
The original publication is available at www.springlink.com 1

Task-based Execution of Nested OpenMP Loops∗

Spiros N. Agathos† Panagiotis E. Hadjidoukas
Vassilios V. Dimakopoulos

Department of Computer Science, University of Ioannina
P.O. Box 1186, Ioannina, Greece, GR-45110
{sagathos,phadjido,dimako}cs.uoi.gr

Abstract

In this work we propose a novel technique to reduce the overheads re-
lated to nested parallel loops in OpenMP programs. In particular we show
that in many cases it is possible to replace the code of a nested parallel-for
loop with equivalent code that creates tasks instead of threads, thereby
limiting parallelism levels while allowing more opportunities for runtime
load balancing. In addition we present the details of an implementation
of this technique that is able to perform the whole procedure completely
transparently. We have experimented extensively to determine the effec-
tiveness of our methods. The results show the actual performance gains
we obtain (up to 25% in a particular application) as compared to other
OpenMP implementations that are forced to suffer nested parallelism over-
heads.

1 Introduction

OpenMP has become one of the most popular models for programming shared-
memory platforms and this is not without good reasons; just to name a few,
the base language (C/C++/Fortran) does not change, high-level abstractions
are provided, most low-level threading details need not be dealt with and all
these lead to ease of use and higher productivity. At the same time significant
performance benefits are possible. While the initial target of OpenMP was
mostly loop-level parallelism, its expressiveness expanded significantly with the
addition of tasks in V3.0 of the specifications [8], making it now suitable for a
quite large class of parallel applications.

Among the important features included from the very beginnings of OpenMP
was nested parallelism, that is the ability of any running thread to create its

∗This work has been supported in part by the General Secretariat for Research and Tech-
nology and the European Commission (ERDF) through the Artemisia SMECY project (grant
100230)

†S.N. Agathos is supported by the Greek State Scholarships Foundation (IKY)

http://dx.doi.org/10.1007/978-3-642-30961-8_16


own team of child threads. Although actual support for nested parallelism
was slow to appear in implementations, nowadays most of them support it in
some way. However, it is well known that nested parallelism, while desirable,
is quite difficult to handle efficiently in practice, as it easily leads to processor
oversubscription, which may cause significant performance degradation.

The addition of the collapse clause in V3.0 of the specifications can be
seen as a way to avoid the overheads of spawning nested parallelism for certain
nested loops. However, it is not always possible to use the collapse clause
since:

• the loops may not be perfectly nested

• the bounds of an inner loop may be dependent on the index of the outer
loop

• the inner loop may be within the extend of a general parallel region, not
a parallel-loop region.

The nature of OpenMP loops is relatively simple; they are basically do-
all structures with independent iterations, similar to what is available in other
programming systems and languages (e.g., the FORALL construct in Fortran 95,
the parallel for template in Intel TBB [10], or cilk for in Cilk++ [7]). What
is interesting is that some of these systems implement do-all loops without
spawning threads; they are mostly creating some kind of task set to perform
the job. Can an OpenMP implementation do the same? While this seems
rather useless for first-level parallel-for loops (since there is no team of threads
to execute the tasks; only the initial thread is active), it may be worthwhile in
a nested level.

What we propose here is a novel way of avoiding nested parallel loop over-
heads through the use of tasks. In particular, as our first contribution, we show
that it is possible to replace a second-level loop by code that creates tasks which
perform equivalent computations; the tasks are executed by the first-level team
of threads, completely avoiding the overheads of creating second-level teams of
threads and oversubscribing the system. We use the proposed method to show
experimentally the performance improvement potential.

At the same time we observe that our techniques require sizable code changes
to be performed by the application programmer, while they are not always appli-
cable for arbitrary loop bodies. Our second contribution is then to automate the
whole procedure and provide transparent tasking from the loop nests, which,
except the obvious usability advantages, does not have the limitations of the
manual approach. We present the implementation details of our proposal in the
context of the ompi [4] compiler. Finally, we perform a performance study using
synthetic benchmarks as well as a face-detection application that utilizes nested
parallel loops; all experimental results depict the performance gains attainable
by our techniques.

