
HOMPI: A Hybrid Programming Framework for
Expressing & Deploying Task-Based Parallelism⋆

V. V. Dimakopoulos and P. E. Hadjidoukas

Department of Computer Science
University of Ioannina, Ioannina, Greece, GR-45110

{dimako,phadjido}@cs.uoi.gr

Abstract. This paper presents hompi, a framework for programming
and executing task-based parallel applications on clusters of multipro-
cessors and multi-cores, while providing interoperability with existing
programming systems such as mpi and OpenMP. hompi facilitates ex-
pressing irregular and adaptive master-worker and divide-and-conquer
applications avoiding explicit mpi calls. It also allows hybrid shared-
memory / message-passing programming, exploiting fully the availability
of multiprocessor and multi-core nodes, as it integrates by design with
OpenMP; the runtime infrastructure presents a unified substrate that
handles local threads and remote tasks seamlessly, allowing both pro-
gramming flexibility and increased performance opportunities.

Keywords: cluster programming, task-based parallelism, load balancing, MPI

1 Introduction

The pool-of-tasks (or master-worker) paradigm is one of the most widely used
paradigms for programming a multitude of applications on a variety of parallel
computing platforms. According to this model, the master assigns tasks to a set
of workers, providing them with any required input data, and waits for the re-
sults. The number of tasks usually exceeds the number of workers and the master
may generate new tasks dynamically, depending on the received results. In the
simple case, a few primary message passing (mpi) calls are enough to implement
the model on a distributed-memory platform with a self scheduling mechanism
where inactive workers dynamically probe the master for work. On the other
hand, limitations and difficulties arise if advanced functionality is needed. First,
because of the bottleneck at the master, the model may suffer from low scala-
bility. Hierarchical task parallelism and techniques like distributed task queues
require additional and non-trivial programming effort. Finally, a pure mpi-based
implementation cannot easily adapt to take advantage of a multi-core node’s
physically shared memory.

Although exploring new languages and programming models is currently a
major issue in the parallel processing research community (and possibly the

⋆ This work is supported in part by the Artemisia SMECY project (grant 100230).



ultimate solution to leveraging current and emerging parallel hardware), other
pragmatic approaches seem more promising for wide adoption in the short- to
medium-term. Programming constructs that extend without changing a popular
language have proven quite successful, OpenMP [2] being the most prominent ex-
ample. Along the same lines, interoperability with popular programming models
is another important requirement, easing the utilization of existing codebases.

In this work we present hompi, an infrastructure for programming and exe-
cuting task-based applications on clusters of multi-cores. It consists of a source-
to-source compiler that provides for simple directive-based definition and execu-
tion of tasks and a runtime library that orchestrates the execution over a variety
of platforms, including pure shared-memory systems and clusters of such nodes.
hompi targets message passing, shared address space and hybrid programs. In
the standard master-worker case, the programmer does not have to use low-
level message passing primitives at all, hiding away the communication details
while providing load balancing transparently. For more advanced functionality,
hompi integrates the tasking model into traditional mpi programs, allowing one
or more mpi processes to independently spawn tasks. Each task may also spawn
OpenMP-based parallelism, allowing seamless hybrid programming possibilities.
The compiler supports OpenMP by design while the runtime system provides
unified support for OpenMP threads as well as remotely executed tasks.

A number of programming tools and languages for task parallelism have
been proposed recently for contemporary and emerging architectures. On shared-
memory platforms, OpenMP has been extended in V3.0 with support for a task-
ing model [2], similar to Cilk [1]. For the Cell BE, runtime libraries include mpi
microtask [3], alf [4] and StarPU [5]. hompi’s programming model borrows the
#pragma-based annotation style of OpenMP and is reminiscent of other propos-
als such as hmpp [6] and StarSs [7], which combine runtime and compiler support
to provide a (limited) task-based environment. These proposals target mainly
accelerator-equipped systems and, in contrast to hompi, they do not support
the divide-and-conquer model, since they do not allow recursive parallelism.

