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Abstra
tConsider an inter
onne
tion network and the following situation: every node needs tosend a di�erent message to every other node. This is the total ex
hange or all-to-allpersonalized 
ommuni
ation problem, one of a number of information disseminationproblems known as 
olle
tive 
ommuni
ations. Under the assumption that a node
an send and re
eive only one message at ea
h step (single-port model) it is seen thatthe minimum time required to solve the problem is governed by the status (or totaldistan
e) of the nodes in the network. We present here a time-optimal solution forany Cayley network. Rings, hyper
ubes, 
ube-
onne
ted 
y
les, butter
ies are somewell-known Cayley networks whi
h 
an take advantage of our method. The solutionis based on a 
lass of algorithms whi
h we 
all node-invariant algorithms and whi
hbehave uniformly a
ross the network.
Keywords:Cayley graphs, 
olle
tive 
ommuni
ations, inter
onne
tion networks, node-invariantalgorithms, total ex
hange (all-to-all personalized 
ommuni
ation)
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1 Introdu
tion
Colle
tive 
ommuni
ations for distributed-memory multipro
essors have re
eived
onsiderable attention, as for example is evident from their in
lusion in the Mes-sage Passing Interfa
e standard [17℄ and from their importan
e in supportingvarious 
onstru
ts in High Performan
e Fortran [12, 16℄. This is easily justi�edby their frequent appearan
e in parallel numeri
al algorithms [13, 5℄.Broad
asting, s
attering, gathering, multinode broad
asting (sometimes 
alledgossiping) and total ex
hange 
onstitute a set of representative information dis-semination problems that have to be eÆ
iently solved in order to maximizethe performan
e of message-passing parallel programs. Out of this set, totalex
hange will be the subje
t of this paper. In total ex
hange, ea
h node ina network has distin
t messages to send to all the other nodes. The problemhas often, and quite reasonably, been identi�ed with matrix transposition. It iseasy to see why: if the network has n nodes and ea
h node stores a row of ann�n matrix then in order to transpose the matrix, ea
h node has to distributethe elements of its row to all the other nodes. Of 
ourse the appli
ation oftotal ex
hange is not limited to matrix transposition; other data permutationso

urring e.g. in FFT algorithms 
an also be viewed as total ex
hange prob-lems. Total ex
hange is also known as multis
attering or all-to-all personalized
ommuni
ation.Algorithms to solve the problem for a number of networks under a varietyof models/assumptions have appeared in the literature mostly 
on
entratingin hyper
ubes and tori (e.g. [20, 14, 4, 21, 10℄). Here we are going to followthe so-
alled single-port model in a store-and-forward network. Formally, ourproblem will be the distribution of distin
t messages from every node to everyother node subje
t to the following 
onditions [11℄:� only adja
ent nodes 
an ex
hange messages,� a message requires one time unit (or step) in order to be transferred be-tween two nodes,
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� a node 
an send at most one message and re
eive at most one message inea
h step.Under this model, time-optimal total ex
hange algorithms have been given in[5, pp. 81{83℄ for hyper
ubes (although highly involved), in [18℄ for star graphs,and in [10℄ for general 
artesian produ
t networks.In this paper we are going to show that it is possible to solve the problem inthe minimum time in any Cayley network. Hyper
ubes and star graphs belongto the 
lass of Cayley networks, as do 
omplete graphs, rings, 
ube-
onne
ted
y
les, (wrapped) butter
ies and many other interesting and widely studiednetworks whose signi�
an
e is well-known [15℄. Communi
ation algorithms forre
ently proposed Cayley graphs either do not address the total ex
hange prob-lem (e.g. in [3℄ for stars and pan
akes, and in [23℄ for 
y
li
-
ubes) or are notstri
tly optimal under the model we 
onsider (e.g. the proposed total ex
hangealgorithm for the ma
ro-stars in [22℄). In 
ontrast, our method a
hieves absoluteoptimality as far as 
ompletion time is 
on
erned. In the 
ase of hyper
ubesand star graphs, where optimal solutions are already known, our method 
anstill be important sin
e it leads to mu
h simpler algorithms, as shown in Se
tion6. Furthermore, what is more important is that the developed theory is not tiedto a parti
ular topology; it is quite general and applies to any Cayley graph.The paper is organized as follows. Se
tion 2 introdu
es some elementarygraph-theoreti
 and group-theoreti
 notation. In Se
tion 3 we derive a simpleproperty of Cayley networks whi
h will be useful for our arguments. In Se
tion4 we give a lower bound for the time needed to perform total ex
hange under thesingle-port model. In the same se
tion we give suÆ
ient 
onditions for a
hievingthe lower bound. We then pro
eed to formally de�ne the 
lass of node-invariantalgorithms and prove its optimality for the total ex
hange problem in Se
tion 5.A simple node-invariant algorithm is given in Se
tion 6, along with an examplein hyper
ubes. Finally, Se
tion 7 summarizes the results.
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2 Graph-theoreti
 and group-theoreti
 notions
An (undire
ted) graph G 
onsists of a set V of nodes (or verti
es) inter
onne
tedby a set E of (undire
ted) edges. This is the usual model of representing amultipro
essor inter
onne
tion network: ea
h pro
essor 
orresponds to a nodeand ea
h 
ommuni
ation link 
orresponds to an edge. Thus the terms `graph'and `network' will be 
onsidered synonymous here. Nodes 
onne
ted by an edgein E are adja
ent to ea
h other. Nodes adja
ent to v 2 V are neighbors of v.A path in G from node v to node u is a sequen
e of nodesv = v0; v1; : : : ; v` = u;su
h that all verti
es are distin
t and for all 0 � i � `, the edge (vi; vi+1) 2 E.We say that the length of a path is ` if it 
ontains `+1 verti
es. In a 
onne
tedgraph there exists a path between any two nodes, and this is the 
lass of graphswe 
onsider here. The distan
e, dist(v; u), between verti
es v and u is the lengthof a shortest path between v and u. Finally, the e

