
The original publication is available at www.springlink.com 1

Speeding Up OpenMP Tasking∗

Spiros N. Agathos† Nikolaos D. Kallimanis‡

Vassilios V. Dimakopoulos
Department of Computer Science, University of Ioannina

P.O. Box 1186, Ioannina, Greece, GR-45110
{sagathos,nkallima,dimako}cs.uoi.gr

Abstract

In this work we present a highly efficient implementation of OpenMP tasks.
It is based on a runtime infrastructure architected for data locality, a crucial pre-
requisite for exploiting the NUMA nature of modern multicore multiprocessors.
In addition, we employ fast work-stealing structures, based on a novel, efficient
and fair blocking algorithm. Synthetic benchmarks show up to a 6-fold increase in
throughput (tasks completed per second), while for a task-based OpenMP appli-
cation suite we measured up to 87% reduction in execution times, as compared to
other OpenMP implementations.

1 Introduction
Parallel computing is quickly becoming synonymous with mainstream computing. Mul-
ticore processors have conquered not only the desktop but also the hand-held devices
market (e.g. smartphones) while many-core systems are well under way. Still, although
highly advanced and sophisticated hardware is at the disposal of everybody, program-
ming it efficiently is a prerequisite to achieving actual performance improvements.

OpenMP [13] is nowadays one of the most widely used paradigms for harnessing
multicore hardware. Its popularity stems from the fact that it is a directive-based system
which does not change the base language (C/C++/Fortran), making it quite accessible
to mainstream programmers. Its simple and intuitive structure facilitates incremen-
tal parallelization of sequential applications, while at the same time producing actual
speedups with relatively small effort.

The power and expressiveness of OpenMP has increased substantially with the re-
cent addition of tasking facilities. In particular V3.0 of the specifications include direc-
tives that allow the creation of a task out of a given code block. Upon creation, tasks
include a snapshot of their data environment, since their execution may be deferred

∗This work has been support in part by the General Secretariat for Research and Technology and the
European Commission (ERDF) through the Artemisia SMECY project (grant 100230)

†S.N. Agathos is supported by the Greek State Scholarships Foundation (IKY)
‡N.D. Kallimanis is supported by the Empirikion Foundation

http://dx.doi.org/10.1007/978-3-642-32820-6_64


for a later time or when task synchronization/scheduling directives are met. Tasking is
already supported by many commercial and non commercial compilers (e.g. [2, 4, 16]).

Most of these implementations rely on sophisticated runtime libraries that provide
each participating thread with private and/or shared queues to store tasks pending for
execution. Work-stealing [3] is usually employed for task scheduling, whereby idle
threads, with no local tasks to execute, try to “steal” tasks from other thread queues.
Work-stealing is a widely studied and deployed scheduling strategy, well known for its
load balancing capabilities. Efficient implementations of the work-stealing algorithm
and its related data structures is hence crucial for the performance of an OpenMP task-
ing system. The associated overheads for enqueing, dequeuing and stealing tasks can
easily become performance bottlenecks limiting system’s scalability as the number of
cores keeps increasing.

In this work we present a high-performance tasking infrastructure built in the run-
time system of the OMPi OpenMP/C compiler [6]. Support for tasking was recently
added to OMPi [1], including an initial functional, albeit non-optimized, general task-
ing layer in its runtime library. Here we present a complete redesign of OMPi’s tasking
system, engineered to take advantage of modern multicore multiprocessors. The deep
cache hierarchies and private memory channels of recent multicore CPUs make such
systems behave with pronounced non-uniform memory access (NUMA) characteris-
tics. To exploit these architectures our runtime system is organized in such a way as to
maximize local operations and minimize remote accesses which may have detrimental
performance effects. This organization is coupled with a work-stealing system which
is based on an efficient blocking algorithm that emphasizes operation combining and
thread cooperation in order to reduce synchronization overheads.

