
Design and Implementation of OpenMP Tasks in the OMPi Compiler

Spiros N. Agathos, Panagiotis E. Hadjidoukas, Vassilios V. Dimakopoulos
Department of Computer Science

University of Ioannina
Ioannina, Greece, GR-45110

Email: {sagathos,phadjido,dimako}@cs.uoi.gr

Abstract—In this paper we present the design and implemen-
tation of tasks in the context of the OMPI OpenMP compiler.
The modular architecture of OMPI’s runtime system allows
a wide range of choices for experimenting with OpenMP
structures. We present two fully-fledged implementations of
tasks: one based on POSIX threads, with the addition of a
tasking layer, and another one based on an almost unmodified
user-level threading library. Both allow the tuning of their
scheduling parameters so as to optimize memory consumption
and execution times, resulting in highly competitive perfor-
mance.

Keywords-task parallelism, OpenMP, threads, compiler
transformations, runtime system

I. INTRODUCTION

The tasking model has been used successfully in a
wide range of parallel and distributed computing systems,
programming languages, tools and applications. OpenMP,
the dominant programming model for shared-memory plat-
forms, has been recently extended in its version 3.0 with
support for task-based parallelism [1]. With tasking, the
expressiveness of OpenMP goes beyond loop-level and
coarse-grain parallelism. OpenMP is enriched with flexible
management or irregular and dynamic parallelism, in the
spirit of Cilk [2].

An OpenMP task is a unit of work scheduled for asyn-
chronous execution by an OpenMP thread. Each task has
its own data environment and can share data with other
tasks. Tasks are distinguished as explicit and implicit ones.
The former are declared by the programmer with the task
construct, while the latter are created by the runtime library,
when a parallel construct is encountered; each OpenMP
thread corresponds to a single implicit task. A task may
generate new explicit tasks and can suspend its execution
waiting for the completion of all its child tasks with the
taskwait construct. Within a parallel region, task exe-
cution is also synchronized at barriers: OpenMP threads
resume only when all of them have reached the barrier and
there are no pending explicit tasks left. Tasks are also clas-
sified as tied and untied, depending on whether resumption
of suspended tasks is allowed only on the OpenMP thread
that suspended them or on any other thread.

The tasking model of OpenMP was initially presented in
[3] and a prototype was implemented in the NANOS Mer-

curium compiler [4]. Currently, there exist several platforms
that provide support of the OpenMP tasking model; these in-
clude both commercial (e.g. Intel, Sun, IBM), freeware, and
research compilers, such as GNU GCC [5] and OpenUH [6].

OMPI [7] is a lightweight source-to-source compiler for
OpenMP/C; it takes C source code with OpenMP pragmas
and outputs transformed multithreaded C code augmented
with calls to OMPI’s runtime system. OMPI offers a unique
modular runtime system which allows the integration of
a multitude of thread libraries. It currently includes li-
braries based on POSIX threads, custom user-level threads
and heavyweight processes. The latter allow transparent
OpenMP application execution on clusters of multicore
nodes, through a software DSM layer. Additionally, OMPI
includes highly efficient support for nested parallelism.

In this paper we discuss the implementation of OpenMP
tasks in the OMPI compiler. In contrast to existing OpenMP
compilers, which follow a single and particular way of
implementing the tasking model, OMPI utilizes two different
and fully functional approaches that build on top of a
common runtime infrastructure. The first approach is based
on POSIX-threads while the second one exploits user-level
multithreading. Several design and optimization issues that
concern both cases are also discussed, while the experimen-
tal evaluation with benchmarks demonstrates the efficient
support of task parallelism by the OMPI compiler.

The rest of the paper is organized as follows: Section II
gives an overview of the OMPI compilation environment and
presents the compiler support of OpenMP tasks. Sections
III and IV discuss the two runtime designs. Experimental
evaluation is reported in Section V. Finally, we conclude in
Section VI.

II. COMPILER TRANSFORMATIONS

Consider the following general OpenMP task statement,
which provides code to be executed as a task, requiring a
snapshot of variables x and y. The if expression forces
immediate execution if cond evaluates to false.