entri
ity of v, e(v), is thedistan
e to a node farthest from v, i.e.e(v) = maxu2V fdist(v; u)g:An automorphism of the graph is a mapping from the verti
es to the verti
esthat preserves the edges. Formally, an automorphism of G is a permutation �of V su
h that (�(v); �(u)) 2 E if and only if (v; u) 2 E. If for any pair ofverti
es v, u there exists an automorphism that maps v to u then the graph isnode symmetri
.A group 
onsists of a set G and an asso
iative binary operation `�' on G withthe following two properties. There exists an identity element | that is anelement � 2 G for whi
h a � � = � � a = a for all a 2 G | and for ea
h a 2 Gthere exists an inverse element, denoted by a�1 | that is an element a�1 2 Gfor whi
h a � a�1 = a�1 � a = �. The inverse of an element is unique. It isknown that the set of automorphisms of a graph G is a group with respe
t tothe 
omposition operation, and we will denote it by �(G).5



Cayley graphs [6, 1℄ are based on groups and 
onstitute a large 
lass of nodesymmetri
 networks. Given a set � = f
1; 
2; : : : ; 
dg of generators for a groupG, a Cayley graph has verti
es 
orresponding to the elements of G and edges
orresponding to the a
tion of the generators. That is, if v; u 2 G, the edge(v; u) exists in G i� there is a generator 
 2 � su
h that v � 
 = u. A usualassumption is that the identity element of G does not belong to � (in order toavoid edges from a node to itself) and that � is 
losed under inverses (so thatthe graph is in e�e
t undire
ted).The 
lass in
ludes quite important networks su
h as the hyper
ube, the(wrapped) butter
y , the 
ube-
onne
ted 
y
les [2, 19, 9℄. Also, 
onne
ted 
ir
u-lant graphs [7℄ (whi
h in
lude the rings) are Cayley networks [6℄. More re
entlyproposed Cayley graphs in
lude the 
y
li
-
ubes [23℄ and the ma
ro-stars [22℄.
3 An automorphism property of Cayley graphs
Consider a Cayley graph G with node set V = G = fv0; v1; : : : ; vn�1g, and themapping: �vi(vx) = vi � v�10 � vx; (1)where v�10 is the inverse element of v0 in V . It is easily seen that this mappingis an automorphism of the graph [1℄. Let �(G) be the set of the n mappingsde�ned by (1) for i = 0; 1; : : : ; n� 1:

