Optimal Total Exchange in Cayley Graphs*

VASSILIOS V. DIMAKOPOULOS

Dept. of Computer Science,
University of Ioannina,
P.O. Box 1186, Ioannina, Greece, GR-45110
Tel: +30-651-98809, Fax: +30-651-98890

E-mail: dimako@cs.uoi.gr

NikKIiTAS J. DIMOPOULOS

Dept. of Electrical and Computer Engineering,
University of Victoria
P.O. Box 3055, Victoria, B.C., Canada, VW 3P6.
Tel: +1-250-7218902, Fax: +1-250-7216052,

E-mail: nikitas@ece.uvic.ca

*This research was supported in part through grants from NSERC and the University of
Victoria. A preliminary version of this work was presented in the European Conference on
Parallel Precessing, EUROPAR’ 96, Lyon, France, Aug. 1996

1



Optimal Total Exchange in Cayley Graphs

Vassinios V. DiMAKOPOULOS (IEEE Member)
Department of Computer Science,
University of Ioannina

NikiTAS J. DiMOPOULOS (Senior IEEE Member)
Department of Electrical and Computer Engineering,
University of Victoria

Abstract

Consider an interconnection network and the following situation: every node needs to
send a different message to every other node. This is the total exchange or all-to-all
personalized commumnication problem, one of a number of information dissemination
problems known as collective communications. Under the assumption that a node
can send and receive only one message at each step (single-port model) it is seen that
the minimum time required to solve the problem is governed by the status (or total
distance) of the nodes in the network. We present here a time-optimal solution for
any Cayley network. Rings, hypercubes, cube-connected cycles, butterflies are some
well-known Cayley networks which can take advantage of our method. The solution
is based on a class of algorithms which we call node-invariant algorithms and which

behave uniformly across the network.

Keywords:
Cayley graphs, collective communications, interconnection networks, node-invariant

algorithms, total exchange (all-to-all personalized communication)



1 Introduction

Collective communications for distributed-memory multiprocessors have received
considerable attention, as for example is evident from their inclusion in the Mes-
sage Passing Interface standard [17] and from their importance in supporting
various constructs in High Performance Fortran [12, 16]. This is easily justified
by their frequent appearance in parallel numerical algorithms [13, 5].

Broadcasting, scattering, gathering, multinode broadcasting (sometimes called
gossiping) and total exchange constitute a set of representative information dis-
semination problems that have to be efficiently solved in order to maximize
the performance of message-passing parallel programs. Out of this set, total
exchange will be the subject of this paper. In total exchange, each node in
a network has distinct messages to send to all the other nodes. The problem
has often, and quite reasonably, been identified with matrix transposition. It is
easy to see why: if the network has n nodes and each node stores a row of an
n X n matrix then in order to transpose the matrix, each node has to distribute
the elements of its row to all the other nodes. Of course the application of
total exchange is not limited to matrix transposition; other data permutations
occurring e.g. in FFT algorithms can also be viewed as total exchange prob-
lems. Total exchange is also known as multiscattering or all-to-all personalized
communication.

Algorithms to solve the problem for a number of networks under a variety
of models/assumptions have appeared in the literature mostly concentrating
in hypercubes and tori (e.g. [20, 14, 4, 21, 10]). Here we are going to follow
the so-called single-port model in a store-and-forward network. Formally, our
problem will be the distribution of distinct messages from every node to every

other node subject to the following conditions [11]:
e only adjacent nodes can exchange messages,

e a message requires one time unit (or step) in order to be transferred be-

tween two nodes,



e a node can send at most one message and receive at most one message in

each step.

Under this model, time-optimal total exchange algorithms have been given in
[5, pp. 81-83] for hypercubes (although highly involved), in [18] for star graphs,
and in [10] for general cartesian product networks.