The contribution of this work is twofold. First, we introduce an easy-to-
use programming framework which preserves the base language, while providing
convenient code annotation for expressing task-based master/slave and divide-
and-conquer parallel algorithms. While the annotation style is in the spirit of
other proposals, to the best of our knowledge, hompi is the first of its kind tar-
geting (and fully exploiting) clusters of SMPs/multi-cores. Second, albeit self-
contained, our framework is fully interoperable with standard programming sys-
tems like mpi and OpenMP, allowing legacy or already parallelized code to be
trivially integrated in an application. In our opinion this is a crucial attribute
for the viability of any programming model proposal.

2 Programming Environment

hompi is based on a source-to-source translator that can handle #pragma-based
directives within the user code, similar to OpenMP. Fig. 1 shows the compilation

2



Fig. 1. hompi compilation procedure

#pragma hompi taskdef in(n) out(res)
void fib (int n, unsigned long *res) {

unsigned long res1, res2;

if (n <= 1) {
*res = n;

} else {
#pragma hompi task
fib(n-1, &res1);

#pragma hompi task
fib(n-2, &res2);

#pragma hompi tasksync
*res = res1+res2;

}
}

void main(int argc, char *argv[]) {
unsigned long res;
fib(50, &res);

}

Fig. 2. Recursive Fibonacci in hompi

steps: from the annotated source code, the source-to-source compiler (hompi)
produces an intermediate, transformed C file (x_prog.c) augmented by run-
time calls. This file is then compiled by the system’s native mpicc compiler and
linked with hompi’s runtime libraries to produce the final executable. The whole
process is automated by the hompicc script.

hompi’s execution model assumes that an application consists of multiple mpi
processes with private memory, running on cluster nodes. Furthermore, multi-
threading is used to exploit the multi-processor/core configuration of a node;
each process consists of one or more kernel threads sharing the process memory.

A task in hompi corresponds to the remote execution of a function on a set
of data that are passed as arguments to this function, in the spirit of remote
procedure calls. Tasks are executed asynchronously and in any order, without any
data dependencies or point-to-point communication between them. Tasks have a
parent-child relationship and can be arbitrarily nested, allowing multiple levels
of parallelism and a straightforward coding of divide-and-conquer algorithms.

The hompi programming model in essence requires that the programmer only
designates which of the program functions can be used as tasks and be executed
on (possibly) remote nodes. In many cases, just two directives are enough for
the application to take advantage of the infrastructure, resulting in minimal pro-
grammer effort. The directive for designating a function as an independent task
is taskdef and is placed right before the definition of a C function. A taskdef

directive may contain intent clauses, similar to intent attributes of Fortan 90,
which specify the intended usage of the function arguments: in(variable-list),
for variables that are to be passed to the function by value, out(variable-list),
for results returned by the function and inout(variable-list) for variables whose
values are passed to the function but will also be used to return a result.

An example is given in Fig. 2, which presents a complete hompi application

that uses a recursive function (fib) to compute the 50th Fibonacci number. The
taskdef directive designates the fib function as a task that accepts an argument

3



by value (n) and computes a result (res). If any of the arguments is an array,
the number of elements must be known, and this is either determined by hompi

from the function prototype (if a size expression exists) or must be specified
explicitly in the intent clauses of the taskdef directive.

The actual execution of a function as a task occurs with the task direc-
tive, which must be placed right before the function call. Finally, task joining
(blocking until all child tasks finish their work) is possible anywhere in the code
through the tasksync directive. In Fig. 2, the fib function generates two new
tasks that are distributed across the available workers and waits for their results.
Notice (i) the complete absence of explicit messaging and (ii) that if the direc-
tives are ignored by the compiler, the program’s semantics remain the same to
pure sequential execution.

2.1 Callbacks, reductions and detached tasks

Normally, a parent task creates an arbitrary number of tasks and uses the
tasksync directive to suspend itself until all child tasks have finished and their
results have been returned. hompi supports callback functions, which allow for
asynchronous execution of post-processing code on the process where the par-
ent task runs on, even if the parent task is suspended. The callback function is
defined immediately following the task definition through a callback directive;
the callback function specifier is generated by the compiler and assumes the ex-
act same arguments as the corresponding task function, providing thus access to
the input parameters and the result of the task. An example where the callback
just prints the results of each generated task, is depicted below.