�(G) = f�vi j i = 0; 1; : : : ; n� 1g:
The mappings in �(G) have the following properties:� �vi maps v0 to vi� �v0 is the identity mapping� If i 6= j, then:

��vi (vj)(vx) = �vi(vj) � v�10 � vx6



= vi � v�10 � vj � v�10 � vx= �vi(vj � v�10 � vx)= �vi(�vj(vx));that is, ��vi (vj) = �vi�vj ; (2)the 
omposition of mappings �vi and �vj .Noti
e that �(G) may not be the only set of automorphisms whi
h satisfy(2). Also, if the network is known, the automorphisms may obtain a (
omputa-tionally) simpler form. As an example, 
onsider a ring with n nodes. Node viis adja
ent to nodes vi�1 and vi	1 where � and 	 denote addition and subtra
-tion modulo n. An easy set �(G) of automorphisms with the desired properties
onsists of the following mappings:�vi(vx) = vi�x;i = 0; 1; : : : ; n � 1. A
tually, the above mappings work for any (
onne
ted)
ir
ulant graph.During total ex
hange nodes are required to send messages to various des-tinations. If a node holds a number of messages to be forwarded, at ea
h stepit must sele
t one of them and send it to one of its neighboring nodes. Thus,before the sele
ted message is transmitted the node must 
hoose a neighbora

ording to some prede�ned rules. What we would like to establish is that atany step all nodes in the network 
hoose \equivalent" neighbors. This way we
an expe
t that all nodes operate in a uniform manner, and whatever o

urs atnode v0 o

urs \equivalently" at all the other nodes. The pre
eding 
ommentsare formalized in the following lemma.Lemma 1 Let v0 pi
k one of its neighbors, va, and let every other node vi,i = 1; 2; : : : ; n� 1, pi
k neighbor �vi(va). Then(a) every node is pi
ked by exa
tly one other node and(b) if vb is the node that pi
ks v0 then �vi(vb) is the node that pi
ks vi.7



Proof.(a) For the �rst part, all we have to show is that �vi(va) 6= �vj(va) for i 6= j.Let us assume that for some j 6= i we have �vi(va) = �vj(va) = vk, for somek. Then �vk = ��vi (va), and from (2), �vk = �vi�va. Similarly, �vk = �vj�va.Consequently, �vi�va = �vj�va , or �vi = �vj , whi
h 
annot hold.(b) Let vb be the node that pi
ks v0, that is v0 = �vb(va). Sin
e vi = �vi(v0)(�vi maps v0 to vi), we obtain vi = �vi(�vb(va)). From (2) we get vi =��vi (vb)(va). This means that node �vi(vb) pi
ked vi. 2
4 Lower bound on total ex
hange time
In the total ex
hange problem, every node v has to send n�1 distin
t messages,one to ea
h of the other nodes in an n-node network. If there exist nd nodes indistan
e d from v, where d = 1; 2; : : : ; e(v), then the messages sent by v must
ross s(v) = e(v)Xd=1 dndlinks in total. For all messages to be ex
hanged, the total number of linktraversals must be SG = Xv2V s(v):The quantity s(v) is known as the total distan
e or the status [8℄ of node v.Every time a message is 
ommuni
ated between adja
ent nodes one linktraversal o