#pragma omp task if(cond) firstprivate(x,y)
{
<CODE>

}

The code produced by the compiler is shown in Fig. 1. The
original code gets replaced by lines 2–12. In essence, there is

1 /* Tranformed code */
2 {
3 struct taskenv { int x; int y; } *tenv;
4

5 tenv = ort_taskenv_alloc(sizeof(struct taskenv));
6 tenv->x = x;
7 tenv->y = y;
8 if (cond)
9 ort_new_task(0, taskFunc0, (void *) tenv);

10 else
11 ort_new_task_exec(0, taskFunc0, (void *) tenv);
12 }
13

14 /* Produced task function */
15 void taskFunc0(void *tdata)
16 {
17 struct taskenv { int x; int y; } *tenv = tdata;
18 int x = tenv->x;
19 int y = tenv->y;
20

21 <CODE>
22

23 ort_taskenv_free(tenv, sizeof(struct taskenv));
24 }

Figure 1. Source code transformation for tasks

a new structure declared that captures the data environment
(firstprivate variables) that will be used by the task, and
then the runtime system (see next section) is instructed to
simply create a new task (ort_new_task()) or create it and
execute it immediately (ort_new_task_exec()), depend-
ing on the given condition (cond). The actual task code is
moved to a new function (taskFunc0()), shown in lines
15–31. The task function has exactly one argument, its data
environment. Notice that the data environment is allocated
at line 5, using ort_taskenv_alloc(), and the size (in
bytes) of the environment. The data is deallocated at the
end of the task function, through ort_taskenv_free().

A. Optimized Execution Path

It should be clear from the above transformation that
preparing a task for execution incurs the overheads of
allocating the data environment, invoking a driver function
(ort_new_task()), calling the actual function that includes
the original code (taskFunc0()), copying the data envi-
ronment and finally freeing it (in addition to runtime queues
management and scheduling overheads presented in the next
section). Such overheads become significant especially for
very fine-grain tasks. While one cannot avoid them in the
general case, OMPI alleviates most of them in the case
of immediate task execution. This occurs when either the
condition cond evaluates to false, or the runtime system
has a sizable backlog of tasks waiting for execution, and
throttles the creation of new tasks. In this case, the compiler
produces a fast execution path, by copying the original
code verbatim. The transformation is shown in Fig. 2; local
variables are declared to capture the firstprivate ones and
the original code is executed unmodified. The two runtime
functions (ort_task_immediate_start/end()) are
required for internal bookkeeping.

Notice that the optimization introduces code duplication,

if (!cond || ort_task_throttling())
{

int _fy=y, y=_fy, _fx=x, x=_fx; /* Capture values */
ort_task_immediate_start();
<CODE>
ort_task_immediate_end();

}
else

<standard transformation of Fig. 1>

Figure 2. Optimized code for immediately executed tasks

thus increasing the size of the executable. For size-critical
applications, OMPI provides a flag that disables the produc-
tion of the fast execution path.

III. RUNTIME ORGANIZATION

This section describes the design and implementation of
tasking support in the runtime system of the OMPI OpenMP
C compiler, based on the default POSIX threading library.

A. Key Structures and Memory Management

The most important data structure is the task ‘node’,
which holds the task descriptor, i.e. all the information
needed for the execution of a task. Every OpenMP thread
owns a list where task nodes can be stored. This list is
called task queue and task nodes that are stored there
represent tasks whose execution is pending. Task queues
are implemented as special double-ended queues (deques);
the owner thread can add and remove elements from the
top of the queue, while any other thread can only extract
elements from the bottom of the queue. In addition, OMPI
makes use of per-thread recycle bins which store task node
structures that have been deallocated. This allows task nodes
to be reused, leading to better memory utilization and faster
allocation.

When preparing for a new task, the need for memory
allocation is two-fold: (a) allocate a new task node and
(b) allocate space for the task data environment. The latter
refers to memory allocated by the compiler-produced code
(see Fig. 1). In contrast to the task node structure, which
has a fixed size, the size of task data environment varies,
depending on the size of the captured firstprivate variables
of each task. However, the different memory sizes needed
for task data environments are few in number, and equal to
the number of lexical task regions in the program. Thus,
the memory allocator is required to handle only a few
different memory sizes. As a result, the allocator used in
ort_taskenv_alloc() (see Fig. 1) implements a list of
buckets; each bucket stores memory regions of a particular
size. Given the size of the task data environment (say s), the
allocator searches the list until it hits the bucket responsible
for size s. If such a bucket does not exist, it gets created and
a certain number of memory regions are allocated and added
to the bucket. Finally, a memory region out of the bucket is
returned. Upon deallocation (ort_taskenv_free()), the
memory region is returned to the bucket it was removed

2

from, making it possible to recycle memory regions for
subsequent tasks.