The rest of the paper is organized as follows: in Section 2 we present the
necessary code transformations that a programmer must perform in order to

2



#pragma omp parallel num_threads(M)

{

#pragma omp parallel for\

schedule(static) num_threads(N)

for (i=LB; i<UB; i++) {

<body>

}

}

Figure 1: Nested parallel loop ex-
ample

#pragma omp parallel num_threads(M)

{

for (t=0; t<N; t++)

#pragma omp task

{

calculate(N,LB,UB,&lb,&ub);

for (i=lb; i<ub; i++)

<body>

}

#pragma omp taskwait

}

Figure 2: Transformation outline of
Fig.1.

produce tasking code equivalent to a nested loop region, for cases where this
is indeed possible. In Section 3 we discuss the transparent implementation of
the proposed methodology, which is applicable for general loops and schedules.
Section 4 contains our performance experiments and finally Section 5 concludes
this paper.

2 Proof of Concept: Re-Writing Loop Code Man-
ually

Consider the sample OpenMP code shown in Fig. 1. There exists a nested
parallel for-loop which will normally spawn a team of N threads for each of the
M (first-level) threads that participate in the outer parallel region1; a total of
M×N threads may be simultaneously active executing second-level parallelism,
leading to potentially excessive system oversubscription.

Fig. 2 illustrates how the code of Fig. 1 can be re-written so as to make use
of OpenMP tasks instead of nested parallelism. The idea is conceptually simple:
each first-level thread creates N tasks (i.e. equal in number to the original code’s
second-level threads), and then waits until all tasks are executed. The code of
each task contains the original loop body; in order to perform the same work
the corresponding thread would perform, it is necessary to calculate the exact
iterations that should be executed, hence the calculate() call. In essence, the
user code must perform the same calculations that the runtime system would
perform for the case of Fig. 1 when handing out the iterations for the static
schedule.

Why does it work? The answer is that the original code creates implicit
tasks, according to OpenMP terminology, while the code in Fig. 2 emulates
them through the use of explicit tasking. Also, while implicit tasks may con-
tain barriers (which are not allowed within explicit tasks), there is no such a

1Even if num threads(M) is absent from the outer parallel construct, the standard practice
is to produce as many threads as the number of available processors. Assume, without loss of
generality, that they are equal to M .

3



(a) GCC (b) ICC

Figure 3: Performance of the proposed technique; speedup for a face detection
algorithm applied on an test image with 57 faces.

possibility here since the implicit tasks in Fig. 1 only execute independent loop
iterations, and within the loop body there can not exist a barrier closely nested.
As a result, the programs in Figs. 1 and 2 are equivalent, and no other changes
are required2, (we will return to this in the next section).

The important difference is that the code in Fig. 2 does not generate a sec-
ond level of parallelism. It utilizes the tasking subsystem of the compiler and
uses only the available M threads to execute the M × N tasks generated in
total, allowing for improved load balance opportunities. While task creation
and execution is not without overheads, it remains mostly in the realm of the
OpenMP implementation to deal with it efficiently. On the other hand control-
ling a large amount of threads resulting from nested parallel regions may not
be possible, especially when the OpenMP runtime relies on kernel-level threads
(such as posix threads, which is a usual case).

We applied the above technique to the parallel version of a high-performance
face detection application. The application itself, the 16-core system as well as
the software configuration we used for our experiments are described in more
detail in Section 4 so we will avoid repeating it here. The important issue is
that the application contains a first-level parallel loop with unbalanced iteration
load. The number of iterations depends on the image size and is usually less than
14. Inside this loop, there exist multiple second-level parallel for-loops, which
clearly need to be exploited in order to increase performance. We re-wrote these
second-level loops according to the method described above. We compiled the
code with various OpenMP compilers and in Fig. 3 we show the execution results
obtained using GNU GCC and Intel ICC on a particular image containing 57
faces; similar results were observed with other compilers, too. In the figure, the

2Actually one more change may be need. Because in task regions the data sharing attributes
of referenced variables default to firstprivate while in parallel regions they default to shared

the user must explicitly set the data sharing attributes of all referenced variables in the new
task-based code.