urs. If nodes are allowed to transmit only one message per step, themaximum number of link traversals in a single step is at most n. Consequently,we 
an at best subtra
t n units from SG in ea
h step, so that a lower bound ontotal ex
hange time is T � SGn : (3)
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Be
ause all nodes in a node symmetri
 graph have the same status [8℄, it is seenthat for su
h networks the lower bound is simply T � s(v), where v is any node.Based on the above dis
ussion we immediately have the following suÆ
ient
onditions in order for a total ex
hange s
heme to a
hieve the lower bound of(3): all nodes are busy all the time, and, (4)every transmitted message gets 
loser to its destination. (5)The 
onditions guarantee that n units are subtra
ted from SG at every step,whi
h is the best we 
an do. Noti
e that we must require that transmittedmessages are not derouted , that is, they always follow minimal paths, getting
loser to their destination after ea
h link traversal.
5 Optimal algorithms
Every node vi in the network maintains a message queue, Qvi, where in
omingmessages from neighbors are deposited until they are s
heduled for transfer tosome other node. Initially, Qvi 
ontains the n � 1 messages of vi for the othernodes. As time passes, messages originating from other nodes join this queueon their way to their destination. If an in
oming message is destined for vi it isassumed that it does not join the message queue but is rather forwarded to thelo
al pro
essor for 
onsumption.At node vi some lo
al algorithm Avi operates in order to s
hedule the mes-sage transfers. Whenever there exist messages in Qvi , algorithm Avi is respon-sible for sele
ting:(i) the message to leave in the next time unit, and,(ii) the neighbor of vi to whi
h the message will be sent.De�nition 1 A distributed total ex
hange algorithmA = (Av0;Av1; : : : ;Avn�1)is a 
olle
tion of lo
al algorithms, algorithm Avi running on node vi, i =0; 1; : : : ; n � 1. Algorithm Avi is written as Avi = (fvi ; wvi), where, given a9



message queue Qvi, pro
edure fvi sele
ts a message fvi(Qvi) = m and wvi se-le
ts a neighbor wvi(m) of vi.The idea now is to �x a node in the network (say v0) and to make all theother nodes behave in a similar way with v0. We will design the algorithms insu
h a way that every node vi sele
ts a message \
orresponding" to the messagesele
ted by node v0 and sends it to a neighbor \
orresponding" to the neighborsele
ted by v0. This way we expe
t that the algorithm will behave uniformlya
ross the network. This uniformity is highly desirable be
ause it will for
eall nodes to have \
orresponding" messages queues at ea
h step; hen
e we 
anargue that message queues always have the same size. We will then be ableto guarantee that all queues be
ome empty at the same time. This is exa
tlythe time when total ex
hange is 
ompleted, and 
ondition (4) will have beensatis�ed.In order to des
ribe algorithms with a uniform behavior, we need the follow-ing notation. Let mvx(vy) be the message of node vx (sour
e) meant for node vy(destination). For an automorphism � 2 �(G), let �(mvx(vy)) be the messageof node �(vx) destined for node �(vy), i.e.�(mvx(vy)) def= m�(vx)(�(vy)):Finally, let Q be a set of messages. We de�ne:�(Q) def= n�(mvx(vy)) j mvx(vy) 2 Qo:De�nition 2 Let G be a Cayley graph and let �(G) = f�vi j i = 0; 1; : : : ; n�1g be a set of automorphisms that satisfy (2). A total ex
hange algorithmA = (Av0; : : : ;Avn�1) where Avi = (fvi ; wvi), i = 0; 1; : : : ; n � 1, will be 
allednode-invariant if for any message queue Q and any message m it satis�esfvi(�vi(Q)) = �vi(fv0(Q))wvi(�vi(m)) = �vi(wv0(m)):
10



Lemma 2 If Qvi(t) is the queue of node vi at time t, i = 0; 1; : : : ; n � 1, thenany node-invariant algorithm guarantees that
Qvi(t) = �vi(Qv0(t));for all t � 0, where �vi is as given in De�nition 2.

Proof. The proof is by indu
tion on t. Initially (t = 0) we have that
Qv0 = fmv0(vj) j j = 1; 2; : : : ; n� 1g:

Be
ause automorphisms are bije
tions �vi(vk) 6= �vi(v`) if k 6= `. Consequently,the set f�vi(vj) j j = 1; 2; : : : ; n � 1g 
ontains all nodes of G ex
ept node vi(sin
e for j = 0, �vi(v0) = vi). Thus the message set S = fmvi(�vi(vj)) j j =1; 2; : : : ; n�1g is the same as the set S 0 = fmvi(vk) j k = 0; 1; : : : ; n�1; k 6= ig.Noti
e that S 0 = Qvi(0). If we write vi as �vi(v0), and use (2) it is straightforwardto derive that S = �vi(Qv0(0)), showing that Qvi(0) = �vi(Qv0(0)).Next, assume as an indu
tion hypothesis that for some t � 0,
Qvi(t) = �vi(Qv0(t)): (6)