B. Task Scheduling and Work-Stealing

OMPI’s task scheduler is based on work stealing [2],
whereby idle threads try to execute tasks created by other
threads. After a new task is created, it is placed in a thread’s
queue until some thread decides to execute it. Task queues
have fixed length, which means that they can store up to
a certain number of pending tasks. This number is one of
OMPI’s runtime parameters, controlled through an environ-
ment variable (OMPI_TASKQ_SIZE). The manipulation of
task queues is based on a highly efficient lock-free algorithm
by Herlihy & Shavit [8]. Because the original algorithm
implements an unbounded deque, we have modified it in
order to handle our fixed-length task queues.

When a thread is about to execute its implicit task
(parallel region), a new task node is allocated, the code
of this task is executed immediately and finally the task
node is deallocated. Whenever a thread reaches an explicit
task construct, it can either allocate a new task node and
submit the corresponding task for deferred execution, or it
can suspend the execution of the current task and execute
the new task immediately; OMPI’s default behavior is to
choose the former. That is, it implements a breadth-first task
scheduling policy (BFS). It resorts to the second alternative
(depth-first task execution) when the task queue is full. In
that case the thread enters throttling mode, where every
encountered task is executed immediately to completion.
Notice that in this case the current task (although temporarily
suspended in favor of the new task) does not enter the task
queue, so it can never be resumed by another thread. In
effect, all tasks are tied. Throttling mode is disabled when
30% of the task queue capacity becomes available.

The execution of pending explicit tasks takes place in
two different cases. The first occurs when the thread reaches
a taskwait construct, where it executes all the pending
tasks it has created. In the second case, a thread will in
addition try to execute pending tasks of every sibling in
its team of threads. This occurs when a thread reaches a
barrier. In both cases a thread repeatedly checks its queue
for pending tasks; if there is one, it executes it. Otherwise, it
tries to steal and execute a task from a sibling’s task queue.

C. Fast Execution Path

In OpenMP V3.0, every task is required to keep a private
copy of certain user-modifiable variables known as internal
control variables (ICVs). When a thread is in throttling
mode, as described above, it executes any encountered
tasks immediately. Normally, because of the ICVs storage
requirements, the newly executed task will suffer all the
overheads of task node allocation and deallocation.

As an optimization, when in throttling mode, OMPI fol-
lows a lazy policy, whereby no task node is allocated

until actually needed. Tasks are executed without a de-
scriptor, as long as there is no access to the ICVs; a
new task node will be allocated upon the first modification
of the task’s ICVs. The optimization is enabled by the
code generated by the compiler shown in Fig. 2. The
ort_task_immediate_start() call is needed to al-
low the suspended task remember that it is about to start a
new task which has no allocated task node.

IV. TASKING WITH THE PSTHREADS LIBRARY

In addition to the default threading layer, which is based
on POSIX threads, OMPI’s runtime system can be built on
top of PSThreads, a package which provides lightweight
non-preemptive user-level (UL) threads, which are used to
implement OpenMP threads. These threads are executed on
top of kernel-level POSIX threads which select the next-to-
run UL thread from a set of ready queues, where threads
are submitted for execution. One of the most significant
advantages that PSThreads offers to the OMPI runtime en-
vironment is the efficient and low-overhead support of deep
nested parallelism [9].

When PSThreads are employed, both implicit and explicit
tasks are also instantiated with UL threads, submitted for
execution in the ready queues and executed by the virtual
processors of the library. Therefore, the terms tasks and
PSThreads are practically equivalent and can be used inter-
changeably. In essence, all tasks are created as untied. To
force tied execution, a task needs to know the id number
of the thread it was initiated on and reuse it every time it
gets rescheduled. As in the native implementation of tasks,
a unique task node is associated with each task. The task
node is equipped with a counter for the number of pending
child tasks, along with a condition variable that suspends
the parent task upon encountering a taskwait construct
till all child tasks complete. Upon completion, child tasks
decrease this counter, while the last one signals the condition
variable, allowing the parent task to get rescheduled.

