using a pointer (line 22).

1Similar calls are used when transforming target update directives.
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Original code:

#pragma omp target data map(x,y)
#pragma omp target map(from: x) device(2)

x=y=z=1;

Transformed code:
1 { // start target data
2 _devid = -1; // default device
3 _ddenv = _start_ddenv(NULL, _devid, ..);
4 _initvar(&x, sizeof(x), _ddenv, _devid);
5 _initvar(&y, ..);
6
7 { // start target
8 _devid = 2; // requested device
9 _ddenv_prev = _ddenv;
10 _ddenv = _start_ddenv(_ddenv_prev, _devid, ..);
11
12 _allocvar(&x, ..); // ignored if default device is 2
13 _initvar(&y, ..); // ditto
14
15 struct __dd__ {
16 int (* x);
17 int (* y);
18 int z;
19 } * _devdata = _devdata_alloc(_devid, sizeof(struct __dd__));
20 _devdata->x = get_vaddress(&x, ..); // request address @device
21 _devdata->y = get_vaddress(&y, ..);
22 _devdata->z = z; // optimized
23
24 ort_offload_kernel(_kernelFunc0_, _devdata, ..); // kernel code
25
26 z = _devdata->z;
27
28 _finvar(&x, _ddenv);
29 _finvar(&y, _ddenv);
30
31 _end_ddenv(_ddenv);
32 } // end target
33
34 _finvar(&x, _ddenv);
35 _finvar(&y, _ddenv);
36 _end_ddenv(_ddenv);
37 } // end target data

Figure 1: Compiler transformation example.

In our example, the kernel body (x=y=z=1;) has been moved to an outlined func-
tion _kernelFunc0_(); the actual execution of the kernel occurs in line 24, where
the runtime call is given the function name and the devdata-struct.

3.3 Declare Target
When the compiler encounters a declare target region, it stores any contained
functions, function prototypes and variables in lists, and also marks them in the symbol
table. The body of the directive is left as is during the main transformation phase of the
code. Any declared variables within the declare target region are ignored during
the transformation of the target directive.
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3.3.1 Host Code.

The transformation for the declare target constructs occurs after the normal
transformation phase ends, where all the declared variables have already been marked.
A new static function is created in every source file for registering the declared vari-
ables with the runtime. For each initialized variable, a separate static variable is also
created, using the same initializer. This is needed by the runtime when the initialization
of the declared variable takes place on the available devices.

The above function is called whenever a target update or a target directive
is met, which uses one of the declared variables. This guarantees that the runtime
registers all these variables before they are actually used. In addition, precautions
are taken so that the operation is completed only once and is not subject to concurrent
invocations. Finally, the declared variables, which are used in a target region, are
placed in a separate struct and are given to the runtime at offload time; in the example
of Fig. 1, this struct would be an additional argument to the offloading call in line 24.

3.3.2 Kernel Code.

For each target directive we produce a separate kernel file. The code of a kernel
starts with the declared function prototypes. All variables declared in declare
target regions are converted to pointers. Then, we transform the declared functions
and the outlined function of the target directive, replacing any occurrences of the
declared variables by pointers.

Moreover, a wrapper function is created, which is the first function called by the
runtime library of the device. The wrapper serves two purposes; first it initializes the
pointers for the declared variables from the struct passed in the offload function, and
second, it calls the actual outlined kernel function.

4 Runtime Support
The runtime system of OMPi has been extended to support part of the new features of
OpenMP 4.0. Except for the new runtime functions and environmental variables, the
existing worksharing infrastructure was updated to support the cancellation directives.
In addition, the tasking infrastructure adds preliminary support for the taskgroup
functionality, as well as for task dependencies.

Regarding the new device model, OMPi is organized as a collection of modules
which implement support for accelerators. The core module which coordinates OpenMP
execution on the host is a largely unmodified version of the V3.1 runtime of OMPi; it
is only augmented with functionality needed for the coordination of devices, and with
a device interface that acts as glue between the host and the other device modules. On
the other hand, new device modules are created, with each of them responsible for the
manipulation of a particular device. Each module is divided into two parts; the first part
is executed on the host and the second is executed on the the device, accompanying the
offloaded kernels.
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1 int a, b;
2

3 #pragma omp target data map(a) // DE1
4 #pragma omp parallel num_threads(2)
5 {
6 int c;
7 #pragma omp target data map(b) // DE2ˆ(1), DE2ˆ(2)
8 #pragma omp target map(a, c) // DE3ˆ(1), DE3ˆ(2)
9 ....
10 }

Figure 2: Nested device data environments created by a team of threads.