#pragma hompi taskdef in(a) inout(b[2])
void taskfunc(int a,int *b) {

b[1] = b[0] + a + 1;
}
#pragma hompi callback
{

printf("result = %d\n", b[1]);
}

hompi also supports reduction operations (which can be actually seen as
special cases of callbacks) for the common scenario where each child task com-
putes a partial result which is collected by the parent to produce the final result.
These operations (summation, product, etc.) replace the out intent clause and
are specified exactly in OpenMP style, as seen below:

#pragma hompi taskdef in(a) reduction(+:b)
void taskfunc(int a, int *b) {

*b = a;
}

Reduction operations are supported for both scalar variables and arrays.
Finally hompi supports detached tasks, that is tasks that execute without

the parent being able to wait on them. In such cases task management is left
up to the programmer. Detached tasks are executed as such by including the
detached clause in the task directive. They can be combined with callbacks

4



which actually provide the only way for them to synchronize with their parents;
for example, within a callback, a detached task can modify a condition on which
the parent task is explicitly waiting. Moreover, new tasks can be created within
the callback routine. Detached tasks combined with callbacks offer a powerful
mechanism; for example, they can be used for implementing dependencies among
arbitrary subsets of tasks.

2.2 Task distribution and scheduling

Although not always necessary, in many cases one needs to control how tasks are
distributed across workers or cluster nodes (e.g. due to particular load balancing
needs). hompi offers two ways for achieving this. First, it provides a standard
cyclic distribution scheme with tunable parameters. This is especially useful
when tasks are created within a iterative control structure (e.g. while, for). The
parameters of this scheme include the scope (whether tasks are distributed per
node or per worker), the starting point (node id or worker id) and the stride
(increment). These parameters are specified using a taskschedule directive:

#pragma hompi taskschedule scope(workers) start(0) stride(1)
for (t = 0; t < 8; t++) {

#pragma hompi task
func();

}

If the stride is zero then all tasks are submitted to the target node or worker.
The default scheduling policy is represented with the tuple (nodes, -1, 1), i.e.
distribution across nodes with stride 1 starting from the current node.

The second mechanism allows the user to explicitly specify the node or
worker where a task will be submitted for execution. This is achieved with the
atnode(x) and atworker(y) clauses in the task directive, where x and y are
the identities of the intended node and worker respectively, e.g.

for (t = 0; t < K; t++) {
#pragma hompi task atworker(t % hompi_total_workers())
func();

}

It must be noted that the runtime system of hompi, which is presented next,
includes a work-stealing mechanism whereby tasks may be stolen from a node
and executed at another. If this mechanism is activated then all the above refer
to the initial placement of a task; the actual node/worker that will ultimately
execute it may be different. To explicitly control this, tasks can also be classified
as tied and untied (using homonymous clauses in the task directive), similarly
in spirit to OpenMP 3.0; a tied task can never be stolen, and will run on the
process it was initially submitted for execution.

3 TORC: The Runtime System

In this section we give a short overview of torc, the runtime environment of
hompi. More details can be found in [10]. torc uses exclusively posix and mpi

5



calls for portability and performance, and integrates seamlessly hardware shared-
memory and message passing. It provides application adaptability to the same
application code, or even binary, on both shared-memory multiprocessors/multi-
cores and clusters of them. torc views an application as a collection of mpi pro-
cesses. Each process consists of one or more posix kernel threads that execute
tasks and a server thread that is responsible for the remote queue management
and the asynchronous data movement. There exist private and public worker-
specific and node-specific ready queues where tasks can be submitted for execu-
tion. A two-level threading model is implemented, where each kernel thread is a
worker that continuously dispatches and executes ready-to-run tasks.

Tasks are associated with the process (home node) they were created on and
can be executed either locally or remotely. In the latter case, explicit but trans-
parent to the user data movement takes place. A worker thread executes a task
by calling the task function with the locally stored arguments. When it finishes,
it sends a notification message back to the home node, along with any argu-
ments that represent results (out/inout). These are received asynchronously by
the server thread and copied on their actual memory locations in the address
space of the home process. A running task that spawns parallelism can suspend
its execution, waiting for the termination of all its child tasks. The execution
state of the current task is saved, releasing the underlying kernel thread, which
runs the scheduling loop for selecting the next-to-run task. When all child tasks
have completed (and all callbacks, if any, have finished), the suspended task be-
comes ready for execution and eventually resumes. A callback is implemented
as a tied task, submitted for local execution when the corresponding user task
finishes and notifies its parent task. The submission is performed by either the
worker thread that executes the user task (if this is executed locally) or the
server thread of the same process.