4



new application code is designated as l2task. The original code which utilized
nested parallelism is the l2true part. For comparison, we include the l2false
bars which represent the original code executed with nested parallelism disabled
(i.e. the environmental variable OMP NESTED was set to false).

In the plots we vary the number of participating threads per level using up
to M = 12 threads for the first level and up to N = 8 threads in the second
level. For both compilers nested parallelism (l2true) boosts performance as
long as processors are not heavily oversubscribed. It can be seen that GCC’s
performance drops for large number of threads, while ICC seems to handle the
situation much better, although its performance approximately levels off after
the 8× 6 configuration. Our approach results in better speedups for more than
8 first-level threads in both cases, confirming the validity of our approach. The
lower performance shown in smaller configurations is expected since we only rely
on the few first-level threads while nested parallelism is able to utilize all the 16
processors in the system. Finally, in the larger configurations, notice that while
the l2true code utilizes all the 16 available processors (albeit with increased
overheads), we obtain better speedups with only 12 threads.

3 Overcoming Limitations by Automatic Trans-
formation

In the previous section we presented the core idea behind our method. The pro-
posed code transformation was exemplified using a loop with a static schedule.
A similar approach can be used for any schedule type, e.g. dynamic or guided.
In these cases, however, the new code does not execute just one chunk of iter-
ations; it should rather be enclosed within another loop that asks continuously
for chunks of iterations. Calculating the iteration bounds becomes considerably
more complicated as it has to take into account the competition / synchroniza-
tion among tasks and keep some kind of state in order to hand out the iterations
in accordance to the loop schedule. In essence, the user has to re-implement
a mini worksharing runtime subsystem in order to cover all possible schedule
configurations. This is clearly both undesirable for the user and redundant as
far as the compiler is concerned, since all this functionality is already present in
its OpenMP runtime library.

Another important issue is that even if the user is determined to do all this
work, this will not be enough to make it applicable to all possible cases. The
reason is that within the loop body there may exist references to thread-specific
quantities, for example,

• the loop body may contain calls to omp_get_thread_num() and utilize
the thread’s ID in computations, or,

• the loop body may access threadprivate variables.

The above makes it almost impossible to move the loop’s body to independent
tasks, as there is no guarantee as to which threads will execute what tasks.

5



In conclusion, the manual code transformations need extensive programmer
involvement and are not applicable in the general case. On the other hand,
all the required functionality is already implemented within the runtime library
of the OpenMP system. Additionally, the runtime system has access to all
the stored thread-specific quantities. It should thus be in position to support
the required transformations seamlessly. In this section we describe the actual
implementation of this idea in the runtime system of the ompi compiler.

3.1 The OMPi Compiler

ompi is an experimental, lightweight OpenMP infrastructure for C. It consists of
a source-to-source compiler and a runtime library. The compiler takes as input
C code with OpenMP directives and outputs multithreaded C code augmented
with calls to its runtime library, ready to be compiled by any standard C com-
piler. It conforms to V3.0 of the specifications while also supporting parts of
the recently announced V3.1 [9].

Here we provide a brief description of portions of ompi and its tasking im-
plementation that are necessary for our discussion. A more detailed description
was given by Agathos et al [1]. The compiler uses outlining to move the code
residing within a parallel or a task region to a new function and then, de-
pending on the construct, inserts calls to create a team of threads or a task to
execute the code of the new function.

The runtime system of ompi has a modular architecture in order to facilitate
experimentation with different threading libraries. In particular, it is composed
of two largely independent layers. The upper layer (ort) carries all required
OpenMP functionality by controlling a number of abstract execution entities
(EEs). The lower layer (eelib) is responsible for actually providing the EEs,
along with some synchronization primitives. A significant number of eelibs is
available. The default one is built on top of posix threads, while there also
exists a library which is based on high-performance user-level threads [6].

ompi provides a tasking layer within ort which can be used with any eelib,
although the runtime design allows for the latter to provide its own tasking
functionality, if desired. Each execution entity (thread) is equipped with a
queue (task queue) which is used to store all the pending tasks it has created.
ompi’s task scheduler is based on work stealing [2], whereby a thread that
has finished executing its own tasks tries to steal tasks from other threads’
task queues. After a new task is created, it is placed in the thread’s queue
until some thread decides to execute it. Task queues have fixed length, which
means that they can store up to a certain number of pending tasks. This
number is one of ompi’s runtime parameters, controlled through an environment
variable (OMPI_TASKQ_SIZE). The manipulation of task queues is based on a
highly efficient lock-free algorithm.