4.1 Data Environment Handling
The host device needs a bookkeeping mechanism in order to store and retrieve informa-
tion regarding the variables that constitute the data environments. This information is
used when the host accesses these variables for reading or writing, for example during
the mapping of a variable or before/after the execution of a kernel, when the target
update directive is used. This information is also used during the initialization phase
of a kernel. Because of the arbitrary nesting of data environments, and the possibility
of multiple devices, the bookkeeping cannot be statically handled at compile time. In
what follows, we present our runtime solution to this non-trivial problem.

To allow the host to have fast access to information regarding the variables involved
in a data environment, we utilize a special mechanism based on typical separately-
chained hash tables (HT). It works approximately as a functional-style compiler symbol
table [4], albeit operated by the runtime. A sequence of nested data environments in
the source program produces a dynamic sequence of HTs with entries for the mapped
variables. The information stored on each entry includes the id of the device which
the mapping refers to, and a pointer to the actual storage space of the variable. The
hash function takes as input the original variable address combined with the device
number and returns the corresponding bucket. Collisions are handled through separate
chaining.

We present our mechanism through two illustrative examples; detailed analysis
follows right after. In Fig. 2 we show a code snippet where in line 3 a data environment
(DE1) is created with the mapping of variable a. Then a team of two threads is created
on the host device and each thread defines a separate data environment (DE2(1) and
DE2(2)) which includes the variables a and b. Finally, each thread offloads a code
block, while at the same time creates a new data environment (DE3(1) and DE3(2))
which includes the variables a and c. All the mappings in the example refer to the
default device.

The sequence of the HTs for the above example is given in Fig. 3. The result of line
3 is the creation of DE1 which stores only one entry, that for variable a. The creation
of the thread team does not affect the bookkeeping mechanism, and both threads can
access the data of DE1 without the need of locks. Line 7 defines DE2(1) and DE2(2)

(one for each thread); this causes the creation of new HTs, both of which are created
as copies of the previous HT. As a result, each thread retains access to the enclosing
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Figure 3: Hash table sequence for code in Fig.2. Solid yellow, dashed blue and mixed
black arrows denote allocations and definitions made at lines 3, 7 and 8, respectively.

1 int d, e, f;
2

3 #pragma omp target data map(d) device(1) // DE4
4 #pragma omp target data map(d, e) device(2) // DE5
5 #pragma omp target map(f) device(1) // DE6
6 {
7 e = d++; // implicit mapping of variable e
8 ... // in device 1
9 }

Figure 4: Nested device data environments created for two different devices.

data environment. The mapping of variable b adds a new entry for DE2(1) and DE2(2)

and the addition of a pointer from the HT to this entry. Similarly, in line 8 we have
the creation of new HTs that handle DE3(1) and DE3(2), respectively, as copies of the
previous two HTs. In the case of the second thread, variable c is hashed onto bucket
12, which is a free bucket. In contrast, variable c of the first thread caused a collision
(hashed onto bucket 5), resulting in a chain between the variables c and b.

An additional complication arises by the possible presence of multiple devices,
where a data environment may be nested within another environment that refers to a
different device, as can be seen in the code of Fig. 4. In this example, in line 3, a
data environment is defined for device 1 (DE4), with variable d. Then, DE5 is created
in line 4 for device 2 that includes variables d and e. Finally, DE6 is created in line
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Figure 5: Hash table sequence for code in Fig.4. Solid yellow, dashed blue and mixed
black arrows denote allocations and definitions made at lines 3, 4 and 5, respectively.

5 for device 1 and a block of code is offloaded for execution. Notice that d is already
mapped through DE4 while there is an implicit mapping for variable e on device 1. The
corresponding sequence of HTs is shown in Fig. 5. In DE4 there is only one entry for d
on device 1. The HT for DE5 starts with a copy of DE4; entries for variables d and e are
then added in buckets 19 and 27, correspondingly. Notice that because d now refers to
device 2, the hash function results to a different bucket than the one used for device 1.
Finally, DE6 starts as a copy of DE5 and has two entries added for variables f and e.
Since d is already present in the data environment of device 1, no further actions are
required.

4.1.1 Details of the Mechanism.

The data handling mechanism is operated by the host, resides in the host address space,
and is independent from any attached devices. The HTs allow for efficient variable
insertion and look-up operations. Each time a nested data environment is created, a
new HT is initialized as a copy of the HT used by the enclosing data environment, as
in functional-style symbol tables; destruction of the data environment requires a single
memory deallocation for the corresponding HT. If a team of threads is created within
a target data region, separate HTs are created, when needed, for each thread; this
completely eliminates mutual exclusion problems.

In addition, we employ a further optimization. When initializing a new data envi-
ronment for a particular device, the compiler informs the runtime about the maximum
possible number of variables added to the environment. This is calculated statically
during the analysis of the program; an exact number is not possible to derive because
the devices the environments refer to are given by full expressions and can only be cal-
culated at runtime, in the general case. In practice, only variables not already mapped
on this device are actually inserted in the HT. Because of this information, the runtime
is able to acquire memory for the HT and the entries in a single allocation request (this
explains why in Fig. 3 and 5 the HTs and the corresponding entries lie within the same
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rectangle). This also has the desirable side-effect of increased data locality, as the hash
table and the entry information reside on the same memory block.