Data transfer mechanisms. The low level communication subsystem of torc is
based on mpi. However, other data transfer mechanisms have also been consid-
ered. In particular, we have successfully integrated two more mechanisms: mpi-2’s
one-side communications and software distributed shared memory (sdsm). mpi-
2’s remote memory access (rma) [8] supports data transfer through one-sided
operations. In torc, the MPI Get routine is used for fetching input data and
MPI Put for writing the results back to the home node. On the other hand,
sdsm implements the notion of global memory on distributed computing en-
vironments and provides implicit data movement through the memory consis-
tency protocol [9]. One-sided operations and sdsm provide receiver-initiated data
movement for remotely executed tasks, performed by the worker thread just be-
fore or during the execution of the task function. This on-demand data movement
does not allow data pre-fetching opportunities for server threads but may avoid
unnecessary data transfers if task stealing is enabled.

Dynamic load balancing. Spawning a large number of tasks can be an effective
approach to distribute the work evenly among the available workers. The user
can specify the node or worker where each task will be submitted for execution

6



and then employ the internal stealing mechanism for untied tasks that torc
provides. A idle worker extracts and executes a task from its local ready queue.
If this is empty and task stealing is enabled, the worker first searches for work in
the rest of the ready queues of the same node and then visits randomly the remote
nodes. The worker waits synchronously for a response from the server thread of
the target node. The answer is either a message that denotes unavailability of
work at the target node, or an untied task descriptor that will be immediately
executed upon receipt. Remote task stealing includes the corresponding data
movement, unless the task returns to its home node.

4 Mixed-Mode and Hybrid Programming

Although the default execution model of hompi is that of master-worker, mixing
it with spmd execution and dynamically switching between them may be ben-
eficial or required. For instance, a task parallel program may take advantage of
common scientific spmd libraries built on top of mpi.

The atnode(*) clause is a special case in the task creation directive that
provides the above functionality; at runtime, the application creates as many
tasks as the number of available nodes. These tasks are marked as tied and are
distributed across the cluster nodes. The specified task function is executed by a
single worker on every node. This approach matches the execution model of mpi
and at the same time allows for hybrid mpi + OpenMP programming. When
all the tasks have finished, the execution model switches back to master-worker.
In Fig. 3, we demonstrate the flexibility of the atnode(*) clause; the master
broadcasts the global array (ga) to the other nodes by issuing a collective call to
the native MPI Bcast function (with all workers participating). In this way, the
application does not need to send ga with every task, avoiding thus unnecessary
data transfers.

The atnode(*) clause improves the programmability of our system by fa-
cilitating the insertion of legacy mpi codes into the supported task-based exe-
cution environment. Following a similar approach, native mpi applications can
be seamlessly enriched with the tasking model that hompi provides. Specifically,
by setting a particular environmental variable (HOMPI MODE), the torc library is
initialized for spmd execution and thus the primary thread of all mpi processes
executes the main routine. Switching the mpi application’s execution model to
master-worker is possible with a special directive (spmd barrier). In Fig 4, one
of the mpi processes (e.g. the one with rank 0) becomes the master task that
spawns work, while the rest of the processes block at the spmd barrier directive
which converts them to workers, activating the scheduling loop in torc. After
task completion, the master process reaches spmd barrier and all mpi processes
resume their execution, while the execution model switches back to spmd.