In this paper we are going to show that it is possible to solve the problem in
the minimum time in any Cayley network. Hypercubes and star graphs belong
to the class of Cayley networks, as do complete graphs, rings, cube-connected
cycles, (wrapped) butterflies and many other interesting and widely studied
networks whose significance is well-known [15]. Communication algorithms for
recently proposed Cayley graphs either do not address the total exchange prob-
lem (e.g. in [3] for stars and pancakes, and in [23] for cyclic-cubes) or are not
strictly optimal under the model we consider (e.g. the proposed total exchange
algorithm for the macro-stars in [22]). In contrast, our method achieves absolute
optimality as far as completion time is concerned. In the case of hypercubes
and star graphs, where optimal solutions are already known, our method can
still be important since it leads to much simpler algorithms, as shown in Section
6. Furthermore, what is more important is that the developed theory is not tied
to a particular topology; it is quite general and applies to any Cayley graph.

The paper is organized as follows. Section 2 introduces some elementary
graph-theoretic and group-theoretic notation. In Section 3 we derive a simple
property of Cayley networks which will be useful for our arguments. In Section
4 we give a lower bound for the time needed to perform total exchange under the
single-port model. In the same section we give sufficient conditions for achieving
the lower bound. We then proceed to formally define the class of node-invariant
algorithms and prove its optimality for the total exchange problem in Section 5.
A simple node-invariant algorithm is given in Section 6, along with an example

in hypercubes. Finally, Section 7 summarizes the results.



2 Graph-theoretic and group-theoretic notions

An (undirected) graph G consists of a set V' of nodes (or vertices) interconnected
by a set E of (undirected) edges. This is the usual model of representing a
multiprocessor interconnection network: each processor corresponds to a node
and each communication link corresponds to an edge. Thus the terms ‘graph’
and ‘network’ will be considered synonymous here. Nodes connected by an edge
in E are adjacent to each other. Nodes adjacent to v € V' are neighbors of v.

A path in G from node v to node u is a sequence of nodes
UV ="9,01,y...,0¢ = U,

such that all vertices are distinct and for all 0 < ¢ < ¢, the edge (v;,vi11) € E.
We say that the length of a path is ¢ if it contains ¢+ 1 vertices. In a connected
graph there exists a path between any two nodes, and this is the class of graphs
we consider here. The distance, dist(v,u), between vertices v and u is the length
of a shortest path between v and u. Finally, the eccentricity of v, e(v), is the
distance to a node farthest from v, i.e.

e(v) = max{dist(v,u)}.

ueV

An automorphism of the graph is a mapping from the vertices to the vertices
that preserves the edges. Formally, an automorphism of G is a permutation o
of V such that (o(v),o(u)) € E if and only if (v,u) € E. If for any pair of
vertices v, u there exists an automorphism that maps v to v then the graph is
node symmetric.

A group consists of a set G and an associative binary operation ‘-’ on G with
the following two properties. There exists an identity element — that is an
element € € G for which a-e¢ = €-a = a for all a € G — and for each a € G
there exists an inverse element, denoted by a~! — that is an element a=! € G
for which a-a ! = a!-a = e. The inverse of an element is unique. It is
known that the set of automorphisms of a graph G is a group with respect to

the composition operation, and we will denote it by II(G).

5



Cayley graphs [6, 1] are based on groups and constitute a large class of node
symmetric networks. Given a set I' = {71,72, ...,7a} of generators for a group
G, a Cayley graph has vertices corresponding to the elements of G and edges
corresponding to the action of the generators. That is, if v,u € G, the edge
(v,u) exists in G iff there is a generator v € I' such that v -+ = u. A usual
assumption is that the identity element of G does not belong to I' (in order to
avoid edges from a node to itself) and that I' is closed under inverses (so that
the graph is in effect undirected).

The class includes quite important networks such as the hypercube, the
(wrapped) butterfly, the cube-connected cycles [2, 19, 9]. Also, connected circu-
lant graphs [7] (which include the rings) are Cayley networks [6]. More recently
proposed Cayley graphs include the cyclic-cubes [23] and the macro-stars [22].

