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Abstract—Multiprocessor systems-on-chip (MPSoC) are now
considered first-class citizens both in the embedded systems
and in the high-performance computing arenas, in the form of
specialized or general-purpose accelerators. Programming models
for such systems is currently a hot research topic, and as a general
rule require deep programmer knowledge of the underlying hard-
ware architecture. In this paper we present the implementation of
OpenMP, one of the most intuitive and productive programming
models, on the STHORM accelerator. This particular platform
provides a shared-memory substrate which OpenMP requires.
An innovative feature of our design is the deployment of the
OpenMP model both at the host and the fabric sides, in a
seamless way, which provides the programmer with a simple but
effective interface for offloading and executing OpenMP kernels
on the MPSoC. The optimized runtime environment provides
full OpenMP support despite its small footprint (less than 10KB
for a 16-core cluster) and can sustain close-to-ideal speedups in
computationally intensive applications. We detail on design issues
we faced along with their solutions, given the limited available
resources.

I. INTRODUCTION

The current market trend is to launch devices that are small,
portable, mobile and autonomous. They feature embedded
components which have already adopted multicore processor
architectures in order to provide the necessary processing
capacity for demanding end-user applications and for the ever
increasing need for multitasking, while also relying on limited
energy resources. Their hardware usually consists of heteroge-
neous processing elements (PEs), e.g. a general-purpose CPU
and one or more specialized devices such as graphics or
digital signal processors. At the same time, accelerators in the
form of multiple, small and rather weak processing elements
(e.g. GPGPUs) have been employed to accelerate a broad
range of applications. Even the high-performance computing
(HPC) community has benefited from them both in terms of
performance and power savings.

The real challenge in this era of multicore computing pro-
liferation is to provide a programming model that enables ex-
tracting satisfactory performance while also keeping program-
mer productivity at high levels in application development.
As multicore hardware enables the implementation of more
functionality on the same device, the corresponding software

This work has been supported in part by the General Secretariat for Research
and Technology and the European Commission (ERDF) through the Artemisia
SMECY project (grant 100230).

* S.N. Agathos is supported by the Greek State Scholarships Foundation
(IKY).

will become more complex. OpenMP [1] is a very intuitive
parallel programming model which can help in dealing with
the above issues. OpenMP is the standard programming model
for shared memory multiprocessors but is currently expanding
its applicability beyond HPC, with proposals such as OpenACC
[2]. It is a directive-based model whereby simple annotations
added to a sequential C or Fortran program are enough to
produce decent parallelism without significant effort, even by
non-experienced programmers.

It is our belief that OpenMP can form the basis for an
attractive programming model for multicore embedded accel-
erators. However its implementation for such devices is not
straightforward because it was designed with homogeneous
shared memory systems in mind. In contrast, embedded sys-
tems include diverse groups of weak PEs operating in SIMD
or MIMD fashion, usually connected with a few powerful
heterogeneous cores. In addition, it is highly likely that these
systems come with a partitioned address space and private
memories, leaving portions of memory management as a
programmer responsibility.

In this work we present the design and implementation
of an OpenMP infrastructure for the STHORM platform [3].
This is a multiprocessor system on chip (MPSoC), designed to
operate as an embedded application accelerator. The platform
consists of a set of low-power general-purpose PEs, work-
ing in full MIMD mode, interconnected by an asynchronous
network-on-chip (NoC). In addition, the architecture allows the
inclusion of special-purpose processing cores to fit particular
application domains. In our view, this will be a reference
architecture for future multicore accelerators as it combines
the ability to perform general-purpose computations alongside
with specialized hardware, while also offering a scalable
interconnection structure that will allow large core counts.

Implementing OpenMP for such a platform is a non-trivial
task. Our implementation is based on the OMPi [4] open-source
OpenMP compiler for C. We discuss our experiences, the
problems we faced and the design decisions we made in order
to provide a full OpenMP implementation for this embedded
MPSoC.

The the paper is organized as follows. In Section II we give
an overview of programming models and tools available for
the STHORM platform. We also survey related efforts for other
platforms. In section III we give details on the architecture
of our target MPSoC. Section IV describes the design and
implementation of our OpenMP infrastructure. Some initial
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experiments are reported in Section VI and finally, Section VII
concludes this paper.