We have tested our system exhaustively. Using a synthetic benchmark we reveal
a very significant— up to 6x—increase in attainable throughput (tasks completed per
second), as compared to other OpenMP compilers, thus enjoying scalability under high
task loads. At the same time applications from the BOTS tasking suite [8] experience
reduced execution times (up to 87%), again in comparison to the rest of the available
OpenMP systems.

The rest of the paper is organized as follows: in Section 2 we present OMPi and the
way it handles tasking. The organization of its optimized runtime system is presented
in detail. A key part, namely the work-stealing subsystem, is discussed separately in
Section 3. Section 4 is devoted to the experiments we performed in order to assess the
performance of our implementation and finally Section 5 concludes this work.

2 Tasking in the OMPi Compiler
OMPi [6] is an experimental, lightweight OpenMP V3.0 infrastructure for C. It consists
of a source-to-source compiler and a runtime library. The compiler takes as input C
code with OpenMP pragmas and outputs multithreaded C code augmented with calls
to its runtime library, ready to be compiled by any standard C compiler.

Upon encountering an OpenMP task construct, the compiler uses outlining to
move the code residing within the task region to a new function. Because each task
is a block of code that may be executed asynchronously at a later time, its data envi-

2



Figure 1: Task queues organization. Each thread owns a circular queue (TASK QUEUE) where
pointers to task descriptors (Td) are inserted. Each Td carries bookkeeping information, a special
flag (Exec) and a pointer to the task data.

ronment must be captured at the time of task creation. Thus the compiler inserts code
which allocates the required memory space, copies the relevant (firstprivate) variables
and places a call to the runtime system to create the task using the outlined function
and the captured data environment.

If there exists an if clause whose condition evaluates to false or the runtime system
cannot (or selects not to) create the task, then the task must be executed immediately.
To optimize this case, the compiler produces a second copy of the task code (called
fast path), this time inlined. Local variables are declared to capture directly the data
environment and are used within the task code. In this manner, the task is executed
with almost no overheads. Depending on the runtime conditions, either the normal
(outlined) or the fast (inlined) path is executed.

2.1 Optimized Runtime
Our runtime organization is based on distributed task queues, one for each OpenMP
thread as shown in Fig. 1. These are circular queues (TASK QUEUEs) of fixed size
which is user-controlled as one of OMPi’s environment variables. When a thread meets
a new task region then it has the choice of executing it immediately or submitting it
for deferred execution. OMPi follows the second approach, that is our runtime uses
a breadth-first task creation policy, and the new task is stored in the thread’s local
TASK QUEUE. Whenever a thread is idle and decides to execute a task, then it dequeues
a deferred task from its TASK QUEUE. If a thread’s TASK QUEUE is empty then this
thread becomes a thief and traverses other threads queues in order to steal tasks. The
manipulation of a TASK QUEUE is a crucial synchronization point in OMPi, since mul-
tiple threads may concurrently access it. OMPi utilizes a highly efficient work-stealing
algorithm described in the next section.

If a thread tries to store a new task in its queue and there is no space, the thread
enters throttling mode. In throttling mode newly created tasks are executed immedi-
ately and hence the task creation policy changes to depth-first. In addition, as described
above, throttled threads utilize the fast execution path. While in throttling mode all de-

3



scendant tasks are executed immediately in the context of parent task, favoring data
locality. Notice that a suspended parent task never enters the TASK QUEUE hence it
can never be stolen by any other thread. This is to say that in OMPi all tasks are tied.

A thread’s entrance in throttling mode is one of the runtime objectives. However,
a thread operating in throttling mode does not produce deferred tasks, which results
in a reduction of available parallelism. To strike a balance, before a throttled thread
executes a new task, it checks its TASK QUEUE free space. If the queue has become at
least 30% empty then throttling is disabled and task creation policy returns to breadth-
first.