3 An automorphism property of Cayley graphs

Consider a Cayley graph G with node set V' = G = {vg,v1,...,v, 1}, and the

mapping:

O-Ui(vx) = ;- ,U()_1 * Vg, (1)

where vy ! is the inverse element of vy in V. It is easily seen that this mapping
is an automorphism of the graph [1]. Let ¥(G) be the set of the n mappings
defined by (1) for i =0,1,...,n — 1:

X(G)=Ao,, | 1=0,1,...,n—1}.
The mappings in X(G) have the following properties:
® 0,, maps vy to v;
® 0,, is the identity mapping

o If i # j, then:

O-Uvi(vj)(vx) = Oy (Uj) : U(;l " Vg



= Ui-vgl-vj-vo < Ug

that is,
0'01,2. (vj) — UUiO-Uj7 (2)

the composition of mappings o,, and o,,.

Notice that 3(G) may not be the only set of automorphisms which satisfy
(2). Also, if the network is known, the automorphisms may obtain a (computa-
tionally) simpler form. As an example, consider a ring with n nodes. Node v;
is adjacent to nodes v;q; and v;o; where @ and & denote addition and subtrac-
tion modulo n. An easy set ¥(G) of automorphisms with the desired properties

consists of the following mappings:
O, (vm) = Vigz,

i =0,1,...,n — 1. Actually, the above mappings work for any (connected)
circulant graph.

During total exchange nodes are required to send messages to various des-
tinations. If a node holds a number of messages to be forwarded, at each step
it must select one of them and send it to one of its neighboring nodes. Thus,
before the selected message is transmitted the node must choose a neighbor
according to some predefined rules. What we would like to establish is that at
any step all nodes in the network choose “equivalent” neighbors. This way we
can expect that all nodes operate in a uniform manner, and whatever occurs at
node vy occurs “equivalently” at all the other nodes. The preceding comments

are formalized in the following lemma.

Lemma 1 Let vy pick one of its neighbors, v,, and let every other node v,
i=1,2,...,n—1, pick neighbor o,,(v,). Then
(a) every node is picked by exactly one other node and

(b) if vy is the node that picks vy then o,,(vy) is the node that picks v;.

7



Proof.

(a) For the first part, all we have to show is that oy, (ve) # 0y, (va) for i # j.
Let us assume that for some j # i we have 0y, (v,) = 04, (Va) = vk, for some
k. Then o, = 04, (v,), and from (2), o, = 03,0,,. Similarly, 0, = 0,,0,,.

Consequently, 0,,0,, = 0,,0,,, Or 0,, = 0,;, which cannot hold.

(b) Let v, be the node that picks v, that is vg = 0,,(v,). Since v; = 7y, (vo)
(0,, maps vy to v;), we obtain v; = ,,(0y,(v,)). From (2) we get v; =

o, (vs)(Va). This means that node o, (vs) picked v;.

4 Lower bound on total exchange time

In the total exchange problem, every node v has to send n—1 distinct messages,
one to each of the other nodes in an n-node network. If there exist ng nodes in
distance d from v, where d = 1,2,...,e(v), then the messages sent by v must

CTOSS
e(v)

s(v) = dny
d=1
links in total. For all messages to be exchanged, the total number of link

traversals must be

Se =Y s(v).

veV
The quantity s(v) is known as the total distance or the status [8] of node v.
Every time a message is communicated between adjacent nodes one link
traversal occurs. If nodes are allowed to transmit only one message per step, the
maximum number of link traversals in a single step is at most n. Consequently,
we can at best subtract n units from Sg in each step, so that a lower bound on

total exchange time is
T>—. (3)



Because all nodes in a node symmetric graph have the same status [8], it is seen
that for such networks the lower bound is simply T' > s(v), where v is any node.
Based on the above discussion we immediately have the following sufficient

conditions in order for a total exchange scheme to achieve the lower bound of

(3):

all nodes are busy all the time, and, (4)

every transmitted message gets closer to its destination. (5)

The conditions guarantee that n units are subtracted from Sg at every step,
which is the best we can do. Notice that we must require that transmitted
messages are not derouted, that is, they always follow minimal paths, getting

closer to their destination after each link traversal.