II. RELATED WORK

A number of programming models and tools have been
proposed for the STHORM architecture, which is presented
in detail in Section III. Apart from the low-level system
software which is rather inappropriate for general application
development, STHORM comes with the Native Programming
Model (NPM) which relies on the system runtime libraries and
forms the base for component-based tools and applications.
OpenCL is a major model implemented in STHORM, relying on
the system runtime libraries, too. A number of high-level tools
have also been ported, targeting the NPM or OpenCL layers. A
prominent example is BIP/DOL [5] which generates platform-
specific code using abstract application models based on
communicating processes. Here we present the first OpenMP
implementation for the STHORM accelerator.

We are not the first to propose OpenMP as a suitable model
for accelerators or multicore embedded systems. Other efforts
include [6] where the authors propose OpenMP extensions to
provide a high level API for executing code on FPGAs. They
propose a hybrid computation model supported by a bitstream
cache in order to hide the FPGA configuration time needed
when a bitstream has to be loaded. Sato, Nakajima, Ojima
and Hotta [7] implement OpenMP and report its performance
on a dual M32R processor, which runs Linux and supports
fully the POSIX execution model. Liu and Chaudhary [8]
implement an OpenMP compiler for the 3SoC Cradle system,
a heterogeneous system with multiple RISC and DSP-like
cores. Additionally in [9] double buffering schemes and data
prefetching are proposed for this system. In [10] the authors
discuss an OpenMP implementation that targets MPSoCs with
physically shared memories, hardware semaphores, and no op-
erating system. However, they cannot use the fork/join model
for the parallel directive due to the lack of threading primitives.
In contrast the above works, we support the OpenMP program-
ming model in both the host and the device sides seamlessly,
alleviating, in part, programming heterogeneity issues.

Furthermore, extensions to OpenMP have been proposed
to enable additional models of execution for embedded ap-
plications. Gonzàlez, Ayguad, Martorell and Labarta [11]
extend OpenMP to facilitate expressing streaming applica-
tions through the specification of relationships between tasks
generated from OpenMP worksharing constructs. The authors
in [12] propose a set of OpenMP extensions that can be
used to to convert conventional serial programs into streaming
applications.

Chapman et al. [13] describe the goals of an OpenMP-
based model for different types of MPSoCs that takes into
account non-functional characteristics such as deadlines, pri-
orities, power constrains etc. They also present the implemen-
tation of the worksharing part of OpenMP on a multicore
DSP processor. In [14] the authors present an OpenMP task
implementation for a simulated embedded multicore platform
inspired by the STHORM architecture. Their system consists
of doubly linked queues which store the tasks. They make use
of task cut-off techniques and task descriptor recycling. Those
works, however, do not address full OpenMP functionality, in
contrast to what we present here.

Fig. 1. STHORM cluster architecture

III. SYSTEM ARCHITECTURE

The system we target is STHORM [3], formerly known as
the ST P2012 platform. The accelerator fabric consists of tiles,
called clusters, connected through a globally asynchronous lo-
cally synchronous (GALS) network-on-chip where each cluster
may operate in different clock speed. The architecture of a
single cluster is depicted in Fig. 1 and is composed of a
multicore computing engine, called ENCore, and a cluster
controller (CC). Each ENCore can host from 1 to 16 processing
elements (PEs). Each PE is an STxP70-V4 processor, a cost
effective and customizable 32-bit RISC core. It has a 32-
bit load/store architecture with variable-length instruction set
encoding, allowing manipulation of 32-bit, 16-bit or 8-bit
data. This particular version (V4) of the processor includes a
floating point unit and corresponding instruction set extensions
(FPX). Thus the ENCore PEs are full-fledged processors and
follow the MIMD execution model, i.e. each one operates
independently of the others. This is an important feature that
simplifies the design of embedded applications.

Each PE has a 16KB private instruction cache and no data
cache. Instead, the team shares a 256KB scratchpad memory
called TCDM (tightly coupled data memory). The latter features
single cycle accesses and is divided into 32 banks in order
to reduce the probability of conflicts, when several PEs try
to access it simultaneously. The cluster is coordinated by the
cluster controller (CC) which is also an STxP70-V4 processor.
The CC has a 16KB instruction cache, an additional 32KB of
local data memory and also two DMA channels for memory
copies.