As shown in Fig. 1 each entry in the TASK QUEUE is a pointer to a task descriptor
(Td), which stores all the runtime information related to the task execution as well as
the task data environment. The descriptor is obtained out of the thread’s descriptor
pool. This pool contains an array of pre-allocated descriptors (in order to speed up
the allocation process) and a dynamic overflow list for the case the array becomes
empty. Whenever a task finishes its execution, the corresponding Td is returned to a
descriptor pool, recycled for future reuse. A task created by a thread might be stolen
and executed by another thread in its team. When the task finishes and the descriptor
must be recycled, a decision has to be made as to which pool the descriptor should
return to. If it enters the pool of the thread that executed the task, severe memory
consumption is possible in cases where only few threads create a big number of tasks
while the rest execute them. On the other hand, this option is a local operation, enjoying
lack of contention. Memory consumption is reduced if the descriptor is put back to the
task creator’s pool, and this is what OMPi does. Notice though that synchronization
needs arise since threads that stole tasks from the same thread may try to store to its
descriptor pool concurrently.

In order to avoid the aforementioned synchronization overheads, we have used a
garbage-collecting strategy, shown in Fig. 2. Each thread t maintains a private set of
pointers (PENDING QUEUE) to the task descriptors it has created and are either stored
for deferred execution or are currently executing. When a task is dequeued for execu-
tion (e.g. because a thief stole it), the Td pointer is removed form TASK QUEUE but
remains intact in PENDING QUEUE. The descriptor contains a special flag (‘Exec’ in
Fig. 1). When the task completes its execution, the executing thread sets this flag to
announce that the descriptor can now be recycled. On specific occasions thread t tra-
verses its PENDING QUEUE to find Tds that represent executed tasks and returns them
to its pool for future use.

The PENDING QUEUE plays a central role in the implementation of the task-
wait and barrier constructs, too. Whenever a task meets a taskwait, it must
wait until the completion of all tasks it created (it is actually then that the task ex-
ecution and stealing mechanism is triggered). This completion condition is fulfilled
simply when all the descriptors in the thread’s PENDING QUEUE have been flagged as
executed. Upon meeting a barrier, a thread must wait until: (i) all its siblings reach
the barrier and (ii) all team-generated tasks are executed. For the first condition an
atomic counter is employed, getting increased by every thread reaching the barrier. For
the second condition each thread contiguously executes/steals pending tasks from all
TASK QUEUE’s within its team until all team PENDING QUEUEs become empty.

Our runtime design aims at using as little shared data as possible, so as to reduce

4



Figure 2: Pending, executing (stolen) and finished task. When a task is pending for execution
then corresponding entries in TASK QUEUE and PENDING QUEUE point to its Td. Upon deque-
ing, only the link in TASK QUEUE is removed, freeing one slot. When the task is finished, the
executing thread sets the Exec flag to announce that the descriptor can be recycled.

atomic operations and minimize thread synchronization. It is worth noting that in our
tasking system thread synchronization occurs only in two cases. The first is during the
unavoidable barrier construct and the second is during the work-stealing operations,
as described in the next section, for which a very fast algorithm is employed. All
data structures (e.g. Td’s in the descriptors pool) are cache line-size aligned so as to
eliminate false sharing phenomena and avoid triggering coherency protocol actions,
which deteriorate the performance, especially in NUMA platforms.

While in OMPi each thread owns a public task queue where it stores newly created
tasks, other compilers use different organizations. In IBM XL compilers [16], a shared
task pool is associated with each parallel region where new tasks are put in the end
of the queue and threads pick up tasks from the front. In contrast, in OpenUH [4]
each OpenMP thread retains two task queues. The first queue is private and used for
keeping tied tasks, while the second is public and used to store newly created and
untied tasks. In Nanos [17], two types of queues are used. Here, a team of threads
has a shared queue for newly created and untied tasks. Furthermore, each thread owns
a private local queue used for tied tasks. A detailed comparison of many other queue
organization alternatives has been performed by Korch and Rauber [11].