5 Optimal algorithms

Every node v; in the network maintains a message queue, @),,, where incoming
messages from neighbors are deposited until they are scheduled for transfer to
some other node. Initially, (),, contains the n — 1 messages of v; for the other
nodes. As time passes, messages originating from other nodes join this queue
on their way to their destination. If an incoming message is destined for v; it is
assumed that it does not join the message queue but is rather forwarded to the
local processor for consumption.

At node v; some local algorithm A,, operates in order to schedule the mes-
sage transfers. Whenever there exist messages in @),,, algorithm A4,, is respon-
sible for selecting:

(i) the message to leave in the next time unit, and,

(ii) the neighbor of v; to which the message will be sent.

Definition 1 A distributed total exchange algorithm A = (A,,, Av,, - -, Av, ;)
is a collection of local algorithms, algorithm .4, running on node v;, i =

0,1,...,n — 1. Algorithm A,, is written as A,, = (fy,,w,,;), where, given a

9



message queue @,,, procedure f,, selects a message f,,(Q.,,) = m and w,, se-

lects a neighbor w,, (m) of v;.

The idea now is to fix a node in the network (say vy) and to make all the
other nodes behave in a similar way with vy. We will design the algorithms in
such a way that every node v; selects a message “corresponding” to the message
selected by node vy and sends it to a neighbor “corresponding” to the neighbor
selected by vg. This way we expect that the algorithm will behave uniformly
across the network. This uniformity is highly desirable because it will force
all nodes to have “corresponding” messages queues at each step; hence we can
argue that message queues always have the same size. We will then be able
to guarantee that all queues become empty at the same time. This is exactly
the time when total exchange is completed, and condition (4) will have been
satisfied.

In order to describe algorithms with a uniform behavior, we need the follow-
ing notation. Let m,, (v,) be the message of node v, (source) meant for node v,
(destination). For an automorphism o € 3(G), let o(m,,(v,)) be the message

of node o(v,) destined for node o(v,), i.e.

(1, (vy)) E My (7(vy)).

Finally, let @) be a set of messages. We define:

o(Q) = {o(m, (1) | mu,(v,) €Q}.

Definition 2 Let G be a Cayley graph and let ¥(G) = {o,, | i=0,1,...,n—
1} be a set of automorphisms that satisfy (2). A total exchange algorithm
A= (A, ..., As,_,) where A,. = (fo,,w,,), 7 =0,1,...,n — 1, will be called

node-invariant if for any message queue () and any message m it satisfies

foi(00,(Q) = 00, (f1,(Q))

Wy, (00;(M)) = 0, (Wyy(M)).

10



Lemma 2 If Q,,(t) is the queue of node v; at time t, i = 0,1,...,n — 1, then

any node-invariant algorithm guarantees that
Qu; (1) = 00, (Quy (£)),
for allt > 0, where o, is as given in Definition 2.

Proof. The proof is by induction on ¢. Initially (¢ = 0) we have that

Qvo :{mvo(vj) | j: ]_,2,...,TL—].}.

Because automorphisms are bijections o, (vg) # 0, (ve) if k& # £. Consequently,
the set {o,,(v;) | 7 =1,2,...,n — 1} contains all nodes of G except node v;
(since for j = 0, 0y, (v9) = v;). Thus the message set S = {m,,(0,,(v;)) | j =
1,2,...,n—1} is the same as the set S’ = {m,,(vx) | k=0,1,...,n—1, k # i}.
Notice that S" = Q,,(0). If we write v; as 0, (vp), and use (2) it is straightforward
to derive that S = 0,,(Q.,(0)), showing that @Q,,(0) = 0,,(Q4,(0)).