When a thread is about to execute its implicit task (parallel region), a new
task descriptor is allocated and the task code is executed immediately. When-
ever a thread reaches an explicit task construct, it can either allocate a new task
node and submit the corresponding task for deferred execution, or it can suspend

6



the execution of the current task and execute the new task immediately; ompi’s
default behavior is to choose the former. That is, it implements a breadth-first
task scheduling policy. It resorts to the second alternative (depth-first task ex-
ecution) when the task queue is full. In that case the thread enters throttling
mode, where every encountered task is executed immediately to completion.
Notice that in this case the current task (although temporarily suspended in
favor of the new task) does not enter the task queue, so it can never be resumed
by another thread. In effect, all tasks are tied. Throttling mode is disabled
when 30% of the task queue capacity becomes again available.

3.2 Automating the Process

In order to apply our technique we had to modify the code produced by the ompi
compiler as well as add new functionality to the runtime system. The actual
changes in the compiler were rather minimal and limited to the case where
a combined parallel for construct is encountered. An (identical) outlined
function is still created which includes all the code needed for sharing the loop
iterations among threads. However, the call to create the team of threads now
includes a new parameter to let the runtime know that this is a combined loop
construct. This covers nested and orphaned construct cases alike.

The changes in the runtime system (ort) were more extensive. Whenever a
team of threads needs to be created, if the team is going to operate in nesting
level > 1 and the parallel region is actually coming from a combined parallel

for construct3, then, instead of threads, an equal number of explicit tasks are
created. However, as noted previously this is not enough to cover the cases
where the user code accesses thread-specific data.

ompi associates a control block (eecb) with every execution entity it man-
ages. The eecb contains everything ort needs in order to schedule the thread,
including the size of the team, the thread ID within the team, its parallel level
etc. The only thread-specific data not actually stored in a threads eecb are
threadprivate variables. These are are allocated at the team’s parent control
block (in order to guarantee persistence across parallel regions, as required by
the OpenMP rules). The eecb makes them available through a pointer to the
parent eecb (thus a tree of eecbs is formed at runtime). In conclusion, every-
thing a running thread requires is serviced through its control block. Whenever
a thread starts the execution of a parallel region, ort assigns a new eecb to it,
which is later freed when the team is disbanded.

Based on the above, the main idea behind our implementation is that the
produced tasks try to mimic threads. Every task produced (instead of a thread)
when a nested combined parallel loop is encountered, carries a special flag along
with the ID number the corresponding thread would have. The tasks are inserted
as normal in the task queue of the outer-level thread that encountered the
nested construct. When such a task is scheduled for execution (either by the
same thread or a thief), the flag will cause the following actions:

3(and if the user allows; a new environmental variable lets the user decide whether the new
technique should be applied or not)

7



• A new eecb is created, as would be done if a new nested thread was
created in the first place, updating the tree of eecbs correspondingly.

• The outer-level thread that is about to execute the task assumes temporar-
ily the new eecb and sets its thread ID equal to the ID stored within the
task.

• The task becomes tied to this thread.

In essence, an outer level thread while executing the task in question, obtains
all the characteristics of the inner level thread that would be created normally.
As such it is able to handle thread-specific data accesses, overcoming all the pre-
viously mentioned limitations. Notice for example that because the old control
block of the thread remains intact in the tree, all information needed to ser-
vice runtime calls such as omp_get_level(), omp_get_active_level(), etc,
is readily available. When the task execution is finished, the temporary eecb
is freed and the thread resumes its original control block, continuing with its
normal operation.