The space requirements of the presented mechanism have an upper bound of O(L ·
K+n), where L stands for the maximum number of alive data environments, K is the
size of a hash table (derived from the static compiler information discussed above) and
n is the total number of variables that are mapped in all data environment definitions.
In a program that defines a total of E data environments, exactly Θ(E) of memory
allocations and deallocations are made, which include the memory required for the HT
and the memory used for the entries. With a load factor at most equal to 1, the average
time for an insertion or a lookup is Θ(1).

5 The Epiphany Accelerator as a Device
The Parallella-16 board [2] is a popular 18-core credit card-sized computer and comes
with standard peripheral ports such as USB, Ethernet, HDMI, GPIO, etc. The compu-
tational power of the board comes from its two processing modules. The main (host)
processor is a dual-core ARM Cortex A9 with 512 KiB shared L2 cache, built within
a Zynq 7010 or 7020 SoC. The other is an Epiphany 16-core chip which is used as a
co-processor. The board has 1 GiB of DDR3 RAM, addressable by both the ARM CPU
and the Epiphany. The former runs Linux OS and uses virtual addresses, whereas the
latter does not have an OS and uses a flat, unprotected memory map.

Two versions of the Epiphany co-processor are actually available: the Epiphany-16
(with 16 cores and a 4×4 mesh NoC) and the Epiphany-64 (with 64 cores and an 8×8
mesh). Although our discussion here holds for both versions, we refer mostly to the
first one since it is the one widely available. Each Epiphany core (eCORE) is a 32-bit
superscalar RISC CPU, clocked at 600 MHz, capable of performing single-precision
floating point operations, and equipped with 32 KiB local scratchpad memory and two
DMA engines. The ARM and the Epiphany use a 32 MiB portion of the system RAM
as shared memory which is physically addressable by both of them. All common pro-
gramming tools are available for the ARM host processor. For the Epiphany, a Software
Development Kit (eSDK [1]) is available, which includes a C compiler and runtime
libraries for both the host (eHAL) and the Epiphany (eLIB). Furthermore, OpenCL is
provided by the COPRTHR SDK [6]. The latter also provides a threading API similar to
POSIX.

5.1 Runtime Organization
In this section we will briefly describe the key features of the runtime module that
implements the support of the Epiphany accelerator as an OpenMP 4.0 device, based
on the eSDK. More details are available in [3]. The module consists of two parts; one
executed by the host CPU and one executed by the eCOREs.
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5.1.1 The Host Part.

The communication between the Zynq and the eCOREs occurs through the shared mem-
ory portion of the system RAM. The shared memory is logically divided in two sec-
tions: The first section is a fixed size of 4 KiB, and is used transparently by OMPi for
kernel coordination and manipulation of parallel teams created within the Epiphany.
The second part is used for storing the kernel data environments and part of the tasking
infrastructure of the Epiphany OpenMP library.

In order to be able to control the eCOREs independently through eHAL calls, the ini-
tialization phase creates 16 workgroups, one for each of the available Epiphany cores
and puts them to the idle state for energy and thermal efficiency. For offloading a ker-
nel, the first idle core is chosen and the precompiled kernel object file is loaded to it for
immediate execution. Due to the high overheads of the eSDK when offloading kernels
to different workgroups, we developed an optimized low-level offload routine to assist
the creation of OpenMP teams. We support multiple, independent kernels, executing
concurrently within the Epiphany. Because the current version of eHAL does not pro-
vide a way for an eCORE to notify directly the host for kernel completion, a special
region of the shared memory is designated for synchronization with the eCOREs.

For the target teams directive special care is taken regarding the choice of the
eCOREs which will execute the associated kernel. In order to keep intra-team NoC
traffic localized, the team masters are placed as if a spread thread affinity policy was
in effect for them. For example, if all eCOREs are idle and the creation of 4 teams is
requested, then the eCOREs with ids 0, 3, 12 and 15 (the ones in the four corners on the
4× 4 grid) will be activated.

5.1.2 OpenMP within the Epiphany.

Supporting OpenMP within the device side presents many challenges due to the lack
of dynamic parallelism and the limited local memory of each eCORE. Regarding the
former, when a kernel is offloaded to a specific eCORE, the core executes its sequential
part until a parallel region is encountered. Because only the host can activate other
eCOREs, the master core contacts the host, requesting the activation of a number of
cores. A copy of the same kernel is then offloaded to the newly activated cores. During
the parallel code execution all synchronization between the cores occurs through their
fast local memories. When the region completes, the cores return to the idle, power
saving state, while the master core informs the host thread about the termination of the
parallel team.