For the runtime management of explicit tasks, we utilize
two counters and condition variables within every OpenMP
thread team. The counters track the number of active (pend-
ing) and running tasks of the team. The first condition
variable is used to limit the number of running tasks to
that of the team size: a spawned or rescheduled task will
wait until the number of running threads does not exceed
that of the OpenMP threads in the team. A finished task
first decreases the counter and then signals the condition
variable allowing the next user-level thread to run. The
second condition variable is used within an OpenMP barrier:
an implicit task will wait until the number of all pending
tasks of the team reaches zero.

At barrier entry, a frequent case is that all but a single
OpenMP thread find the pending-tasks counter zero and
proceed to the actual OpenMP barrier call, suspending their
execution. That thread will create tasks and then wait for

3

their completion at the condition variable (similarly to a
taskwait construct). Task execution is independent of
the suspended OpenMP threads as it is performed by the
underlying virtual processors. At barrier exit, implicit tasks
are given a higher execution priority with respect to possibly
created explicit ones, eliminating thus any contention for
thread number assignment.

The scheduling of OpenMP tasks follows a breadth-
first approach and has been designed over the queue ar-
chitecture and the pre-existing work stealing mechanism
of the PSThreads library. Spawned user-level threads that
correspond to explicit tasks are inserted at the front of the
queue that belongs to the virtual processor the parent task
is currently running on. To favor data locality further, a
resumed thread (task) is always inserted in the queue of
the virtual processor it was previously scheduled on.

Throttling of tasks is performed on a team basis, using
the counter of pending tasks that belong to a specific team.
In particular, a special flag is set whenever the number
of pending tasks exceeds a specific threshold. From that
point, task creation switches to direct task execution for the
particular parallel region. Task throttling is disabled as soon
as the number of pending tasks becomes equal to a low-level
threshold. Both thresholds are set as multiples of the team
size. The default high-level threshold is equal to 32*(team
size), while and low-level threshold is always equal to the
team size. Task throttling is also activated after a particular
task-depth (set to 64 by default).

V. PERFORMANCE EXPERIMENTS

In this section we present experimental results on a server
with 4 dual-core Intel Xeon Paxville 3.0GHz CPUs running
Debian Linux 2.6. We have used the BOTS benchmark suite
[10], which has been developed for testing and evaluating
OpenMP task implementations. We present here results
for four BOTS applications: Alignment, FFT, Sort and
NQueens. Alignment aligns all protein sequences from a
big set against every other sequence using the Myers and
Miller algorithm. The alignments are scored and the best
score for each pair is provided as a result. FFT computes
the one-dimensional Fast Fourier Transform of a vector of
complex values using the Cooley-Tukey algorithm. Sort sorts
a random permutation of a sequence of 32-bit numbers with
a fast parallel sorting variation of the ordinary merge sort.
Finally, NQueens computes all solutions of the n-queens
problem, whose objective is to find a placement for n queens
on an n×n chessboard such that none of the queens attack
any other. It uses a backtracking search algorithm with
pruning.

Besides OMPI with the two threading libraries (POSIX and
PSThreads), we provide results for three additional freely
available OpenMP compilers that support tasks, the Intel
C++ 12.0 compiler (ICC), Sun Studio 12.2 (SUNCC) for
Linux, and GNU GCC 4.4.5. We have used the default

Table I
SERIAL EXECUTION TIME OF BENCHMARKS

Compiler Alignment FFT Sort Nqueens
ICC 55.94 41.94 8.07 9.71
SUNCC 66.44 43.14 7.96 10.51
GCC 55.44 46.73 7.72 9.30

Figure 3. FFT (matrix size=32M)

settings of the OpenMP runtime libraries and the −O3
optimization flag in all experiments.

Regarding OMPI’s POSIX library, task queue sizes were
set to 24; if a thread tries to store more tasks in its queue it
switches to throttling mode. In addition, throttling is disabled
when a thread’s queue has more than 24*30%=7 available
nodes. When PSThreads are used, the stack size of user-
level threads is set to a value large enough (4MB) to avoid
stack corruption in particular benchmarks. The library has
been configured to perform user-level context switching with
setjmp/longjmp calls and synchronization with POSIX spin-
locks. For the particular experiments, throttling is enabled
when 32*8=256 tasks are pending and switches off when 8
of them remain active.