Next, assume as an induction hypothesis that for some ¢ > 0,

Qu; (t) = 00,(Quy (1)) (6)

For time ¢ 4+ 1 we proceed as follows. For simplicity, let mg,) = fu; (Qu,(t)) and
Vs(v;) = Wy, (Ms(v;)). That is, my,) is the message selected by v;, and vy(,) is
the neighbor of v; to which the selected message will be sent. From (6) and the

definition of node-invariant algorithms it is easily seen that

Ms(v;) = O'vi(ms(vo))a (7)
'Us(v,-) = O-vi(vs(vo))- (8)

Now notice that vy, is the neighbor vy picked to send the message to. From
(8) it is seen that Lemma 1 applies so that every node receives exactly one
message, and that, if v,(,,) is the neighbor from which vy receives a message

then
Vr(v;) = O, (Ur(u)) (9)

11



is the neighbor from which v; receives its (unique) message. Moreover, if 7, .,

i

is the message received by v;, we obtain

Mr(y) = Ms(v,(,,))

= O-'Ui (O-'U‘r(vo) (ms(vo)))’

and since m,.(y,) = Ms(v,0)) = Tr(ug) (Ms(v0) )
M) = O, (Mo () )- (10)

To recapitulate, any node v; selects a message my(y,) given by (7), sends it to

some node vy(,,) given by (8) and receives a message m, () given by (10) from

some node v,(,,) given by (9). If the destination of m, () is node vy, then from
(10) it is seen that the destination of m,(,) is node v;. Conversely, if m,(y,) is
not meant for vg then m,(,,) is not meant for v;. In the first case at node vy we

will have
Qvo (t + 1) = Qvo (t) \ {mS(vo)}>
since m,(y,) does not join the queue, and in the second case,

Quy (t+1)= Quy (t)U {mr(vo)} \ {mS(vo)}v (11)

where ¢\’ is the set-theoretic difference. In the second case (the first case is

treated identically), for node v; we have
Qu(t+1) = Qu(t) U {mT(Ui)} \ {mS(vi)}-
Using (6), (7), (10) and (11),

Qui(t+1) = 04,(Qu(t)) U{oy, (mr(vo))} \ {O'vi(mS(vo))}
= Oy (Qvo (t) U {mT(vo)} \ {mS(vo)}>
= avi(Qvo(t+ 1))7

concluding the induction. O

12



Lemma 3 If node vy never deroutes a message then the same is true for every

other node v;, 1 =1,2,...,n — 1.

Proof. If at some time ¢ node vy selects message m,, (v,) out of its queue and
sends it to some neighbor v,, then any node v; selects message o, (m,, (v,)) and
sends it to neighbor o,,(vs) as we have already seen (equations (7)—(8)). All we
have to show is that if v, is on a shortest path from vy to v, (i.e. v9 does not
deroute the message) then o,,(v;) is on a shortest path from v; to oy, (vy).
This is easy to do because automorphisms preserve distances [6]. That is, if &
is an automorphism of a graph G then dist(v,u) = dist(o(v),o(u)) for any two
vertices v and u of G. If vy does not deroute then dist(vy,v,) = dist(vs,vy) + 1.
Then, we must have dist(v; = 0,,(v0), 04, (vy)) = dist(oy,,(vs), 0y (vy)) + 1 and

0y, (vs) indeed lies on a shortest path from v; to o, (vy). O

Theorem 1 Any node-invariant algorithm for which w,, selects shortest paths

s an optimal total exchange algorithm for Cayley graphs.

Proof. From Lemma 2 it is seen that all nodes have the same queue size at any
step. Thus all nodes become idle (all queues are empty, hence total exchange
is completed) at the same time. From Lemma 3 no message is derouted if wy,
selects shortest paths. Consequently, both conditions (4) and (5) are satisfied
and the algorithm solves the problem optimally. O

Summarizing, we just showed that there exists a class of algorithms, called
node-invariant algorithms, which are able to solve the total exchange problem
optimally in any Cayley network. Most reasonable algorithms, such as furthest-
first, closest-first, etc. schemes are valid candidates, as long as they do not stay
idle when a queue contains messages and they are replicated “consistently” at
all nodes in the network. In the next section we provide a particularly simple
node-invariant algorithm and we give a complete example in the context of

hypercubes.