3 A Fast Work-Stealing Algorithm
The work-stealing mechanism is a crucial component of an OpenMP runtime and
should thus be designed in a way to be efficient and scalable in cases of high contention.
A number of workstealing algorithms with various characteristics has been proposed,
such as Intel TBB’s AP/SP and Lazy Binary Spliting [14, 15] which are targeting taks
generated by do-all loops. Cilk’s workstealing infrastructure [3] is another well-known
example; however Cilk’s runtime is not directly applicable to OpenMP since OpenMP
allows barriers among team threads. The initial implementation of OMPi tasks [1] uti-
lized a lock-free workstealing algorithm based on [5].

5



In many applications task creation is unbalanced and it is a very common phe-
nomenon few threads to produce many tasks and all other threads to consume them.
In such cases contention could be lowered if threads cooperated instead of competed
for obtaining the next tasks to execute. In our OpenMP tasking runtime each thread
maintains (owns) a TASK QUEUE, as explained above. A TASK QUEUE is a shared ob-
ject similar to the shared queue [12] supporting two operations: OwnerEnqueue and
Dequeue for inserting and removing tasks, correspondingly. OwnerEnqueue(q, t)
inserts a new task t in queue q in case there is enough free space and returns true;
otherwise, OwnerEnqueue fails and returns false. In contrast to Enqueue of a con-
ventional shared queue, OwnerEnqueue is executed only by the thread that owns q.
Dequeue is executed by any thread and removes the most newly inserted task of q.
Recently, Fatourou and Kallimanis [10] presented CC-Synch, an object which is able
to implement (simulate) any shared object very efficiently. For example, to implement
a shared queue, it is enough to use one instance of CC-Synch and to supply the se-
quential code for the Enqueue and Dequeue operations. CC-Synch supports only
one operation called ApplyOp(sfunc, arg, th id); sfunc is the serial code of the opera-
tion, arg is the argument of the operation and th id is the id of the thread that executes
the operation.

In [10], it is shown that CC-Synch significantly outperforms the state-of-the-art
synchronization techniques. This is a result of the efficient implementation of the com-
bining technique whereby, one thread (the combiner) holds a coarse lock, and addi-
tionally to the application of its own operation, serves the operations of all other active
threads. Whenever a thread executes an operation using a conventional synchronization
technique (such as spin-locks), it causes cache misses by fetching part of a shared ob-
ject’s state to the local processor cache in order to apply its operation. In the combining
technique, only the combiner fetches parts of object’s state and applies the operations
of all active threads. Therefore, a lot of cache misses are avoided and the communica-
tion overheads among processors are much lower.

Using CC-Synch to implement an operation that is executed only by a single
thread in any point of time is rather expensive. Thus, in our work-stealing queue im-
plementation, we designed OwnerEnqueue (which is is executed only by the owner
of the work-stealing queue) in a way that it does not make calls to ApplyOp. Thus,
we avoid making the expensive calls of CC-Synch, wherever possible. It is noticeable
that CC-Synch is better suited for cache-coherent NUMA machines, which constitute
the majority of modern multicore multiprocessors.

We now give more details for our work-stealing implementation. Our work-stealing
task queue (Fig. 3) consists of (i) a shared array of pointers to TASK structs, which is
called TASK QUEUE, (ii) a shared integer Top which points to the topmost element of
the queue, (iii) a shared integer Bottom which points to the bottommost element of the
queue, and (iv) an instance of CC-Synch. Since the OwnerEnqueue operation is
executed only by the owner of the queue, its design is simplified. Whenever a thread
p executes an OwnerEnqueue operation, it firstly executes a read on Bottom and
after that a read on Top. If there exists free space, p inserts the new task and increases
Top by one; otherwise, OwnerEnqueue returns false. Since p is the owner of the
work-stealing queue and OwnerEnqueue is executed only by the owner, p is the only
thread that modifies the shared variable Top. Therefore, no special care is needed while