Table I presents the sequential execution (ignoring
OpenMP pragmas) time in seconds of the four BOTS
benchmarks with their default runtime parameters. Because
we use GNU GCC as the native back-end compiler of OMPI,
we use the sequential execution times of GCC as a baseline

Figure 4. Protein Alignment (100 protein sequences))

4

Figure 5. Sort (matrix size=32M)

Figure 6. NQueens with manual cut-off (board size=14)

for caclulating the speedups for OMPI. With the exception of
SUNCC and the protein Alignment benchmark, the compilers
exhibit similar execution times.

Figs. 3 to 6 present the speedups of the four BOTS
benchmarks when running on the 8 cores of our server.
Each benchmark was run several times and the average
execution time was calculated. For the FFT benchmark
(32M matrix size) we observe that for OMPI both thread-
ing libraries achieve higher speedup as compared to all
other compilers. For Alignment (100 protein sequences) all
the compilers exhibit comparable performance. As far as
the Sort benchmark (32 matrix size) is concerned, OMPI
outperforms GCC and SUNCC, but here ICC obtains the
best speedup. Fig 6 shows the experimental results of the
NQueens benchmark (14 board size) when manual cut-off
of task parallelism is employed by the application itself. For
this particular experiment, ICC and SUNCC exhibit slightly
better performance than OMPI, which outperforms GCC.

VI. CONCLUSIONS

We presented the implementation of the OpenMP V3.0
tasking model in the OMPI compiler. Source code transfor-
mations and optimizations performed by the compiler and
two alternative approaches for runtime support of tasks were
discussed. The experimental assessment with benchmarks
demonstrated the efficiency of OMPI, which attains highly
competitive performance, sometimes surpassing that of com-

mercial OpenMP compilers.
We are currently optimizing the performance of the run-

time system. We focus on alternative work stealing strategies
that try to exploit the platform’s topology in order to
favor locality. OMPI is an open-source project, available at
http://www.cs.uoi.gr/˜ompi.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to
Intel Corporation for donating the multicore server used to
perform the experiments. This work was supported in part by
the European Commission through the Artemisia SMECY
project (grant 100230). S.N. Agathos was supported by the
Greek State Scholarships Foundation (IKY).

REFERENCES

[1] OpenMP ARB, “OpenMP Application Program Interface
V3.0,” May 2008.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded
runtime system,” J. Parallel Distrib. Comput., vol. 37, no. 1,
pp. 55–69, 1996.

[3] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin,
F. Massaioli, E. Su, P. Unnikrishnan, and G. Zhang, “A
Proposal for Task Parallelism in OpenMP,” in Proc. 3rd
IWOMP, Int’l Workshop on OpenMP, Beijing, China, 2007,
pp. 1–12.

[4] E. Ayguadé, A. Duran, J. Hoeflinger, F. Massaioli, and
X. Teruel, “An Experimental Evaluation of the New OpenMP
Tasking Model,” in Proc. of the 20th Int’l Workshop on
Languages and Compilers for Parallel Computing, vol. LNCS
5234, Oct. 2007, pp. 63–77.

[5] Free Software Foundation, “GCC, the GNU compiler collec-
tion.” [Online]. Available: http://www.gnu.org/software/gcc

[6] C. Addison and J. LaGrone and L. Huang and B. Chap-
man, “OpenMP 3.0 tasking implementation in OpenUH,” in
Open64 Workshop in Conjunction with the Int’l Symposium
on Code Generation and Optimization, Seattle, USA, Mar.
2009.

[7] G. Philos, V. Dimakopoulos, and P. Hadjidoukas, “A Runtime
Architecture for Ubiquitous Support of OpenMP,” in Proc.
ISPDC 2008, 7th Int’l Symposium on Parallel and Distributed
Computing, Krakow, Poland, jun 2008, pp. 189–196.

[8] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming. Morgan-Kaufmann, 2008, pp. 386–390.

[9] P. E. Hadjidoukas and V. V. Dimakopoulos, “Nested Par-
allelism in the OMPi OpenMP/C Compiler,” in Euro-Par
2007, 13th Int’l Euro-Par Conference on Parallel Processing.
Rennes, France: Springer LNCS 4641, Aug. 2007, pp. 662–
671.

[10] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguadé,
“Barcelona OpenMP Tasks Suite: A Set of Benchmarks
Targeting the Exploitation of Task Parallelism in OpenMP,”
in 38th Int’l Conference on Parallel Processing (ICPP ’09),
Vienna, Austria, Sept. 2009, pp. 124–131.

5