13



6 A simple node-invariant algorithm

Assume that we have an algorithm W that knows the shortest routes from
node vy to any other node. In other words, W takes a message, looks at its
destination and picks a neighbor of vy which lies on a shortest path from v, to the
destination of the message. It is always possible to construct such an algorithm
W for any network, e.g. using a table look-up procedure. More efficient schemes
are possible if the structure of the network is known. For example, in a ring R,

we can have
Wiim., (v,)) = { v fusn
Up—1 otherwise
(nodes vy and v, 1 are the two neighbors of node wvy).
Let us treat a message queue as a set of messages that behaves as a FIFO
queue. At node vy we initially sort destinations in any desired order. For

instance,
Qvo (0) = {mvo (Ul)v Meyq (U2)7 <oy My, (’Unfl)}‘

Suppose that the right end is the head of the FIFO queue and the left end is
its tail. Departing messages will leave from the head of the queue. Arriving
messages will join at the tail of the queue as long as they are not destined for the
current node; otherwise they are immediately forwarded to the local processor.

We have to guarantee that initially @,.(0) is equal to o,,(Q.,(0)), so we let

Qu; (0) = {my, (04, (1)), Mo, (00, (v2)), - - - s M, (00, (Vn1)) }-
The local algorithm A,, = (fy,,w.,) is defined as follows:
fo, (@) : select the message at the head of the queue Q.

It is trivial to see that f,,(0,,(Q)) = v, (fu,(Q)): if m is the message at the head

of @ then o,,(m) is obviously the message at the head of o,,(Q). Since m =

foo(Q) and oy, (m) = fu,(04,(Q)), it is derived that o, (fu,(Q)) = fo, (0w, (Q)).
Finally, let 0=! be the inverse mapping of 0. The existence and the unique-

ness of 0~! is guaranteed by the fact the the set II(G) of the automorphisms of

14



the graph is a group. Given W we define:

wy, (m) :  for message m select neighbor o,, (W(av’il(m))>.

We only have to show that w,,(c,,(m)) = 0,,(w,(m)), for any message m.
Notice that o,, is taken to be the identity mapping so that w,, is actually the
same as W. Thus we have to show that w,,(oy,(m)) = o,,(W(m)). Indeed,

from the description of w,, above, we have:
wy (00, (m) = 00, (W(e, (0, (m)))) = 00, (W(m)),

since 0, '0,, is the identity.
In summary, the algorithm shown in Fig. 1 is, based on Definition 2, node-
invariant. Therefore, it is an optimal total exchange algorithm for any Cayley

network, according to Theorem 1.

6.1 An example: hypercubes

To illustrate the theory developed in the previous sections we will construct
an algorithm for hypercubes, based on the algorithm in Fig. 1. An optimal
algorithm was given in [5, pp. 81-83] but is not in explicit form, and it is based
on a rather involved algorithm for the multiport model (where a node may send
messages to all its neighbors simultaneously).

Let @ be the exclusive-or (addition modulo 2) operation. If the binary
representation of = is (x4 1, ..., %1, Zo) then the bitwise exclusive-or operation,
@, is defined as

@Y= (41D Yd-1,---,T1 PY1, %0 D Yo)-

Dropping ‘v’ from the name of node v;, a hypercube Q)4 has node set V =
{0,1,...,2¢—1}. A node i has neighbors i ®;,2°, i @, 2!, ..., i®, 2% 1. In order
to apply the algorithm in Fig. 1 we need to identify three quantities:

e Defining a simple 3(G):
The following is an automorphism of the hypercube [15] that maps node

15



0 to node i:

oi(x) =1 ®p x. (12)

Because of the associativity of exclusive-or, it is seen that
Toi() () = 1 @ J B & = 03(0()),

for any node j, so that the set of automorphisms given by (12) for i =
0,1,...,2¢ — 1 satisfy (2).

e Obtaining o; *:

Because 1 @, i = 0, it is seen that O'i_l = 0;.

e (Constructing VV:
It is known that if in the binary representation of y, y, = 1 for some k
then neighbor 2* of node 0 lies on a shortest path from 0 to y, that is
W(m,(y)) = 2*. Usually, k is selected to be the leftmost non-zero bit

position of y in order to comply with the standard e-cube routing.