6



typedef struct WSQueue {
int Bottom, Top;
TASK *QArray[m];
an instance of CC-Synch synchronization technique;

} WSQueue;

bool OwnerEnqueue(WSQueue *l, TASK *arg, int pid) {
int top = l->top, bottom = l->bottom;
int new_top = (top + 1) % TASKQUEUESIZE;

if (new_top == bottom) return false;
else {

l->QArray[top] = arg;
l->top = new_top;
return true;

}
}

TASK *Dequeue(WSQueue *l, int pid) { // Serial code for Dequeue, the concurrent
void *ret; // version is implemented using CC-Synch.

if (l->bottom == l->top) ret = NULL;
else {

ret = l->QArray[bottom]
l->bottom = (l->bottom + 1) % TASKQUEUESIZE;

}
return ret;

}

Figure 3: Pseudocode for the work-stealing queue implementation

modifying Top. Whenever p wants to execute a Dequeue operation, it first checks
if at least one element exists in the queue and in that case increases Bottom by one.
Many threads may access Bottom simultaneously, since any thread is able to execute
Dequeue in any TASK QUEUE. We implement Dequeue using an instance of the
CC-Synch synchronization queue. Since CC-Synch is a synchronization technique
that serves operations with FIFO order, threads that execute Dequeue operations are
also served with a FIFO order. Thus, our implementation satisfies strong fairness prop-
erties.

4 Performance Evaluation
In this section we evaluate the efficiency of our OpenMP tasking implementation. A
synthetic producer/consumer benchmark was used to measure the task creation and the
task execution throughput. Furthermore, the Barcelona OpenMP Tasks suite (BOTS) [8]
was utilized in order to test our system in a broad range of task applications. All ex-
periments were run on a 16-core machine equipped with two 8-core AMD Opteron
6128 CPUs running at 2.0GHz and with a total of 16GB RAM. The system runs De-
bian Squeeze based on Linux kernel 2.6.32.5. We compare the performance of our
compiler with GNU GCC (version 4.4.5-8), Intel ICC (version 12.1.0) and Oracle Sun-
Studio SUNCC (version 12.2). For reference the initial unoptimized implementation of
OMPi in [1] is also included, labeled as ‘OLD’.

In [7], it is shown that choosing the appropriate limits to enable and disable task

7



main() do_random_work()
{ {
#pragma omp parallel num_threads(nthr) volatile long i;

if(omp_get_thread_num() < nprod) {
for (int i=0;i<16E6/nprod);i++) for (i=0; i<RandomRange(0,maxload); i++)

#pragma omp task ;
do_random_work(); }

}
}

Figure 4: Code for synthetic microbenchmark

cut-off is not an easy task. When dealing with task cut-off, it is required to have good
knowledge of application’s behavior for a specified input size, and of the runtime ’s
tasking implementation. We thus chose to deactivate all manual cut-off techniques
in all our benchmarks and let the OpenMP implementation operate under its default
settings. As far as OMPi and OLD compilers are concerned, we used the default values
for the size of TASK QUEUEs which is 24.

We used GNU GCC with the “-O3” flag as a back-end compiler for OMPi. The cor-
responding flags for GCC, ICC and SUNCC were “-O3 -fopenmp”, “-fast -openmp” and
“-fast -xopenmp=parallel”. We experimented with a lot of other flag combinations for
all compilers but we didn’t notice significant performance differences. All experiments
were executed twelve times each, then the best and worst runs were discarded; from
the ten remaining executions average values were calculated and reported.

4.1 Synthetic Benchmark
In order to evaluate the performance of OMPi, a synthetic benchmark with a controllable
number of task producers and task consumers was used, as shown in Fig. 4. In this
benchmark, a parallel region is created and a specified number of threads (equal to
nthr) is created. Only nprod threads become producers and are allowed to create
tasks. The rest of threads simply reach the end of parallel region and become consumers
(executors) of the created tasks. Each run of the specified benchmark creates 16× 106

tasks, the creation of which is equally assigned to producer threads. Each task consists
of a dummy loop used to simulate workload that a task may have to execute in a way
similar to [12, 9, 10]. The number of iterations is a random number between 0 and
maxload, a variable controlling the task granularity. Iterator variable i is annotated
as volatile in order to avoid compiler code elimination optimizations. This benchmark
aims to stress the runtime’s ability to create, steal and execute tasks.