Each ENCore cluster is provided with a Hardware Synchro-
nizer (HWS) engine which provides hardware synchronization
support for efficient implementation of semaphores, locks and
barriers. It also includes an event and interrupt generator. The
accelerator has also provisions for additional Hardware Pro-
cessing Elements (HWPEs) to efficiently support applications
that require specialized hardware (for example audio / video
decoders).

Fig. 2 shows the configuration of a STHORM SoC which
consists of four clusters. The system includes a 1MB of L2
(or fabric) memory used for instruction and data, also shared
among the clusters. In addition there exists a special unit



Fig. 2. STHORM SoC Configuration

called fabric controller (FC). The FC is similar to the CC
processor and is responsible for interactions with the off-chip
host and for instrumentation and coordination of the clusters.
The overall memory organization follows the partitioned global
address space (PGAS) model. This means that all processing
elements can access all SoC memories but with varying delays
depending on where the PE and the data are located. For
example it is possible for a PE of one cluster to perform load
and store instructions directly from/to the fabric memory or
a remote TCDM memory of another cluster, albeit slower as
compared to accessing its own local memory.

IV. IMPLEMENTING OPENMP

In order to provide an implementation of the OpenMP
model for the STHORM architecture which however is general
enough to be ported to similar future MPSoCs, we relied
on source-to-source compilation, In particular we based our
implementation on the OMPi compiler [4]. OMPi is lightweight
OpenMP C infrastructure, composed of a source to source
compiler and a flexible runtime system. The compiler takes
as input C code with OpenMP pragmas and outputs an
intermediate multithreaded code augmented with calls to the
runtime system. A native compiler is used to generate the final
executable. OMPi is an open source project that adheres to
OpenMP V3.0 and targets general purpose SMPs and multicore
platforms.

An initial observation is that an accelerator is usually not
a stand-alone device—it is rather a back-end system attached
to a host, which could also be a multicore processor. There
is a conceptual difficulty as to where and how the OpenMP
programming model is to be applied: at the host side or at
the accelerator side? That is, should OpenMP threads live
in the host processor and generate simultaneous (sequential)
computational requests towards the fabric, or should the par-
allelism (OpenMP threads) be created and executed within
the accelerator? Our design decision was to be as general as
possible, so as to have the greatest flexibility in supporting

general MPSoC architectures, and as programmer-friendly as
possible, so as to let the programmer express parallelism in
any way convenient. Consequently the goal of our compilation
chain was to support OpenMP at both the host and the
accelerator levels.

OMPi’s compilation chain for MPSoC accelerated systems
is shown in Fig. 3 and is composed of three phases. During the
first phase and after preprocessing the source file, the compiler
divides it into two new OpenMP files. The first file contains
the code to be executed by the host processor and the second
one has the kernel functions to be offloaded and executed
on the MPSoC fabric. This target separation phase analyzes
the function call graph and packs all dependent functions into
the fabric code. During the second phase the actual transfor-
mations take place; the separated files are transformed into
intermediate pure C code. The intermediate file for the host
embeds calls to the standard OMPi runtime designed for the
support of shared memory systems, which has been extended
to provide the necessary primitives for communication with the
accelerator. The intermediate file for the fabric is augmented
with calls to a new runtime that supports OpenMP execution
within the accelerator. During the final phase, system back-
end compilers are used to link the intermediate object files
with the appropriate runtime libraries and to create the two
executables. The executable for the fabric side is delivered as
a shared library.

A. Programming Model

From a programmer’s point of view the application consists
of two parts to be executed, respectively, by the host and the
accelerator, which however are presented in a unified code.
The accelerator part is a collection of C functions that are
appropriately annotated. Function annotation occurs at the call
site. The annotation model we follow is based on the SME-
C [15] representation that has been proposed by the SMECY
project consortium. In particular, a function call preceded by
the following pragma:

#pragma smecy map(HWunit) [arg[[,]arg]...]
<function call>

causes the called function (or kernel in OpenCL terms) to
be offloaded to the accelerator and executed (mapped) at a
specific hardware unit. Valid hardware units are the PEs, the
cluster controller and the fabric controller. Execution by a PE
is described by the pair (PE, n) where n is the id of the PE
that should execute the offloaded function. The optional ‘arg’
clauses describe the size and direction of function arguments
(input/output/both). In the offloaded function code, OpenMP
directives are allowed which dynamically spawn parallelism
within the fabric. In addition OpenMP in the rest of the
user code is translated as parallelism to be generated at the
host. Multiple host threads may offload multiple functions for
simultaneous execution on the fabric.

