
Task-parallel global optimization with application to protein folding

C. Voglis, P. E. Hadjidoukas,
V. V. Dimakopoulos, I. E. Lagaris
Department of Computer Science,

University of Ioannina, Ioannina, Greece,
{voglis,phadjido,dimako,lagaris}@cs.uoi.gr

D. G. Papageorgiou
Department of Materials Science and Engineering,

University of Ioannina, Ioannina, Greece,
dpapageo@cc.uoi.gr

ABSTRACT

This paper presents a software framework for high perfor-
mance numerical global optimization. At the core, a run-
time library implements a programming environment for ir-
regular and adaptive task-based parallelism. Building on
this, we extract and exploit the multilevel parallelism of a
global optimization application that is based on numerical
differentiation and Newton-based local optimizations. Our
framework is used in the efficient parallelization of a real
application case that concerns the protein folding problem.
The experimental evaluation presents performance results
of our software system on a multicore cluster.

KEYWORDS: task parallelism, cluster programming,
numerical differentiation, global optimization, protein
folding.

1. INTRODUCTION

Many scientific and engineering problems can be modeled
and solved as numerical optimization tasks. This is possi-
ble by developing appropriate objective functions that ac-
curately model the problem at hand. Usually, the global
optimizers1 of the objective functions correspond to opti-
mal solutions of the original problem. There are numerous
applications that involve the solution of global optimization
problems. Among others, we can mention signal process-
ing, telecommunications, finance and operations research,
networks and transportation, engineering design and con-
trol, molecular biology, hardware and software design, as
well as biomedical engineering. Algorithms that tackle
global optimization problems usually have high computa-

1Minimizers or maximizers

tional demands due to the substantial execution time of the
objective function. Also, in most of the cases, the multi-
tude of local optima require thorough investigation of the
search space resulting more computational time. Exploita-
tion of parallelism at several levels such as function evalu-
ations, numerical computations and the optimization algo-
rithms themselves can drastically reduce the time required
to find a solution.

The Multistart method is a standard and widely used
stochastic scheme for dealing with global optimization
problems. According to this method, a local optimiza-
tion procedure is applied to a number of randomly selected
points. Although simple in principle, Multistart lies in the
heart of many sophisticated global optimization algorithms.
Due to its implementation simplicity, it serves as a great
candidate for studying parallelization issues. Local opti-
mization methods are sequential procedures that, beginning
from a starting point generate a sequence of iterates that ter-
minates when a solution point is approximated with a pre-
scribed accuracy. These methods provide no guaranty for
locating the global optimum value but they are extremely
efficient in finding a local optimizer. A large category of lo-
cal optimization algorithms originate from the well known
Newton method, a general and powerful method for multi-
dimensional non-linear optimization that makes use of first
and second derivatives of the objective function. The most
successful local optimization algorithms can be thought as
approximations of the Newton method. The need for sec-
ond order derivative information, introduces further com-
putational complexity because derivative estimation is a
time consuming task. A common way to calculate deriva-
tives is via finite differentiation algorithms where deriva-
tives are approximated by function values at suitably cho-
sen points. Clearly, the Multistart algorithm with Newton
method as local optimizer is a valuable tool for solving
global optimization problems that can benefit from a par-
allel implementation.



Task-based parallelism, as expressed by the master-worker
programming model, can be an effective approach for a
cluster-aware implementation of global optimization meth-
ods such as Multistart. Function evaluations are mapped
to tasks and assigned to the workers. The dynamic load
balancing of the model further enhances its suitability. A
naive implementation of the model, however, cannot meet
all the requirements that Multistart imposes. First, the large
expected number of spawned tasks (typically on the or-
der of 106) affect the scalability as the single master be-
comes a bottleneck. Secondly, the exploitation of nested
parallelism requires advanced runtime techniques, able to
provide efficient management of processing elements. Ad-
ditionally, it is important to have a hardware-independent
solution that transparently uses multi-threading to fully ex-
ploit the shared memory of multicore systems.

In this paper, we present a high-performance numerical op-
timization framework for clusters of multicore systems that
deals with all the above limitation issues. At the core, a
novel runtime library, TORC, provides support for irregular
and adaptive master-worker parallelism on multi-core SMPs
and clusters of such machines. Building on TORC, we de-
sign a standalone numerical differentiation software pack-
age (PNDL) that provides routines for gradient and Hessian
computations. Using both TORC and PNDL, we present the
implementation of a Newton-based Multistart method that
performs multiple local optimizations and gradient/Hessian
calculations in parallel. By integrating a molecular model-
ing software package with our system, we are able to apply
our framework to a real application case that deals with the
protein folding problem, that is the problem of determining
the three dimensional structure of a protein. It is a fun-
damental problem in biophysical sciences with application
in drug design and in decoding genetic information. The
experimental evaluation on a dedicated multicore cluster
demonstrates the efficiency of our system.