We run several tests for different values of nthr, nprod and maxload. In Figs. 5–6
we present each implementation’s throughput, measured as the number of tasks com-
pleted per second. For Fig. 5(a) we employed one producer and nthr−1 consumers.
In this experiment maxload was chosen to be equal to 128, representing fine-grain
work. Some lock-free shared objects show unrealistic high performance when choos-
ing a maxload value equal to 0, thus it is a common benchmarking strategy [12, 9, 10]
to choose a small value for maxload, but not equal to 0. In this experiment, as more
threads try to steal from the task queue of the producer, task throughput decreases.
This is the result of extra synchronization overhead added, since more threads compete

8



(a) (b)

Figure 5: Synthetic benchmark, maxload=128

to get shared access to the same TASK QUEUE. Due to the combining technique in
our work-stealing implementation, OMPi outperforms all other compilers even in cases
with very high contention and has the best scalability among them. Specifically, OMPi
exhibits up to 5 times higher task throughput (at 16 threads) compared to ICC which
is ranked as second best. The original OMPi implementation performs well only when
2 threads are used but its throughput quickly decreases. In Fig. 5(b), we study the be-
havior for different nthr values when nprod=nthr/2, while maxload is still equal to
128. The results are similar, confirming OMPi’s superiority.

In Fig. 6(a), the performance results for different values of maxload and for a total
of 16 threads (one of which produces tasks) are displayed. In this benchmark, our run-
time exhibits higher throughput when compared to all other compilers for almost any
maxload value. For values of 8192 or less, the work that each task executes is quite
small and is overwhelmed by the contention that the work-stealing part induces. Since
OMPi exploits the combining technique in its work-stealing queue, the synchronization
overheads between threads are vastly minimized and the performance advances a lot.
We achieved a little more that 6 times better performance compared to ICC and even
better compared to GCC and SUNCC when application produces fine-grain tasks. When
the task’s granularity becomes coarser (maxload values greater than 8192), synchro-
nization overheads between threads are not a bottleneck anymore and all compilers
tend to exhibit similar behavior. Similar observations can be made with the results in
Fig. 6(b), where 8 out of the 16 threads produce tasks for different values of maxload.
For maxload values between 0 and 256 our new runtime achieves from 2.6 to 1.8 times
higher throughput than the second best (ICC).

4.2 Performance of the BOTS Application Suite
The Barcelona OpenMP Tasks Suite (BOTS) v.1.1.1 was used for evaluating our task-
ing environment’s efficiency in a wide range of tasking scenarios. Due to space limita-
tions we present detailed results for the Fib, NQueens and Floorplan applications, while
a brief discussion is made for Alignment, FFT, Health, Sort, SparseLU and Strassen.
In order for every compiler to have full scheduling opportunities, we run both the tied

9



(a)

(b)

Figure 6: Synthetic benchmark, nthr=16

and the untied task versions of the applications (while OMPi always utilizes tied tasks).
We report the best execution times observed, although there were no significant perfor-
mance differences as noted also in [8].

The Fib application computes the nth Fibonacci number using a recursive paralel-
lization producing a very large number of fine-grain tasks. In Fig. 7, execution time
results for the the 40th Fibonacci number are shown. Since it was a very common
phenomenon for OMPi to outperform some compilers by a factor of ten or more, a log-
arithmic scale is used in y-axis. OMPi appears to be from 4 to 8 times faster than ICC
and 20 to 80 times faster than the original (OLD) implementation. Since Fib exploits
nested task parallelization which creates a deep tree of small tasks, it is a common
phenomenon some threads to fill their queues. OMPi has a significant performance
advantage by leveraging the new work-stealing implementation and the fast execution
path produced by the compiler; task load is quickly balanced between threads, and the
application delves into throttling mode. Moreover, OMPi, along with ICC, scales up
with the number of threads.