For time t+1 we pro
eed as follows. For simpli
ity, let ms(vi) = fvi(Qvi(t)) andvs(vi) = wvi(ms(vi)). That is, ms(vi) is the message sele
ted by vi, and vs(vi) isthe neighbor of vi to whi
h the sele
ted message will be sent . From (6) and thede�nition of node-invariant algorithms it is easily seen that
ms(vi) = �vi(ms(v0)); (7)vs(vi) = �vi(vs(v0)): (8)

Now noti
e that vs(v0) is the neighbor v0 pi
ked to send the message to. From(8) it is seen that Lemma 1 applies so that every node re
eives exa
tly onemessage, and that, if vr(v0) is the neighbor from whi
h v0 re
eives a messagethen vr(vi) = �vi(vr(v0)) (9)
11



is the neighbor from whi
h vi re
eives its (unique) message. Moreover, if mr(vi)is the message re
eived by vi, we obtainmr(vi) = ms(vr(vi))= �vr(vi)(ms(v0))= ��vi (vr(v0))(ms(v0))= �vi(�vr(v0)(ms(v0)));and sin
e mr(v0) = ms(vr(v0)) = �vr(v0)(ms(v0)),mr(vi) = �vi(mr(v0)): (10)To re
apitulate, any node vi sele
ts a message ms(vi) given by (7), sends it tosome node vs(vi) given by (8) and re
eives a message mr(vi) given by (10) fromsome node vr(vi) given by (9). If the destination of mr(v0) is node v0, then from(10) it is seen that the destination of mr(vi) is node vi. Conversely, if mr(v0) isnot meant for v0 then mr(vi) is not meant for vi. In the �rst 
ase at node v0 wewill have Qv0(t+ 1) = Qv0(t) n fms(v0)g;sin
e mr(v0) does not join the queue, and in the se
ond 
ase,Qv0(t+ 1) = Qv0(t) [ fmr(v0)g n fms(v0)g; (11)where `n' is the set-theoreti
 di�eren
e. In the se
ond 
ase (the �rst 
ase istreated identi
ally), for node vi we haveQvi(t+ 1) = Qvi(t) [ fmr(vi)g n fms(vi)g:Using (6), (7), (10) and (11),Qvi(t+ 1) = �vi(Qv0(t)) [ f�vi(mr(v0))g n f�vi(ms(v0))g= �vi�Qv0(t) [ fmr(v0)g n fms(v0)g�= �vi(Qv0(t+ 1));
on
luding the indu
tion. 2
12



Lemma 3 If node v0 never deroutes a message then the same is true for everyother node vi, i = 1; 2; : : : ; n� 1.
Proof. If at some time t node v0 sele
ts message mvx(vy) out of its queue andsends it to some neighbor vs, then any node vi sele
ts message �vi(mvx(vy)) andsends it to neighbor �vi(vs) as we have already seen (equations (7){(8)). All wehave to show is that if vs is on a shortest path from v0 to vy (i.e. v0 does notderoute the message) then �vi(vs) is on a shortest path from vi to �vi(vy).This is easy to do be
ause automorphisms preserve distan
es [6℄. That is, if �is an automorphism of a graph G then dist(v; u) = dist(�(v); �(u)) for any twoverti
es v and u of G. If v0 does not deroute then dist(v0; vy) = dist(vs; vy)+ 1.Then, we must have dist(vi = �vi(v0); �vi(vy)) = dist(�vi(vs); �vi(vy)) + 1 and�vi(vs) indeed lies on a shortest path from vi to �vi(vy). 2
Theorem 1 Any node-invariant algorithm for whi
h wv0 sele
ts shortest pathsis an optimal total ex
hange algorithm for Cayley graphs.
Proof. From Lemma 2 it is seen that all nodes have the same queue size at anystep. Thus all nodes be
ome idle (all queues are empty, hen
e total ex
hangeis 
ompleted) at the same time. From Lemma 3 no message is derouted if wv0sele
ts shortest paths. Consequently, both 
onditions (4) and (5) are satis�edand the algorithm solves the problem optimally. 2