Implementation of hybrid programming. hompi allows expressing the intra-node
parallelism of a task function with OpenMP directives, in accordance to the
hybrid mpi + OpenMP programming model. However, because task functions

7



int ga[16];

#pragma hompi taskdef in(root)
void spmdfunc(int root) {

/* legacy MPI code can run here */
MPI_Bcast(ga, 16, MPI_INT, root, MPI_COMM_WORLD);

}

#pragma hompi taskdef out(b[16])
void func(int *b) {

for (int i = 0; i < 16; i++) b[i] = ga[i];
}

main() {
int res[8][16], root = hompi_node();
for (int i = 0; i < 16; i++) ga[i] = i;

#pragma hompi atnode(*)
spmdfunc(root);

for (int t = 0; t < 8; t++) {
#pragma hompi task tied
func(res[t]);

}
#pragma hompi tasksync

}

Fig. 3. Example of atnode

#pragma hompi taskdef
void func() { ... }

main(int argc, char *argv[]) {
/* legacy MPI code */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
...

if (rank==0) { /* tasking */
for (int i = 0; i < N; i++) {

#pragma hompi task
func();

}
#pragma hompi tasksync

}
#pragma hompi spmd_barrier

/* legacy MPI code continues */
}

Fig. 4. Tasking in MPI code

are executed by torc’s underlying worker threads, the utilized OpenMP com-
piler must support interoperability between OpenMP and independent posix
threads. Moreover, caution is needed because the combination of torc threads
and OpenMP threads can easily oversubscribe the system, a situation resulting
in performance degradation [11].

To cope with the above problem, we have constructed a unified library that
handles both levels of parallelism within the same compilation and runtime envi-
ronment. In particular, we have introduced a threading layer that is implemented
on top of torc into the ompi OpenMP compiler [12]. Thanks to the layered ar-
chitecture of ompi, torc was attached as an opaque OpenMP thread provider,
thus letting ompi control OpenMP execution through torc-provided threads
while at the same time torc handles tasks independently.

The hompi translator was implemented by extending ompi’s translator, in
order to have it parse and transform the new directives. Both hompi tasks and
OpenMP threads are executed within the same runtime infrastructure. Inter-
nally, as worker threads first access the private and then the public ready queues
of their node, OpenMP parallelism has a higher priority with respect to inter-
node parallelism expressed with hompi tasks.

5 Experimental Evaluation

In this section we present preliminary experimental evaluation of our hompi
prototype. We report both benchmarking results and results from full appli-
cations executed on a Sun Fire x4100 cluster of 16 nodes interconnected with
Gigabit Ethernet. Each node has 2 dual core amd Opteron-275 processors run-
ning at 2.2GHz giving a total of 64 cores. The cluster nodes are running Linux

8



Fig. 5. Task execution overhead for the
three data transfer methods (in)

Fig. 6. Task execution overhead for the
three data transfer methods (inout)

2.6, while hompi was built with gnu gcc 4.3 as the system’s native C com-
piler and the mpich2 implementation of mpi. Thanks to the design of torc, the
same application binary can exploit the 4 processor cores of a single node with
several combinations in the number of processes and workers. Therefore, our
performance results refer to both distributed and shared-memory organizations.

Data transfer overheads. To evaluate the three different data transfer methods we
discussed in Section 3 (mpi, rma and sdsm) implemented in torc, we measure
the time required for the remote execution of a single task with input argument
an array of double-precision floating point numbers that has been initialized
by the parent before task creation. The task computes the sum of the array
elements. For a fair comparison, we spawn exactly one task and thus preclude
any data prefetching through the server thread when mpi calls are used. Besides
the data movement for the argument of the task, the measured time includes
the overhead for the allocation of the descriptor and its insertion in the queue
of the remote process, the execution of the task function and the notification of
the parent task at the first process.

Figs. 5 and 6 illustrate the overhead of the three methods with respect to the
argument size, for in and inout argument types respectively. Regarding sdsm,
we provide results for two libraries: Mome [13] and Mocha [14]. To enforce the
inout semantics for the sdsm case, the parent task on process 0 accesses the
array after task completion. Due to the relaxed consistency model of Mocha,
sdsm barrier calls were introduced in the benchmark code. We observe that the
overhead of the mpi and rma methods, which both involve explicit communica-
tion, is almost identical. sdsm exhibits significantly higher overhead, due to the
page-based consistency protocol and the multiple invocations of the page-fault
handler. The performance difference between Mocha and Mome is because the
former uses an 8KB (instead of 4KB) page size, resulting in a 50% reduction in
the number of page faults.