3.3 Ordered

The above implementation is able to substitute a nested team of threads by
an equivalent set of tasks, for any OpenMP schedule type. However, one of
our initial concerns was the possible presence of the ordered directive. This
particular directive forces ordering dependencies among the iteration executors;
when the executors are threads there is no problem whatsoever but what about
tasks? Is there a possibility that particular task scheduling sequences lead to
deadlock? In all cases but one, the answer is no. This is because even if there is
only one thread available to execute the generated tasks, there will always be at
least one task active, advancing the iteration count and obtaining the next chunk
of iterations. For example, consider the case of dynamic schedules; if there is
a thread (task) blocked at an ordered directive then there must exist at least
one other thread that obtained the (sequentially) previous chunk; eventually
the latter will be executed and the turn of the former will come.

The single problematic case is the static schedule with specified chunk size.
Although it is a matter of implementation, the straightforward way of executing
it is by using a double loop; the outer loop iterates over the series of chunks
while the inner loop goes over the actual iterations of a particular chunk. As the
loops bounds are pre-calculated (since for this particular schedule they are not
subject to competition among the executors), imposing an ordered directive
may lead to a deadlocked situation, depending on how tasks are implemented /
scheduled.

To see this consider the case of having M (level-1) threads to execute N >
M tasks generated by the level-2 parallel loop. When all threads have gone
through their first chunk of iterations, they will be blocked at an ordered region
waiting for their next chunk’s turn. However, if tasks are executed on a run-to-

8



delay() {

volatile i, a;

for (i=0; i < TASK_LOAD; i++)

a += i;

}

testpfor() {

for(i=0; i <= REPS; i++)

#pragma omp parallel for num_threads(N)

for (j=0; j < N; j++)

delay();

}

main() {

#pragma omp parallel for num_threads(16)

for (i=0; i < 16;t++)

testpfor();

}

Figure 4: Code for synthetic benchmark

completion basis, the remaining N − M tasks will never be given a change to
run and advance the iteration count, resulting in a deadlock.

ompi by default executes tasks to completion and is thus susceptible to this
problem. The engineering solution we currently follow is to avoid the problem
altogether: if the loop schedule is static and an explicit chunk size is given and
an ordered clause is present, nested parallelism is generated as usual, instead
of tasks. We are currently working on the support for OpenMP V3.1 which
includes a new taskyield directive. Yielding upon an imminent ordered block
should allow the possibility of other tasks to be executed an thus make progress.

4 Evaluation

We have run several experiments in order to evaluate the performance gains of
our implementation. We report here the results obtained on a server with two 8-
core AMD Opteron 6128 CPUs operating at 2GHz and a total of 16GB of main
memory. The operating system is Debian Squeeze based on the 2.6.32.5 Linux
kernel. In our experiments, apart from ompi, we had the following compilers
available: GNU gcc (version 4.4.5-8), Intel icc (version 12.1.0) Oracle suncc
(version 12.2). We used “-O3 -fopenmp” flags for gcc, “-fast -openmp” flags
for icc and “-fast -xopenmp=parallel” flags for suncc. gcc with the “-O3”
flag was used as a back-end compiler for ompi. For all compilers, the default
runtime settings were used. These settings also happened to produce the best
results.

4.1 Synthetic Benchmark

Our first experiments aim at showing directly the performance gains possible
with our methodology in the given system. A synthetic benchmark is used,
measuring the time taken to execute the code shown in Fig. 4. This code is

9



(a) TASK LOAD = 500 (b) N = 4 second-level threads

Figure 5: Synthetic benchmark execution times

based on the EPCC microbenchmarks [3] which are used to estimate OpenMP
construct overheads. We instead measure the total execution time. In the main
function a team of 16 threads is created and each thread calls the testpfor()

function once. In there a thread executes REPS times a combined parallel

for directive, creating N second-level threads, each one performing work, the
granularity of which is controlled by the TASK LOAD parameter in the delay()

function. We used REPS= 100000 and varied the TASK LOAD value.
We present the results in Fig. 5. In Fig. 5(a) we consider fine grain work

(TASK LOAD = 500) and vary the number of second-level threads in order to
stress the runtime system. The growing number of threads results in consider-
able overheads that are clearly depicted in the total execution time. Because
ompi avoids creating nested parallelism, it exhibits remarkable stability in its
performance, which is only very slightly affected by an increasing number of
generated tasks.