NQueens calculates all the solutions of the n-queens chessboard problem. It uses a
backtracking search algorithm with pruning that creates unbalanced tasks. Similarly to
Fib, Nqueens exploits nested task parallelization which creates a deep tree of tasks. In

10



Figure 7: Fibonacci Figure 8: Nqueens

the NQueens benchmark displayed in Fig. 8, for an input of 14 queens we get similar
results to Fib and OMPi gives the best times. OMPi is up to 2 times faster than OLD and
up to 3 times faster than ICC(not shown clearly in the logarithmic scale).

Floorplan calculates the optimal floor plan distribution of a number of cells. Tasks
are hierarchically generated for each branch of the solution space. This application
induces many data synchronizations and comes with a very irregular and aggressive
pruning mechanism, which results in a heavily unbalanced task tree. Fig. 9 displays re-
sults of the application when the input.20 file is used; ICC is not included here because
the application could not execute properly when compiled with this compiler. OMPi
achieves the fastest times and our original implementation follows. Since Floorplan
generates deep nested tasks, OMPi performs well due to the the work-stealing imple-
mentation along with the efficient fast path execution. SUNCC cannot exhibit speed-up,
while GCC experiences significant slow-down when more threads are used.

Results from the rest of BOTS applications are given in Table 1, for the case of
16 threads. In this table we included results from OMPi when using ICC as back-end
compiler, which in many situations produces faster code for the sequential part of the
application. In FFT, SparseLU, Strassen and Alignment applications OMPi with ICC
as backend proves to be faster, while performing second best only in two applications
with very small margins (3% in Sort and 0.2% in Health). ICC has the best behavior
in Health application, while our OLD system is the fastest as far as the Sort application
is concerned. Thus, OMPi proves to perform consistently well in many different appli-
cation scenarios, and especially when it uses an efficient back-end compiler, giving it
a serious performance advantage. In general, ICC and SUNCC perform quite well with
few exceptions. The version of GCC we had available does not perform up to par.

5 Conclusion
We present a highly optimized implementation of OpenMP tasking in the context of the
OMPi compiler. The implementation is based on a carefully designed runtime system
that emphasizes locality and operation combining while minimizing remote accesses
which have detrimental performance effects in modern NUMA multicore multipro-

11



Figure 9: Floorplan

Table 1: Execution time (sec) of BOTS using
16 threads

Compiler FFT Health Sort SpLU Str. Align.
GCC 17.571 141.85 2.007 1.679 24.602 1.576
ICC 2.086 4.778 0.621 1.676 20.641 1.338
SUNCC 2.473 15.694 0.652 1.835 21.619 1.218
OLD 2.086 7.114 0.591 1.766 21.589 1.587
OMPi 1.918 5.327 0.610 1.668 22.368 1.604
OMPi ICC 1.889 4.787 0.621 1.667 20.524 0.957

cessors. As a result, our system exhibits excellent scalability for high task loads and
impressive improvement in actual application execution times, where OMPi was shown
to offer competitive performance in comparison to other OpenMP implementations.

Currently we are working on analyzing the performance impact of the different por-
tions of our runtime system and optimizing OMPi even more for some corner cases. We
also work on supporting the recently released V3.1 of the OpenMP specifications [13]
which offer even more opportunities for fast execution through the new mergeable
and final clauses. Our preliminary experiences confirm the performance potential.