Consequently, the algorithm of the last section takes the simple form shown

in Fig. 2 and constitutes an optimal total exchange algorithm for hypercubes.

7 Discussion

We considered the total exchange problem under the single-port model in the
setting of Cayley graphs. It was shown that as long as every node sends a mes-
sage at every step and the message is not derouted, the optimal completion time
is guaranteed. A particular type of algorithms, which we named node-invariant
algorithms, always satisfy these optimality conditions and hence constitute op-
timal solutions to the total exchange problem.

The only requirement for our arguments to work was that the network pos-
sesses a set of isomorphisms that satisfy (2). In any network which has this
property (Cayley graphs do) node invariant algorithms can be defined and uti-

lized for the total exchange problem. We would like to see what other networks,

16



apart from Cayley ones, possess property (2). Is (2) satisfied in any node sym-
metric network?

As a last note, it is interesting to mention that total exchange can be viewed
as a specific case of isotropic communication problems, as originally considered
by Varvarigos and Bertsekas [21]. In our setting, a communication problem will
be named isotropic if whenever node vy has k; > 0 messages to send to node
v;, node v, has k; messages to send to o, (v;), for all i,z = 1,2,...,n — 1.
In effect, all that is required for a communication problem to be isotropic is
that at time t = 0, Q,, = 0,,(Qy,). All our arguments and all our results are
immediately applicable to any isotropic communication problem. An optimal
algorithm still has to satisfy conditions (4)—(5) and any node-invariant algorithm
does. Consequently, as long as @),, is appropriately set at time ¢ = 0, the
algorithm in Fig. 1 is an optimal algorithm for any problem of the isotropic
type.

A interesting direction of future research is the development of total ex-
change algorithms for multiport Cayley networks. In such a setting, each node
has the capabilities to communicate with all its neighbors simultaneously. Al-
though node-invariant algorithms could still be significant, it seems that they
are not sufficient to enforce optimality. It is not enough to keep all nodes busy;
one must rather keep all links busy. In such a case edge symmetries should play

a more important role than node symmetries.

References

[1] S. B. Akers and B. Krishnamurthy, “A group-theoretic model for symmetric
interconnection networks,” IEEE Trans. Comput., Vol. 38, No. 4, pp. 555-566,
Apr. 1989.

[2] F. Annexstein, M. Baumslag and A. L. Rosenberg, “Group action graphs and
parallel architectures,” SIAM J. Comput., Vol. 19, No. 3, pp. 544-569, June 1990.

17



3]

[10]

[13]

P. Berthomé, A. Ferreira and S. Perennes, “Optimal information dissemination
in star and pancake networks,” IEEE Trans. Parall. Distrib. Syst., Vol. 7, No.
12, pp. 1292-1300, Dec. 1996.

D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng and J. N. Tsitsiklis, “Op-
timal communication algorithms for hypercubes,” J. Parallel Distrib. Comput.,
Vol. 11, pp. 263-275, 1991.

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Nu-
merical Methods. Englewoods Cliffs, N.J.: Prentice - Hall, 1989.

N. Biggs, Algebraic Graph Theory (2nd edition). Cambridge, G.B.: Cambridge
University Press, 1993.

F. Boesch and R. Tindell, “Circulants and their connectivities,” Journal of Graph
Theory, Vol. 8, pp. 487-499, 1984.

F. Buckley and F. Harary, Distance in Graphs. Reading, Mass.: Addison - Wesley,
1990.

G. E. Carlsson, J. E. Cruthirds, H. B. Sexton and C. G. Wright, “Interconnec-
tion networks based on a generalization of cube-connected cycles,” IEEE Trans.
Comput., Vol. C-34, No. 8, pp. 769-772, Aug. 1985.