Applications. For evaluating the performance of hompi we used two applica-
tions: EP and PMCMC. EP is an Embarrassingly Parallel benchmark that in-
volves minimal inter-processor communication. The number of spawned tasks is
equal to the number of workers, while the results of the tasks are accumulated
through a reduction (+) operation. PMCMC implements an embarrassingly par-

9



Fig. 7. EP performance Fig. 8. PMCMC performance

allel Markov Chain Monte Carlo algorithm of the hard-disk problem. Each task
is assigned a seed and performs a large number of Markov Chain computations.
The code of this application was adapted from the adlb library [15].

Fig. 7 depicts the performance of EP for 228 random numbers and specifi-
cally the best observed speedup for a particular number of workers, using the
multithreaded and multiprocess configurations. When a single process per node
and multiple workers per process are used, we observe that EP scales almost
linearly; the slight performance degradation on 32 and 64 processors is mostly
attributed to load imbalance effects due to the small number of generated tasks.
The performance of the same application is significantly lower when multiple
processes, of a single worker thread each, are deployed at each node of the clus-
ter. The drawbacks of this configuration are the increased number of explicit
messages and the oversubscription of processor cores due to the the multiple
server threads on each node. Similarly, Fig. 8 presents the performance results
for PMCMC when 128 independent tasks are used. We observe that the appli-
cation exhibits almost perfect scalability for the multi-threaded approach. The
performance of the multi-process approach is similar for all but the 64-process
case, where its efficiency is significantly reduced to 78.87%.

Load balancing. We demonstrate the load balancing mechanism of hompi using
the Mandelbrot application included in the lam/mpi software package, rewritten
to follow the tasking model of hompi. In our case, the main routine of the
application creates a single task for each image block. The task receives as input
arguments the coordinates of the block and as output argument an array for the
image block. Each task is also associated with a callback routine which copies
the processed block to the image region. Tasks are either distributed cyclically
across the available workers or inserted in the queue of the master process.

Fig. 9 presents the speedup of the Mandelbrot application on the Sun cluster
for an image of 2048x2048 pixels, 50000 maximum iterations for each pixel, and
blocks of 128x128 pixels (256 tasks). We spawn a single process per node and pro-
vide results for the cyclic task distribution scheme, having the inter-node steal-
ing mechanism disabled (termed ‘Static Scheduling’) or enabled (termed ‘Work
Stealing’). In addition, we evaluate the central-queue approach, where workers
access the queue of the master process to get a task to execute. We observe that
as the number of cores increases, the application manages to scale efficiently

10



Fig. 9. Performance of task scheduling schemes on Mandelbrot

Table 1. Speedup of Mandelbrot on the (16,1,4) configuration for various task numbers
Nodes Processes Workers Total Total Static Work Central

per node per process workers tasks Scheduling Stealing Queue

16 1 4 64 256 24.30 45.47 45.79

16 1 4 64 512 26.70 50.74 50.32

16 1 4 64 1024 24.78 56.83 55.12

Table 2. Speedup of Mandelbrot for the hybrid programming model (256 tasks)
Nodes Processes Workers OpenMP Total Static Work Central

per node per process threads workers Scheduling Stealing Queue

1 1 1 4 4 3.79 3.79 3.79

2 1 1 4 8 7.33 7.52 7.54

4 1 1 4 16 13.30 14.94 14.98

8 1 1 4 32 22.14 29.02 29.26

16 1 1 4 64 24.30 54.99 56.62

only if task stealing has been activated. For instance, the speedup of the appli-
cation on 64 cores is approximately 24 and 45 for the static and work stealing
approach respectively. The attained performance of the cyclic distribution and
central queue are almost identical because, for this particular experiment, the
latter does not suffer from bottlenecks as the server thread manages to handle
the stealing requests efficiently. The scalability of the application declines with
the number of processors, mostly because of the overhead for storing the results
through the callback routine.

Table 1 studies the behavior of Mandelbrot for the (16 nodes, 1 process per
node, 4 workers per node) configuration for smaller block sizes and thus a larger
number of spawned tasks. It is apparent that better load balancing is achieved if
the work stealing mechanism is enabled and thus the scalability of Mandelbrot
is further improved. As the number of tasks of finer granularity increases, the
cyclic distribution scheme with work stealing begins to outperform the central
queue approach.