The small scratchpad memory makes it impossible to fit sophisticated OpenMP
runtime structures alongside the application data. To support the worksharing con-
structs of the OpenMP, the infrastructure originally designed for the host was trimmed
down so as to minimize its memory footprint; this is linked and offloaded with each
kernel. The coordination among the participating eCOREs utilizes structures stored in
the local memory of the team master. The eSDK provides mechanisms for locks and
barriers between the eCOREs but they assume that the synchronized cores belong to
same workgroup. Since in our runtime each eCORE constitutes a different workgroup,
we were forced to modify all these mechanisms. Finally, our tasking infrastructure is
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Figure 6: EPCC synchronization results Figure 7: EPCC tasking results

based on a blocking shared queue stored in the local memory of the master eCORE,
while the corresponding task data environments are stored in the shared memory.

5.2 Experiments
We have conducted a number of tests in order to measure the efficiency of our offload-
ing mechanisms alongside the space and timing performance of the OpenMP runtime
within the Epiphany accelerator. Our board is the Parallella-16 SKUA101020 and we
use eSDK 5.13.9.10. To examine the memory overhead of our Epiphany-resident run-
time, we created a set of simple OpenMP programs to compare with the size of the
kernels produced when the native eLIB is used. In the case of an empty kernel, contain-
ing only a single assignment OMPi incurs a 4.5 KiB overhead as compared to the kernel
created by the native eLIB. In other scenarios which involved a team of 16 cores and
complex OpenMP functionality, up to 10 KiB more than a similar eLIB-based kernel
were needed. We are currently optimizing the runtime memory footprint even more.

In order to measure the OpenMP construct overheads within the Epiphany, we cre-
ated a modified version of the EPCC microbenchmark suite [7] where their basic rou-
tines are offloaded through target directives. In Fig. 6 we plot a sample of the
synchronization benchmark results. While most results are quite satisfactory, our ini-
tial prototype employs a non-optimized barrier, which also has a direct impact on the
overheads of the for construct. We are currently optimizing its behavior. Sample re-
sults for the tasking benchmark are given in Fig. 7. The noticeable cases are those of
the Taskwait and Master task tests. The contention on our simple lock-based shared
task queue is quite high in these tests and shows up vividly in the case of 16 threads.
Our implementation can be further improved, but at this point we strive mostly for
functional correctness.

Finally, we include performance results for a few simple OpenMP applications. In
Fig. 7 we plot timing results for a typical iterative computation of π = 3.14159, based
on the trapezoid rule with 2,000,000 intervals, and using a kernel which spawns a par-
allel team of 1 to 16 threads. While the scalability is almost ideal, the serial execution is
quite slow; the reason is that the Epiphany does not support double-precision numbers
natively and the eCORE floating point unit does not implement division. In Fig. 9 we
present the performance of a modified version of the Nqueens task benchmark, taken
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Figure 8: Pi computation Figure 9: Nqueens(12)

from the Barcelona OpenMP Tasks Suite (BOTS) [10]. This application computes all
solutions of the n-queens placement problem on an n× n chessboard, so that none of
the queens threatens any other. Due to the severe memory limitations of the Epiphany,
we considered the manual cut-off version of the benchmark, where the nested produc-
tion of tasks stops at a given depth. The figure shows the timing results for 12 queens,
and a cut-off value of 2 (144 tasks produced). As it can be seen, with the addition of
eCOREs we obtain an almost linear speedup.

6 Discussion and Current Status
We presented the infrastructure of the OMPi compiler related to the new OpenMP 4.0
device model. We put an emphasis on the efficient handling of data environments both
from the compiler and the runtime sides, because the specifications allow considerable
freedom in the way data environments can be nested. Our infrastructure is used to
support OpenMP within the popular Parallella board, where we treat the Epiphany-16
as an accelerator device, attached to a dual-core ARM host processor, allowing the dy-
namic creation of parallel teams within the device itself. We are currently concentrated
on optimizing our system, and supporting additional OpenMP 4.0 functionality.

From our experimentation with the Parallella board, it became clear that offloaded
kernels should not make use of sophisticated OpenMP features, in devices with limited
resources. We also observed that a major overhead is the time needed to offload a
kernel. If the computation is structured in a way where kernels are repeatedly offloaded,
to operate on different data each time, then it is questionable whether the application
will experience significant performance gains. For such scenarios, we believe that
support of resident kernels may bring considerable improvements. A kernel would be
offloaded only once, while at specific points the host would communicate new data
(through target updates) for the kernel to operate on. Of course, this would also
require new synchronization mechanisms between the kernel and the host task, which
could be part of future OpenMP extensions.
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