In figure 5(b) we fixed the number of second-level threads to N = 4 and
varied the work granularity, with TASK LOAD values in the range of 1K to 150K.
We use a logarithmic scale due to the wide range of timing results. As expected,
for finer grain work our methodology results in significantly faster execution as
compared to other compilers. As the work gets coarser, all compilers tend to
exhibit similar performance since the task or thread manipulation stops being
the performance bottleneck and execution time is dominated by the actual com-
putation. For the coarser load, all compilers execute the benchmark in about
2000 sec.

4.2 Face Detection

As already mentioned in Section 2, we also experimented with a full face detec-
tion application, which has been described in detail by Hadjidoukas et al [5]. It
takes as input an image and discovers the number of faces depicted in it, along
with their position in the image. The code has been parallelized with OpenMP,
utilizing nested parallelism in order to obtain better performance than what is

10



for each scale { /* level 1 */

for i=1 to 4 {

<body1>

}

for i=1 to 14 {

<body2>

}

for i=1 to 14 {

<body3>

}

}

Figure 6: Structure of the main computational loop

(a) For the class57 image (b) For processing all images

Figure 7: Face detection results (for each compiler the speedups are calculated
in comparison to its own sequential execution time).

possible with only single-level loop parallelization.
In Fig. 6 we outline the structure of the main loop nest of the application.

Initially the image is subsampled repeatedly to create a pyramid of different
scales, the number of which is dependent on the images size and is usually less
than 14. For each scale (this is the first-level loop) a series of convolutional
filters and non-linear subsamplings are applied through the 3 nested for-loops.
Because of the load imbalance between the different image scales, the level-1
loop is parallelized through a parallel for directive with dynamic schedule,
while for the inner loops a parallel for directive with a static schedule is
applied.

In our experiments we vary the number of participating threads per paral-
lelism level; a configuration of M × N threads uses M (≤ 12) threads in the
first level and N (≤ 8) threads for the second level. In Fig. 7 we show the
performance obtained when each of the available compilers was used. We do
not include results for single-level parallelization (N = 1) as they were inferior
to what we obtained when N > 1. For these plots the speedups for each com-
piler are calculated in relation to the sequential execution time obtained by the
same compiler so that we can show how it behaves under nested parallelism. In

11



Table 1: Best execution times and comparison with ompi when processing all
images (speedup is calculated in comparison to the best sequential time overall).
Compiler Sequential Best Parallel Speedup ompi

time (sec) configuration time (sec) improvement

gcc 37.329 6x4 9.210 3.219 25.5%
icc 37.282 12x8 9.163 3.236 25.2%
suncc 29.656 4x4 8.778 3.378 21.9%
ompi 37.329 16x8 6.853 4.327 –

Fig. 7(a) the application used as input a particularly demanding image which
contains 57 faces (the ‘class57’ image from the CMU test set [11]). For obtaining
the results in Fig. 7(b) we processed a series of 161 images with varying sizes
and faces, one after the other.

All compilers, except ompi are using nested parallelism, spawning M × N
threads, while ompi uses only M threads that execute M × N tasks in total.
The results lead to similar conclusions in both plots. For the 4×4 configuration
ompi exhibits the lowest speedup due to the few (4) available threads while
all other compilers employ 16 threads in total, potentially exploiting all the
16 cores of the system. On the other hand, when 8 or more threads are used
in the first level, ompi exhibits the highest speedups. icc exhibits the second
best performance and when processing image class57 it attains stable speedups
for all thread configurations. For the set of all images icc exhibits its best
behavior when 4 × 4 threads are used, while for more threads synchronization
overheads cause poorer speedups. gcc get its best speedup for image class57
for 8× 6 threads, whereas for set of all images maximum speedup is shown for
6×4 threads. suncc exhibits similar execution times compared to icc for both
inputs in all thread configurations. The lower speedups shown for suncc are
due to its shorter sequential execution times compared to all other compilers.