The rest of this paper is organized as follows: Section 2
gives a brief introduction to the global optimization prob-
lem and the Multistart method. Section 3 discusses the par-
allelism issues of Multistart while Section 4 presents the
software infrastructure. Section 5 presents the protein fold-
ing problem. Experimental evaluation and related work are
reported in Sections 6 and 7 respectively. Finally, we con-
clude in Section 8.

2. GLOBAL OPTIMIZATION

The task of numerical optimization is to locate (approxi-
mate) the best minimizer of a generally multidimensional
objective function. The mathematical formulation is

min
x∈Rn

f(x) (1)

where x ∈ Rn is a real vector and f : Rn → R the ob-
jective function. There exist a plethora of applications in
physics, chemistry, engineering, and economics that can be
formulated as optimization problems.

One of the simplest algorithm for global optimization, is
the Multistart procedure. According to this method, a lo-
cal optimization procedure is executed independently for
each point in a sample generated from a uniform distribu-
tion over the search space. The strong theoretical proper-
ties of Multistart render it a widely used method and led to
computationally successful adaptations. The most impor-
tant variants, that share the same principles with Multistart,
are the clustering methods[1, 2]. The main computational
cost of Multistart is the application of the local optimiza-
tion algorithm2. A brief sketch of Multistart is presented
in Algorithm 1 below. Notice that local optimization steps
(step 4) are independent and can be performed in parallel.
We must also mention that all aforementioned variations
of Multistart can benefit from a parallel implementation of
independent optimization procedures.

Algorithm 1: Multistart(f , S, x∗)
Input : Objective function, f : S ⊂ Rn → R; search

region: S ⊆ Rn

Output: Approximation of the global minimizer: x∗

Set Y = ∅1

for i← 1, 2, . . . do2
// Sample a starting point

Sample a random point x(i) uniformly in S3

// Local optimization

Apply local optimization procedure from x(i). Let4

y(i) be the resulting local optimizer.

// Check if the local minimum is already

found

if y(i) /∈ Y then5

Set Y = Y ∪ y(i)6

end7

// Stopping rule

Check an appropriate stopping rule8

end9

Set x∗ be the element of Y with minimum function10

value

A local optimization algorithm is a sequential procedure
that, beginning from a starting point x0 ∈ S, generates a
sequence of iterates {xk}∞k=0 that terminates when the so-
lution point is approximated with a prescribed accuracy. In
deciding how to move from one iterate xk to the next the

2Uniform sampling is considered a simple task.



optimization algorithm uses information about the function
at xk (function value, first or second order derivatives). A
general class of optimization algorithms use second order
derivative information of the objective function and use it
to build and minimize a quadratic model around the cur-
rent iteration. The main representative of this class is the
Newton method. At each iterate, the Newton method makes
use of first and second order derivative information to pro-
ceed to the next point. This can be achieved using a line
search algorithm which searches along a descent direction
pk ∈ Rn for an iterate with lower function value. The dis-
tance to move along pk can be found by solving the follow-
ing one-dimensional minimization problem that is to find
a step length α that minimizes f(xk + αpk). The main
computational cost of a single Newton iteration is deter-
mined by the objective function and the derivatives calcu-
lation that are used to compute the search direction. The
search direction is Newton method is calculated by solving
a linear system

Bkpk = −∇f(xk)

where Bk is a positive definite modification of the matrix
of second order derivatives (∇2f(xk)). A description of
Newton’s method is presented in Algorithm 2.

Algorithm 2: Newton(f , x0, x∗)
Input : Objective function, f : S ⊂ Rn → R;

starting point: x0

Output: Approximation of the minimizer: x∗

for k ← 1, 2, . . . do1
// Derivative evaluation

Calculate gk = ∇f(xk) and Gk = ∇2f(xk)2

// Modification

Factorize the matrix Bk, where Bk = Gk if Gk is3

positive definite; otherwise, Bk = Gk + Ek

// Linear system solution

Solve Bkpk = −gk4

// Line search

Set xk+1 = xk + αkpk, where αk satisfies5

sufficient descent conditions
Stop if convergence criterion is met6

end7

Set x∗ = xk+18

In many cases derivatives cannot be expressed analytically
because the underlying functions are represented by large
and complicated computer codes. In these cases finite dif-
ferencing is an approach for calculating the first and second
order derivatives of a n−dimensional objective function at
a point x by examining the objective function behavior on

small finite perturbations around x. The number of func-
tion evaluations depends on the order of the derivative (first
or second) and on the requested accuracy (the larger accu-
racy the more function evaluations). For the gradient vec-
tor at least n + 1 function evaluations are required and for
the Hessian at least n(n + 1)/2. Two of the most popu-
lar formulas for approximating gradient and Hessian, using
central differences are summarized below:

∂f(x)

∂xi
≈ f(x+ εei)− f(x− εei)

2ε
(2)

∂2f(x)

∂xi∂xj
≈ f(x+ εei + εej)− f(x− εei + εej)

4ε2

− f(x+ εei − εej) + f(x− εei − εej)

4ε2

where ei is the i−th unit vector and ε a small positive scalar.
Finite differencing is a perfect candidate for parallel execu-
tion. All function evaluations in Eq.(2), f(x + εei) and
f(x + εei + εej), can be performed independently and in
parallel.