Summarizing, we just showed that there exists a 
lass of algorithms, 
allednode-invariant algorithms, whi
h are able to solve the total ex
hange problemoptimally in any Cayley network. Most reasonable algorithms, su
h as furthest-�rst, 
losest-�rst, et
. s
hemes are valid 
andidates, as long as they do not stayidle when a queue 
ontains messages and they are repli
ated \
onsistently" atall nodes in the network. In the next se
tion we provide a parti
ularly simplenode-invariant algorithm and we give a 
omplete example in the 
ontext ofhyper
ubes.
13



6 A simple node-invariant algorithm
Assume that we have an algorithm W that knows the shortest routes fromnode v0 to any other node. In other words, W takes a message, looks at itsdestination and pi
ks a neighbor of v0 whi
h lies on a shortest path from v0 to thedestination of the message. It is always possible to 
onstru
t su
h an algorithmW for any network, e.g. using a table look-up pro
edure. More eÆ
ient s
hemesare possible if the stru
ture of the network is known. For example, in a ring Rnwe 
an have W(mvx(vy)) = 8<: v1 if y � n=2vn�1 otherwise(nodes v1 and vn�1 are the two neighbors of node v0).Let us treat a message queue as a set of messages that behaves as a FIFOqueue. At node v0 we initially sort destinations in any desired order. Forinstan
e, Qv0(0) = fmv0(v1);mv0(v2); : : : ;mv0(vn�1)g:Suppose that the right end is the head of the FIFO queue and the left end isits tail. Departing messages will leave from the head of the queue. Arrivingmessages will join at the tail of the queue as long as they are not destined for the
urrent node; otherwise they are immediately forwarded to the lo
al pro
essor.We have to guarantee that initially Qvi(0) is equal to �vi(Qv0(0)), so we letQvi(0) = fmvi(�vi(v1));mvi(�vi(v2)); : : : ;mvi(�vi(vn�1))g:The lo
al algorithm Avi = (fvi ; wvi) is de�ned as follows:fvi(Q) : sele
t the message at the head of the queue Q.It is trivial to see that fvi(�vi(Q)) = �vi(fv0(Q)): ifm is the message at the headof Q then �vi(m) is obviously the message at the head of �vi(Q). Sin
e m =fv0(Q) and �vi(m) = fvi(�vi(Q)), it is derived that �vi(fv0(Q)) = fvi(�vi(Q)).Finally, let ��1 be the inverse mapping of �. The existen
e and the unique-ness of ��1 is guaranteed by the fa
t the the set �(G) of the automorphisms of14



the graph is a group. Given W we de�ne:wvi(m) : for message m sele
t neighbor �vi�W(��1vi (m))�.We only have to show that wvi(�vi(m)) = �vi(wv0(m)), for any message m.Noti
e that �v0 is taken to be the identity mapping so that wv0 is a
tually thesame as W. Thus we have to show that wvi(�vi(m)) = �vi(W(m)). Indeed,from the des
ription of wvi above, we have:wvi(�vi(m)) = �vi�W(��1vi (�vi(m)))� = �vi(W(m));sin
e ��1vi �vi is the identity.In summary, the algorithm shown in Fig. 1 is, based on De�nition 2, node-invariant. Therefore, it is an optimal total ex
hange algorithm for any Cayleynetwork, a

ording to Theorem 1.
6.1 An example: hyper
ubesTo illustrate the theory developed in the previous se
tions we will 
onstru
tan algorithm for hyper
ubes, based on the algorithm in Fig. 1. An optimalalgorithm was given in [5, pp. 81{83℄ but is not in expli
it form, and it is basedon a rather involved algorithm for the multiport model (where a node may sendmessages to all its neighbors simultaneously).Let � be the ex
lusive-or (addition modulo 2) operation. If the binaryrepresentation of x is (xd�1; : : : ; x1; x0) then the bitwise ex
lusive-or operation,�b, is de�ned as x�b y = (xd�1 � yd�1; : : : ; x1 � y1; x0 � y0):Dropping `v' from the name of node vi, a hyper
ube Qd has node set V =f0; 1; : : : ; 2d�1g. A node i has neighbors i�b 20, i�b 21, . . . , i�b 2d�1. In orderto apply the algorithm in Fig. 1 we need to identify three quantities:� De�ning a simple �(G):The following is an automorphism of the hyper
ube [15℄ that maps node15