An example is shown in Fig. 4. The execution of this code
begins at the host where a team of four threads is created (line
7), and is visualized in figure 5. The thread with id 3 that
meets the offload directive, forces the accelerator to execute
the kernel function foo and suspends its execution until the
kernel is finished (lines 10-11). After the accelerator is enabled,
the PE with id 0 begins executing the kernel. When this PE



Fig. 3. OMPi compilation chain

1 void foo(int A[256]) {
2 #pragma omp parallel
3 {...}
4 }
5
6 int main(void) {
7 #pragma omp parallel num_threads(4)
8 {
9 if (omp_get_thread_num()==3) {
10 #pragma smecy map(PE,0) arg(1,inout,[256])
11 foo(A);
12 }
13 else {
14 ...
15 }
16 }
17 }

Fig. 4. Example of kernel (foo) offloading

Fig. 5. STHORM execution model

encounters the parallel directive in line 2 it creates a team of 16
PEs to execute the code in line 3. After the kernel’s execution,
control goes back to the host thread with id 3 in order to
resume its work. Notice that the programmer doesn’t have to
deal with special glue code for the accelerator management
(i.e. discover devices, enable/disable units, load binary etc.)
because this functionality is provided in the compiler generated
code and its runtime library.

B. Data Management

From the programmer’s perspective the accelerator memory
hierarchy consists of three types of memory:

1) a scratchpad memory area (implemented by the
TCDM in Fig. 1), which is fast and serves to store
data used repeatedly by the PEs. For the STHORM
platform its size is 256KB per cluster.

2) a slower fabric memory, outside of but shared by all
clusters, with a size of 1Mb and

3) a shared memory area, accessible by both the host
and the accelerator. This is part of system’s RAM
used for communication between the host and the
fabric. Its size can be large, and so is its access time
from any PE.

The arguments of the offloaded function are stored in the
shared memory area. In the example of Fig. 4 the compiler
transparently generates code to i) allocate space in shared
memory for a copy of the 256 elements of array A, ii) copy
A to the allocated shared memory area iii) execute the kernel
iv) copy the data back from shared memory to A (since it is
both an input and an output of the function) and v) free the
shared memory space.

Because of the need to utilize variables by multiple kernels,
instead of transferring them back and forth multiple times, we
provide a new directive that allocates such variables on the
SoC and stores them there for the whole program execution:

#pragma device global(var [,var [, ...]])

The enlisted variables will be stored in fabric memory.
Finally, in order to allow programs exploit the full memory
hierarchy, calls for allocating/freeing memory as well as
calls for copying memory areas using the underlying DMA
mechanisms are provided:

• ompi local malloc()

• ompi local free()

• ompi sthorm dma ext2loc memcpy()

• ompi sthorm dma loc2ext memcpy()

The first two functions are used to allocate/deallocate space
within the scratchpad memory of a cluster, while the other



two are used for DMA transfers between shared memory and
scratchpad memory.

V. RUNTIME SUPPORT

Runtime support is provided on top of native libraries
which provide basic operations such as feeding jobs to PEs,
CCs and FC, memory management, DMA transfer primitives
and synchronization facilities.

The two types of processing units, CC and PE have a
discrete role in program execution. PEs execute code in a MIMD
manner and have limited access to the cluster hardware. PEs
can execute reads and writes in memory, request DMA trans-
fers, increment/decrement atomic counters and send/receive
signals. In contrast, the CC has full access to all hardware
and can additionally allocate/deallocate space in the local, the
fabric and the scratchpad memory, allocate/deallocate atomic
counters, events, feed itself and PEs with computations, com-
municate through mailboxes with other CCs and with the FC.
Therefore, from a programmer point of view a CC is a master
unit that sends/receives requests to/from other CCs, prepares
hardware, distributes work to the PEs, and supervises program
execution. On the other hand the PEs are ‘slave’ units that
receive job requests and execute them in a preallocated data
environment.