References
[1] Agathos, S.N., Hadjidoukas, P.E., Dimakopoulos, V.V.: Design and Implementa-

tion of OpenMP Tasks in the OMPi Compiler. In: Proc. PCI ’11, 15th Panhellenic
Conference on Informatics. pp. 265–269. IEEE, Kastoria, Greece (Sept 2011)

[2] Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An Experimen-
tal Evaluation of the New OpenMP Tasking Model. In: Proc. LCPC ’07, 20th
Int’l Workshop on Languages and Compilers for Parallel Computing. pp. 63–77.
Springer, Urbana, Illinois, USA (Oct 2007)

[3] Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H.,
Zhou, Y.: Cilk: An Efficient Multithreaded Runtime System. J. Parallel Distrib.
Comput. 37(1), 55–69 (1996)

[4] C. Addison and J. LaGrone and L. Huang and B. Chapman: OpenMP 3.0 tasking
implementation in OpenUH. In: Proc. Open64 Workshop in Conjunction with the
Int’l Symposium on Code Generation and Optimization. Seattle, USA (Mar 2009)

[5] Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Proc. SPAA ’05,
17th annual ACM symposium on Parallelism in algorithms and architectures. pp.
21–28. SPAA ’05, ACM, Las Vegas, Nevada, USA (2005)

12



[6] Dimakopoulos, V.V., Leontiadis, E., Tzoumas, G.: A portable C compiler for
OpenMP V.2.0. In: Proc. EWOMP 2003, 5th European Workshop on OpenMP.
pp. 5–11. Aachen, Germany (Sept 2003)

[7] Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP task scheduling
strategies. In: Proc. IWOMP’08, 4th international conference on OpenMP in a
new era of parallelism. pp. 100–110. West Lafayette, IN, USA (May 2008)

[8] Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism
in OpenMP. In: Proc. ICPP ’09, 38th Int’l Conference on Parallel Processing. pp.
124–131. Vienna, Austria (Sept 2009)

[9] Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construc-
tion. In: Proc. SPAA ’11, Proceedings of the 23rd ACM symposium on Paral-
lelism in algorithms and architectures. pp. 325–334. ACM, San Jose, California,
USA (Jun 2011)

[10] Fatourou, Panagiota and Kallimanis, Nikolaos D.: Revisiting the combining syn-
chronization technique. In: Proc. PPoPP ’12, 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. pp. 257–266. ACM, New
Orleans, Louisiana, USA (Feb 2012)

[11] Korch, M., Rauber, T.: A comparison of task pools for dynamic load balancing of
irregular algorithms: Research Articles. Concurr. Comput. : Pract. Exper. 16(1),
1–47 (Dec 2003)

[12] Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In: Proc. PODC ’96, 15th annual ACM sympo-
sium on Principles of distributed computing. pp. 267–275. ACM, Philadelphia,
Pennsylvania, USA (May 1996)

[13] OpenMP ARB: OpenMP Application Program Interface V3.1 (July 2011)

[14] Reinders, J.: Intel threading building blocks. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, first edn. (2007)

[15] Tzannes, Alexandros and Caragea, George C. and Barua, Rajeev and Vishkin,
Uzi: Lazy binary-splitting: a run-time adaptive work-stealing scheduler. In: Proc.
PPoPP ’10, 15th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming. pp. 179–190. ACM, Bangalore, India (Jan 2010)

[16] X. Teruel and P. Unnikrishnan and X. Martorell and E. Ayguade and R. Silvera
and G. Zhang and E. Tiotto: OpenMP tasks in IBM XL compilers. In: Proc. CAS-
CON ’08, 2008 conference of the center for advanced studies on collaborative
research. p. 207–221. Ontario, Canada (Oct 2008)

[17] X. Teruel and X. Martorell and A. Duran and R. Ferrer and E. Ayguadé: Support
for OpenMP tasks in Nanos v4. In: CASCON. pp. 256–259 (2007)

13


	Introduction
	Tasking in the OMPi Compiler
	Optimized Runtime

	A Fast Work-Stealing Algorithm
	Performance Evaluation
	Synthetic Benchmark
	Performance of the BOTS Application Suite

	Conclusion