0 to node i: �i(x) = i�b x: (12)Be
ause of the asso
iativity of ex
lusive-or, it is seen that��i(j)(x) = i�b j �b x = �i(�j(x));for any node j, so that the set of automorphisms given by (12) for i =0; 1; : : : ; 2d � 1 satisfy (2).� Obtaining ��1i :Be
ause i�b i = 0, it is seen that ��1i = �i.� Constru
ting W:It is known that if in the binary representation of y, yk = 1 for some kthen neighbor 2k of node 0 lies on a shortest path from 0 to y, that isW(mx(y)) = 2k. Usually, k is sele
ted to be the leftmost non-zero bitposition of y in order to 
omply with the standard e-
ube routing.Consequently, the algorithm of the last se
tion takes the simple form shownin Fig. 2 and 
onstitutes an optimal total ex
hange algorithm for hyper
ubes.
7 Dis
ussion
We 
onsidered the total ex
hange problem under the single-port model in thesetting of Cayley graphs. It was shown that as long as every node sends a mes-sage at every step and the message is not derouted, the optimal 
ompletion timeis guaranteed. A parti
ular type of algorithms, whi
h we named node-invariantalgorithms, always satisfy these optimality 
onditions and hen
e 
onstitute op-timal solutions to the total ex
hange problem.The only requirement for our arguments to work was that the network pos-sesses a set of isomorphisms that satisfy (2). In any network whi
h has thisproperty (Cayley graphs do) node invariant algorithms 
an be de�ned and uti-lized for the total ex
hange problem. We would like to see what other networks,16



apart from Cayley ones, possess property (2). Is (2) satis�ed in any node sym-metri
 network?As a last note, it is interesting to mention that total ex
hange 
an be viewedas a spe
i�
 
ase of isotropi
 
ommuni
ation problems, as originally 
onsideredby Varvarigos and Bertsekas [21℄. In our setting, a 
ommuni
ation problem willbe named isotropi
 if whenever node v0 has ki � 0 messages to send to nodevi, node vx has ki messages to send to �vx(vi), for all i; x = 1; 2; : : : ; n � 1.In e�e
t, all that is required for a 
ommuni
ation problem to be isotropi
 isthat at time t = 0, Qvi = �vi(Qv0). All our arguments and all our results areimmediately appli
able to any isotropi
 
ommuni
ation problem. An optimalalgorithm still has to satisfy 
onditions (4){(5) and any node-invariant algorithmdoes. Consequently, as long as Qvi is appropriately set at time t = 0, thealgorithm in Fig. 1 is an optimal algorithm for any problem of the isotropi
type.A interesting dire
tion of future resear
h is the development of total ex-
hange algorithms for multiport Cayley networks. In su
h a setting, ea
h nodehas the 
apabilities to 
ommuni
ate with all its neighbors simultaneously. Al-though node-invariant algorithms 
ould still be signi�
ant, it seems that theyare not suÆ
ient to enfor
e optimality. It is not enough to keep all nodes busy;one must rather keep all links busy. In su
h a 
ase edge symmetries should playa more important role than node symmetries.
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Avi : (i = 0; 1; : : : ; n� 1)At t = 0 setQvi = nmvi(�vi(v1));mvi(�vi(v2)); : : : ;mvi(�vi(vn�1))o;and letfvi(Qvi): sele
t the message at the head of the queue Qvi,wvi(m): if m = fvi(Qvi), sele
t neighbor �vi�W(��1vi (m))�,Figure 1: An optimal total ex
hange algorithm for Cayley networks. The queuesare FIFO. Messages join at the left end and depart from the right end of thequeue.
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Ai: (i = 0; 1; : : : ; n� 1)At t = 0 setQi = nmi(i�b 1);mi(i�b 2); : : : ;mi(i�b (n� 1))o.At any step t � 0,� sele
t the message at the head of Qi (say mx(y))� send it to node i�b 2k where k is the leftmostnon-zero bit position of i�b y.Figure 2: An optimal total ex
hange algorithm for d-dimensional hyper
ubes.The standard e-
ube routing paths are followed at every transmission.
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