The only way a PE can have an active role is by instructing
the CC to perform a job. This way, when a PE wants to execute
a privileged operation, it prepares a request, sends it to CC
and waits until the CC satisfies it. These privileged operations
include: allocate/deallocate memory, give jobs to other PEs and
allocate/deallocate DMA requests.

A. EECB Management

Throughout the execution of an OpenMP application OMPi
associates a block of special data called Execution Entity
Control Block (EECB) with every OpenMP thread it manages.
The EECB contains all the information needed by the runtime
in order to schedule the thread, including the size of its team,
the thread’s ID, its nested parallel level, a pointer to its parent
thread EECB (thus a tree of EECBs is formed at runtime) etc.
Whenever a thread starts the execution of a parallel region, a
new EECB is assigned to it, which is later freed when the team
is disbanded.

An important design decision was the placement of EECBs.
These structures are constantly accessed during program exe-
cution, so their placement in scratchpad memory was the only
solution for guaranteed performance. On the other hand, EECBs
may occupy significant space in some execution scenarios,
for example in applications that perform nested parallelism
in great depths or have a certain number of nested parallel
teams which are constantly formed and deformed. To avoid
the successivePE requests to the CC and possible overflow of
scratchpad memory we designed an EECB placement strategy
that uses the minimum memory possible in common OpenMP
application cases.

Our strategy uses the following scheme: in the scratchpad
memory we use a preallocated table of 16 EECBs and a
dynamic list that will be used for all active EECBs. We also use
a dynamic list placed in the fabric memory that will be used

Fig. 6. EECB placement. 1) When a single PE executes a kernel, 2) when
this PE forms a team of 4 OpenMP threads and 3) when a PE of this team
creates a new nested team of 3 OpenMP threads.

in case of nested parallelism. The preallocated table and the
two lists mentioned are also used for recycling EECB data. The
core idea is to always maintain the EECBs of active threads in
scratchpad memory in every execution scenario. In non-nested
parallelism cases the parent data is stored in the scratchpad list.
In contrast, during the execution of nested teams, the parent
data is placed in the fabric memory list.

This hybrid scheme is shown in Fig. 6. Here we show the
EECB placements during the execution of a kernel in three
cases: 1) when a single PE executes this kernel, 2) when this
PE forms a team of 4 OpenMP threads and 3) when a PE of this
team creates a new nested team of 3 OpenMP threads. In case
1), when a PE starts the execution of a kernel it is assigned
an EECB from the preallocated table in scratchpad memory. In
case 2), this PE suspends the execution of its current job and
participates in the new team of threads. To do that it becomes
a parent, acquires a new EECB from the list in the scratchpad
memory (to use as child), it copies the parent EECB data there
and reuses its old EECB. The other threads in the team use
EECBs taken from the table. All EECBs point to the parent
in scratchpad memory list. Therefore in case of non-nested
parallelism all data (parent and child) is placed in scratchpad
memory. Finally in case 3), a thread of this team wants to
form a nested parallel team. To achieve this, it acquires an
EECB from the fabric memory, copies the parent EECB data
there and reuses its old EECB. Other threads in the team use
EECBs taken from the table in the scratchpad memory. Now
the EECBs of child threads point to the EECB in the fabric
memory list. The accesses in fabric memory are slower but
this solution can efficiently support nested parallelism without
wasting memory resources. During the deformation of parallel
teams, the reverse procedure is followed and EECBs from the
lists are copied back to the EECBs in the table. This way active
EECBs are always placed in the scratchpad memory.

B. Parallel Regions

Our runtime treats an OpenMP parallel region as a group
of implicit tasks that are executed in parallel by PEs. When a
PE executing a kernel meets a parallel directive, it suspends
the execution of its current job and sends a request to the
CC in order to supply other PEs with the appropriate implicit
tasks. After that it allocates a new EECB with the procedure
mentioned above and becomes the master PE of the newly
created OpenMP team, executing its implicit task (job). Si-
multaneously, other PEs receive the request of the CC and start



executing their jobs. When a PE finishes its job (i.e. exits the
parallel region) it notifies the CC and then falls to sleep mode.
When all PEs have finished their jobs, the CC informs the
master PE so as to safely do its bookkeeping, return to its
old EECB and resume its suspended job. We chose to utilize
the CC in order to avoid the use of locks and to efficiently
exploit CC’s idle time.