Our last experiment demonstrates the effectiveness of hybrid programming
for the Mandelbrot application. Specifically, a single process is spawned on each
cluster node and the loop-level intra-task parallelism is expressed with OpenMP.
The performance results are depicted in table 2. We observe that the attained
performance of the hybrid programming approach is higher than that of the
corresponding configurations in the previously presented experiments. This is
attributed to better load balancing, as the 256 tasks are distributed to a smaller
number of processes, and the full utilization of OpenMP threads as the serial
fraction of the task function in this particular application is negligible.

11



6 Conclusion

This paper presents hompi, a directive-based programming and runtime envi-
ronment for task-parallel applications on clusters of multiprocessor/multi-core
nodes. The framework consists of a source-to-source C compiler that understands
a small number of #pragma-based directives which allow for rather straightfor-
ward task creation and scheduling across the cluster. The output of the compiler
contains calls to torc, a sophisticated runtime library that handles all the task
execution details, providing transparent load balancing and resulting in signifi-
cant performance figures. The hompi infrastructure integrates features of several
parallel programming models, from threads and OpenMP to mpi and remote pro-
cedure calls and also is fully interoperable with them. As such, we believe its
applicability will be quite general. We are currently extending our infrastruc-
ture on heterogeneous platforms and computational grids and introducing fault
tolerance mechanisms.

References

1. Blumofe, R.D., Joerg, C.F., et al.: Cilk: An efficient multithreaded runtime system.
J. Parallel Distrib. Comput., 37(1), pp. 55–69 (1996)

2. OpenMP Architecture Review Board: OpenMP Specifications. Available at:
http://www.openmp.org

3. Ohara, M., Inoue, H., Sohda, Y., Komatsu, H., Nakatani, T.: MPI microtask for
programming the cell broadband engine processor. IBM Syst. Journal 45(1), (2006)

4. IBM Corporation: Accelerated Library Framework (ALF) for Cell Broadband En-
gine programmer’s guide and API reference. SDK for Multicore Acceleration V3.0.

5. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: A unified plat-
form for task scheduling on heterogeneous multicore architectures. In: Euro-Par
2009 Parallel Processing Conf., pp. 863–874, Delft, The Netherlands (2009)

6. Dolbeau, R., et al.: HMPP: A hybrid multi-core parallel programming environment.
In: 1st Wrkshp on General Purpose Processing on GPUs, Boston, MA (2007)

7. Planas, J., Badia, R.M., et al.: Hierarchical task-based programming with StarSs.
Int’l J. of High Perf. Comput. Applic. 23(3), pp. 284–299 (2009)

8. Geist, A., Gropp, W., Lusk, E., et al.: MPI-2: Extending the message-passing
interface. In: Euro-Par 96 Parallel Processing Conf., Lyon, France (1996)

9. Li, K., Hudak, P.: Memory coherence in shared virtual memory systems. ACM
Trans. on Computer Systems 7(4), pp. 321–359 (1989)

10. Hadjidoukas, P.E., Dimakopoulos, V.V.: TORC: a tasking library for multicore
clusters. Tech. Report TR-2011-6, CS Dept., University of Ioannina, Greece (2011)

11. Hadjidoukas, P.E., Dimakopoulos, V.V.: Nested parallelism in the OMPi OpenMP
C compiler, In: Euro-Par 2009 Parallel Processing Conf., Rennes, Frace (2007)

12. Philos, G.C., Dimakopoulos, V.V., Hadjidoukas,P.E.: A runtime architecture for
ubiquitous support of OpenMP. In: 7th Int’l Symposium on Parallel and Distrib.
Comput., Krakow, Poland (2008)

13. Jegou, Y.: Implementation of page management in Mome, a user-level DSM. In:
3rd IEEE Int’l Symposium on Cluster Comput. and the Grid, Tokyo, Japan (2003)

14. Kise, K., et al.: Evaluation of the acknowledgment reduction in a sDSM system. In:
6th Int’l Conf. on Parallel Processing and Applied Math., Poznan, Poland (2005)

15. ADLB library, URL: http://www.cs.mtsu.edu/∼rbutler/adlb/

12