V. V. Dimakopoulos and N. J. Dimopoulos, “A theory for total exchange in
multidimensional interconnection networks,” IEEE Trans. Parall. Distrib. Syst.,

Vol. 9, No. 7, pp. 639-649, July 1998.

P. Fraigniaud and E. Lazard, “Methods and problems of communication in usual
networks,” Discrete Appl. Math., Vol. 53, pp. 79-133, 1994.

S. Hiranandani, K. Kennedy and C. - W. Tseng, “Compiling Fortran D for MIMD
distributed-memory machines,” Commun. ACM , Vol. 35, No. 8, pp. 6680, Aug.
1992.

S. L. Johnsson, “Communication efficient basic linear algebra computations on
hypercube architectures,” J. Parallel Distrib. Comput., Vol. 4, pp. 133-172, 1987.

18



[14]

[20]

[21]

22]

S. L. Johnsson and C. - T. Ho, “Optimum broadcasting and personalized com-
munication in hypercubes,” IEEE Trans. Comput., Vol. 38, No. 9, pp. 1249-1268,
1989.

F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. San Diego, CA: Morgan Kaufmann, 1992.

D. B. Loveman, “High Performance Fortran,” IEEE Parallel Distrib. Tech., Vol.
1, pp. 2542, Feb. 1993.

Message Passing Interface Forum, “MPI: A message-passing interface standard,”
Technical Report CS-94-230, University of Tennessee, Apr. 1994.

J. Mis§i¢ and Z. Jovanovié¢, “Communication aspects of the star graph intercon-
nection network,” IEEE Trans. Parall. Distrib. Syst., Vol. 5, No. 7, pp. 678-687,
July 1994.

F. P. Preparata and J. Vuillemin, “The cube-connected cycles: a versatile network
for parallel computation,” Commun. ACM, Vol. 24, No. 5, pp. 300-309, May
1981.

Y. Saad and M. H. Schultz, “Data communications in hypercubes,” J. Parallel
Distrib. Comput., Vol. 6, pp. 115-135, 1989.

E. A. Varvarigos and D. P. Bertsekas, “Communication algorithms for isotropic
tasks in hypercubes and wraparound meshes,” Parallel Comput., Vol. 18, pp.
1233-1257, 1992.

C. - H. Yeh and E. A. Varvarigos, “Macro-star networks: efficient low-degree
alternatives to star graphs,” IFEE Trans. Parall. Distrib. Syst., Vol. 9, No. 10,
pp- 987-1003, Oct. 1998.

A. W. - chee Fu and S. - C. Chau, “Cyclic-cubes: a new family of interconnection
networks of even fixed-degrees,” IEEE Trans. Parall. Distrib. Syst., Vol. 9, No.
12, pp. 1253-1268, Dec. 1998.

19



Ay (i=0,1,...,n—1)
At ¢t =0 set
Qu, = {0, (00, (01)), M, (00, (12)), -, M, (00, (V1)) },
and let

fu;(Qy,):  select the message at the head of the queue Q,,,
wy,(m): i m = f,,(Q.,), select neighbor o, (W(afﬂm))),

v

Figure 1: An optimal total exchange algorithm for Cayley networks. The queues
are FIFO. Messages join at the left end and depart from the right end of the

queue.

20



Ai: (i=0,1,...,n—1)
At ¢t =0 set
Qi = {mi(i @ 1), mi(i @, 2),...,mi(i & (n — 1)) }.
At any step t > 0,
e select the message at the head of Q; (say m,(y))

e send it to node i @, 2F where k is the leftmost

non-zero bit position of i @y y.

Figure 2: An optimal total exchange algorithm for d-dimensional hypercubes.

The standard e-cube routing paths are followed at every transmission.

21