The PEs need memory to use as stack in order to execute
a job. OMPi allocates space for these stacks in the scratch-
pad memory and then uses a recycling mechanism to avoid
unnecessary allocations and deallocations. The default stack
size is 4KB for the master thread (PE 0) and 512 bytes
for all other threads, occupying 11.5KB for a team of 16
concurrent threads. Depending on the application, larger stack
sizes may be required; the actual amount of stack space is user-
controllable by a standard OpenMP environmental variable
(OMP_STACKSIZE).

In the current implementation, the total number of threads
that can co-exist in a cluster is limited to 16. Therefore, we can
have one team of up to 16 threads or two concurrent teams
of up to 8 threads each etc. These parallel teams can result
from the execution of one or multiple offloaded kernels and
at different levels of parallelism. Our runtime can support the
concurrent execution of up to 16 kernels where each kernel
utilizes only one PE. In case all PEs are busy and a PE wants
to create a new OpenMP team, then CC will deny its request
and the PE will execute the code of the parallel region serially.

C. Tasking Infrastructure

Efficient tasking support for the OpenMP model requires
a sophisticated runtime and a rather generous amount of
memory. On the other hand it is uncommon for embedded
applications to have deeply nested tasking behaviors or create
large numbers of nested parallel teams with large memory re-
quirements. Given the limited memory resources of an MPSoC,
we designed a lightweight tasking subsystem. The original
implementation of tasking in the OMPi infrastructure [16] is
targeting general purpose SMPs and multicore systems with
abundant resources, and is clearly unsuitable for an MPSoC
like the one under consideration here.

In OMPi all task bookkeeping information, i.e. task status,
task id, number of children etc, are stored in structures called
task nodes. For better utilization of the limited memory we use
a preallocated table of task nodes that it is used as a recycling
bin. This table is protected by a lock and is located in the
scratchpad memory. At task creation the PEs use this table
to allocate space for new tasks. After the task execution the
corresponding node is recycled. The procedure of allocating
and deallocating nodes includes only the altering of a task
node’s field.

Our tasking subsystem uses two important structures both
located in a cluster scratchpad memory. The first one is a
shared FIFO queue with a fixed size which is used to store
pending tasks of all parallel teams that are executed within a
cluster. This queue is protected by a single lock. The second
structure is composed of private queues, one for each PE. These
queues have a particularly small size and are also protected by
a single lock.

We have extended the OpenMP task directive with an extra
optional clause so one can request explicitly by what PE and
on which cluster a task should be executed:

#pragma omp task on(cluster id, pe id)

This extension gives the user the ability to control task
placement explicitly, since by default OpenMP tasks may
be executed by any thread. This may also prove useful in
increasing code locality. In case a PE meets this new task
directive it enqueues the new job to the appropriate private
queue.

There are three scheduling points in our tasking imple-
mentation. The first one is the aforementioned new clause. The
other two are the taskwait and barrier clauses where PEs
search for pending tasks in the global and their private queues
and execute them. At taskwait a PE executes child tasks
defined in the context of its current task, while at a barrier
a PE will execute all tasks generated by its current OpenMP
team.

D. Thread Synchronization & Locks

The HWS (hardware synchronizer) of the accelerator pro-
vides a small number of atomic counters (ACs) and an even
smaller number of events. However, the tasking infrastructure
is in great need for fine grain synchronization and a straight-
forward implementation of locks (using 1 AC per lock) is not
feasible, because the atomic counters provided are not enough
to cover the needs of typical task-based OpenMP applications.
To solve this problem we present a novel locking scheme
that provides an unlimited number of locks, using minimal
hardware resources.

The basic idea is to use a small fixed number of ACs and
map all program locks to them. Locks are implemented by
plain integers. Access to a block of those integers is then
protected by a block lock implemented by an AC. All locks
share a global event. Thus a PE first access the block AC
and then set/unset the actual (integer) lock. The lock handling
mechanism is shown in Fig. 7.

For locking, a thread first tries to get access to the lock by
constantly increasing the value of the AC. When an AC value
is 0 a thread can access the lock data, otherwise some other
thread is making changes. After getting access it checks the
value of the actual integer lock (locked). If locked has a
value of 0, then it locks it by setting its value to 1 and releases
the AC by setting its value to 0. In case locked is 1, the thread
goes to sleep and waits for the event. For unlocking, a thread
again gets access through the AC, unlocks the actual lock by
setting locked to 0, releases the AC and signals the event to
wake up any sleeping threads.