For completeness, in Table 1 we report the best performance attained by
each compiler based on absolute execution times. For each compiler, we include
the time required for a sequential run, the best observed configuration and the
parallel execution time for that configuration. Speedups are then calculated in
relation to the lowest sequential execution time, which is achieved using the
suncc compiler. The last column demonstrates the performance improvement
ompi achieves in comparison to each compiler, based on the parallel execution
times. Notice that for a fair comparison we also considered the 16×N configu-
ration, which, although not advantageous for the rest of the compilers, it gives
ompi the chance to utilize all the available processors. It should be clear that
our task-based technique outperforms the conventional implementations which
utilize nested thread teams.

5 Conclusion

We have proposed a novel technique for executing nested parallel for loops
using tasks instead of threads, thereby avoiding the overheads associated with

12



nested parallelism in such cases. The technique we present is potentially ap-
plicable to any OpenMP runtime system that supports tasking and requires
almost no changes in the compiler-produced code. It has been implemented in
the framework of the OMPi compiler and has been shown to offer significant
performance gains. While in this work we were mostly interested in showing the
performance potential, as a future work we envisage an adaptive application of
our technique. In particular, we believe that appropriate decisions can be made
at runtime, depending on the number of active threads; if the active threads are
much less than the available system processors it may be more appropriate to
create nested threads instead of tasks.

Our technique can be applied to nested parallel sections regions without
any alterations, as well, and this is currently under implementation in OMPi. It
is not applicable, though, to general nested parallel regions. This is because par-
allel regions produce threads that may contain barrier synchronizations, which
are not allowed within tasks. Nevertheless, it seems plausible to investigate this
further and we are actually working on this possibility within our psthread li-
brary [6, 1]; this library is based on user-level threads that are used to instantiate
both OpenMP threads and OpenMP tasks.

References

[1] Agathos, S.N., Hadjidoukas, P.E., Dimakopoulos, V.V.: Design and Imple-
mentation of OpenMP Tasks in the OMPi Compiler. In: Proc. PCI ’11,
15th Panhellenic Conference on Informatics. pp. 265–269. IEEE, Kastoria,
Greece (Sept 2011)

[2] Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall,
K.H., Zhou, Y.: Cilk: An efficient multithreaded runtime system. J. Parallel
Distrib. Comput. 37(1), 55–69 (1996)

[3] Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in
OpenMP. In: Proc. of 1st EWOMP, European Workshop on OpenMP. pp.
99–105. Lund, Sweden (Sept 1999)

[4] Dimakopoulos, V.V., Leontiadis, E., Tzoumas, G.: A portable C compiler
for OpenMP V.2.0. In: roc. EWOMP 2003, 5th European Workshop on
OpenMP. pp. 5–11. Aachen, Germany (Sept 2003)

[5] Hadjidoukas, P.E., Dimakopoulos, V.V., Delakis, M., Garcia, C.: A high-
performance face detection system using OpenMP. Concurrency and Com-
putation: Practice and Experience 21, 1819–1837 (October 2009)

[6] Hadjidoukas, P.E., Dimakopoulos, V.V.: Nested Parallelism in the OMPi
OpenMP/C Compiler. In: Proc. Euro-Par ’07, 13th Int’l Euro-Par Confer-
ence on Parallel Processing. pp. 662–671. Rennes, France (Aug 2007)

[7] Leiserson, C.E.: The Cilk++ concurrency platform. J. of Supercomputing
51, 244–257 (2012)

13



[8] OpenMP ARB: OpenMP Application Program Interface V3.0 (May 2008)

[9] OpenMP ARB: OpenMP Application Program Interface V3.1 (July 2011)

[10] Reinders, J.: Intel threading building blocks. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, first edn. (2007)

[11] Rowley, H., Baluja, S., Kanade, T.: Neural network-based face detection.
IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 23–28 (1998)

14


	Introduction
	Proof of Concept: Re-Writing Loop Code Manually
	Overcoming Limitations by Automatic Transformation
	The OMPi Compiler
	Automating the Process
	Ordered

	Evaluation
	Synthetic Benchmark
	Face Detection

	Conclusion