An interesting part is the initialization procedure of the
lock data. The AC field is initialized through the assign AC
function. This function uses a preallocated table of ACs and
returns the next available AC. If all ACs are being used then
the same ACs are used again, forming thus blocks of locks
protected by the same atomic counter. In order to equalize the
load on the block ACs, we allocate the actual integer locks in
a round robin manner among the blocks.

OpenMP barriers are also implemented using ACs. An
atomic counter is used to count the number of threads that



void Initialize(lock l) {
l.lockAc = assign_AC();
l.lockEvt = globalEvt;
l.loked = 0;

}

void Unlock(lock l) {
/* Grant access to lock */
old = 0;
while (old != 1)
old = increase(l.lockAc);

/* Unlock, wake up PEs */
l.locked = 0;
set_value(l.lockAc, 0);
raise_evt(lock.lockEvt);

}

void Lock(lock l) {
while(1) {
/* Grant access to lock */
old = 0;
while (old != 1)

old = increase(l.lockAc);

if (l.locked == 0 ) { /* Try to lock */
l.locked = 1;
set_value(l.lockAc, 0);
break;

}
else { /* Go to sleep */

set_value(l.lockAc, 0);
wait_event(l.lockEvt);

}
}

}

Fig. 7. Code for lock initialization, locking and unlocking

have reached the barrier. At the barrier all waiting threads
keep looking for pending tasks to execute until the last one
releases them.

E. Summary

The runtime infrastructure we presented has been highly
optimized in order to provide full and efficient OpenMP sup-
port with a minimal footprint. The total memory requirements
are approximately 9.5KB for a team of 16 threads; this includes
everything (i.e. storage for EECBs, task pools, locks, etc) except
the thread stacks which by default occupy 11.5KB as discussed
above. Consequently, in a typical run our library consumes
only about 21KB (≈8%) of the TCDM memory, leaving a large
portion of it available for the application.

The current implementation can dedicate only one STHORM
cluster per offloaded kernel. This means that all four clusters
can be utilized albeit by four different kernels. A single kernel
may thus only utilize up to 16 PEs of a single cluster. We
currently extend our framework to allow a kernel to exploit
more than one cluster.

VI. PRELIMINARY EXPERIMENTAL RESULTS

We have conducted a number of experiments in order to
test the efficiency of our OpenMP platform in the context
of the STHORM accelerator. An actual implementation of the
STHORM platform is not currently available. Consequently,
for our experiments we utilized a cycle-accurate simulator

TABLE I. OVERHEADS FOR VARIOUS OPERATIONS (16 THREADS)

Operation # Cycles
kernel offload 6283
omp parallel 37750

omp for 8427
omp barrier 11941

Fig. 8. Performance of matrix multiplication and the Laplace equation solver

provided by ST Microelectronics. The simulator is accompa-
nied by a software development kit. Finally the host processor
consists of a dual core ARM Cortex CPU. After the simulation
of an application a detailed trace file is produced for the
execution steps within the MPSoC. We utilized a provided
performance analyzer tool to extract information from these
trace files.

First we present the cost for some crucial operations of
the runtime system. In particular, in Table I we provide the
overheads (in cycles) for offloading a kernel to the fabric and
for three important OpenMP constructs: creation of a parallel
team, loop worksharing and team barrier. The offloading
overhead is measured by repeatedly submitting empty kernels
for execution through a smecy map directive and counting
the average number of cycles. For the last three we considered
a team of 16 threads and followed the method of the EPCC
benchmarks [17]. The larger overhead of the parallel construct
is justified because of the extensive communication required
among the PE that encounters the parallel region, the CC and
the rest of the PEs.

Next, we present performance results for three applications:
matrix multiplication, Laplace equation solver and calculation
of the Mandelbrot set. We parallelized these kernels using
OpenMP within the offloaded code and executed them in a
cluster of the accelerator. The default stack sizes were used
(512 bytes per worker and 4KB for the master thread) and
the data sets were chosen so as to fit within the scratchpad
memory.

In Fig. 8 we plot the speedup curves for the first two
applications. Matrix multiplication uses the standard triple
loop computation for matrices of 64 × 64 floats. All three



Fig. 9. Speedup for the Mandelbrot set with a variety of loop schedules

matrices (including the result) fit in the scratchpad memory.
It is worth mentioning that the only code modification during
the parallelization process was the addition of one extra line
of a #pragma omp parallel for directive. This greatly
shows the simplicity and high level parallelization possible by
OpenMP. The same figure includes the speedup curve of a
simple Laplace equation solver with a 4-point stencil operation
and 100 iterations. The parallelization technique utilizes two
matrices of 162 × 162 floats, totaling 205KB which fits with
the available TCDM space. In both cases, we observe a close
to ideal behavior.

Finally, Fig. 9 shows the performance of of the Mandelbrot
set calculation for an image of 362 × 208 pixels (occupying
≈220KB). We plot results for different scheduling policies of
the OpenMP for construct. Due to the highly unbalanced
iteration load, the worst behavior is exhibited by the static
schedule while the dynamic schedule proves to be the best
policy, achieving almost linear speedup. The above results
demonstrate the efficiency of our runtime infrastructure.

VII. CONCLUSION

We presented the design and implementation of the
OpenMP programming model for the STHORM platform. The
architecture of our infrastructure is general enough to allow
relatively straightforward porting to other MPSoC accelerators
that feature general-purpose processing elements. In addition,
to the best of our knowledge, this is the first work that supports
OpenMP both at the host and on the fabric side, and in a
seamless manner.

The efficiency of an OpenMP runtime depends on how
well it manages the limited available resources of the MPSoC.
OpenMP runtime libraries targeting general-purpose multi-
processor and multicore machines are largely unsuitable. A
simplified design is called for in order to provide only essential
capabilities without sacrificing performance while at the same
time saving the majority of the resources for the user programs.

We currently work in two directions: first, to provide full
fabric (all clusters) support for a single offloaded kernel func-
tion and second, to assess and optimize the power requirements

of our implementation. Finally, it is in our plans to make our
implementation freely accessible when the STHORM platform
becomes available in retail.
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“A streaming machine description and programming model,” in Proc
of SAMOS ’07, 7th international conference on Embedded computer
systems: architectures, modeling, and simulation. Samos, Greece:
Springer-Verlag, Jul. 2007, pp. 107–116.

[13] B. Chapman, L. Huang, E. Biscondi, E. Stotzer, A. Shrivastava, and
A. Gatherer, “Implementing OpenMP on a high performance embed-
ded multicore MPSoC,” in Proc. of IPDPS ’09, IEEE International
Symposium on Parallel&Distributed Processing. Rome, Italy: IEEE
Computer Society, May 2009, pp. 1–8.

[14] P. Burgio, G. Tagliavini, A. Marongiu, and L. Benini, “Enabling
Fine-Grained OpenMP Tasking on Tightly-Coupled Shared Memory
Clusters,” in Proc. of DATE 13, Design Automation and Testing in
Europe - DATE (to appear on), Grenoble, France, Mar. 2013.

[15] M. Torquati, M. Vanneschi, M. Amini, and G. et. al, “An innovative
compilation tool-chain for embedded multi-core architectures,” in Proc.
of Embedded World Conference 2012, Nuremberg, Germany, Feb. 2012.

[16] S. N. Agathos, P. E. Hadjidoukas, and V. V. Dimakopoulos, “Design
and Implementation of OpenMP Tasks in the OMPi Compiler.” in Proc.
PCI ’11, 15th Panhellenic Conference on Informatics, Kastoria, Greece,
Sept. 2011, pp. 265–269.

[17] M. J. Bull, “Measuring Synchronisation and Scheduling Overheads in
OpenMP,” in Proc. of 1st EWOMP, European Workshop on OpenMP,
Lund, Sweden, Sept. 1999, pp. 99–105.

http://www.openmp.org
http://www.openacc.org
http://www.openacc.org

	Introduction
	Related Work
	System Architecture
	Implementing OpenMP
	Programming Model
	Data Management

	Runtime Support
	eecb Management
	Parallel Regions
	Tasking Infrastructure
	Thread Synchronization & Locks
	Summary

	Preliminary Experimental Results
	Conclusion
	References