3. PARALLELISM ISSUES

Multistart includes several levels of parallelism that can
be exploited in order to accelerate the method. Accord-
ing to Multistart, the application initially spawns first-level
(L1) tasks (Alg. 1, steps 2-9). These tasks perform the
Newton local search method to multiple independent ini-
tial points (xi) and execute iterations until the convergence
criterion is met (Alg. 2, steps 1-7). In each iteration, the
tasks first proceed with the derivative calculation, spawn-
ing two second-level (L2) tasks that compute the gradi-
ent and Hessian respectively (Alg. 2, step 2). The gradi-
ent computation includes a number of function evaluation
(L3) tasks. The Hessian computation, however, exploits
an additional level of parallelism by assigning the numeri-
cal calculation of each partial derivative to a (L3) task that
can spawn a number of function evaluation (L4) tasks, de-
pending on the desired accuracy and the bounds. Local
search continues with a sequential task that performs the
required matrix modification and the solution of the linear
system (Alg. 2, steps 3-4). The iterative line search method
follows, exploiting each time a single level of parallelism
for the gradient computation (Alg. 2, step 5). For a large
number of initial points, a gradual execution of Multistart
is performed by applying the Newton method to bunches
of points. In such case and given that the stopping rule of
Multistart is not satisfied, the method is repeated until the
desired number of points has been processed.

Multistart is a highly irregular parallel application: first,
the local search method is applied concurrently to multi-
ple points, the number of which may not be exactly divided



by the number of available processors. Secondly, the ex-
ecution time of local search exhibits significant variation
as the number of iterations required for convergence de-
pends on the randomly selected initial point. Similarly, the
line search method is performed for an unknown number
of iterations. Irregularity is found even at the innermost
level of parallelism (Hessian calculation), as the number
of function evaluations for the derivative computation at a
specific point also depends on the imposed bounds on the
variables. According to the above, the execution times for
finding a minimum for each initial point are neither bal-
anced nor known beforehand. Derivative estimation via fi-
nite differencing is computationally expensive for several
applications where the time for a single function call is sub-
stantial. Therefore, the highly irregular nested parallelism
of Multistart must be exploited at all possible levels, with-
out making any assumption about the number of available
processors.

4. SOFTWARE INFRASTRUCTURE

The architecture of our parallel optimization framework in-
cludes the following components:

• Global optimization application: It implements the
parallel Multistart method taking advantage of TORC
in order to spawn tasks that execute the Newton
method. In addition, it issues concurrent calls to
PNDL, for parallel gradient and Hessian computations.

• PNDL: The Parallel Numerical Differentiation Library
(PNDL) is a standalone software module that exports
subroutines for calculating gradients, Hessians and Ja-
cobians by finite differencing, supports multivariate
functions, respects variable bounds and offers several
prescribed accuracy levels. The parallel implemen-
tation of PNDL for multicore clusters has been based
on the tasking model that TORC provides. In PNDL,
task parallelism is expressed with independent func-
tion evaluations assigned by a master to the workers.
For each function evaluation, a task is created, with
main input argument a vector x and result the com-
puted function value f(x).

• TORC: It is a novel runtime environment for program-
ming and executing irregular and adaptive master-
worker applications on multi-core SMPs and clusters
of such machines. TORC supports a task-style pro-
gramming taking advantage of and extending the MPI
programming model. TORC’s architecture is based on
a two-level threading model, uses exclusively POSIX
and MPI calls for portability and performance, and
integrates seamlessly hardware shared-memory and
message passing.

The core PNDL routines for gradient and Hessian computa-
tions are the following:

subroutine pndlg(f, x, n, iord, grad)
subroutine pndlhf(f, x, n, iord, hes)
subroutine pndlhg(g, x, n, iord, hes)

where f is the function to be differentiated, x the vector
containing the point of calculation, n the dimensionality of
the function, iord the requested order of accuracy, grad
and hes the resulting gradient vector and Hessian matrix.
The pndlhg routine can be used if the analytical gradient
routine g of the objective function is available. A prelim-
inary report on the intended PNDL API is available in [3].
Additional information on TORC and the implementation
of PNDL on top of it can be found in [4].

5. PROTEIN FOLDING

The protein folding problem is defined in [5] as the prob-
lem of determining the three dimensional structure of a pro-
tein, called its tertiary structure, just from the sequence of
amino acids that it is composed of (its primary structure).
Under the assumption that in the native state the potential
energy of a protein is globally minimized, the protein fold-
ing problem can be regarded as equivalent to solving the
problem

min
x∈R3n

E(x) (3)

where E(x) is the value of a potential energy function for
a n atom protein described by a 3n dimensional coordi-
nate vector. This optimization problem has a large number
of variables, depending on the size of the amino acid se-
quence, and many local minimizers, a number exponential
to the number of atoms. It is believed that in the native state
of a protein, the potential energy function of the protein is
in its global energy minimum. In Fig. 1 we present an illus-
tration of a protein in a unfolded and in a folded (minimum
energy) state.

Figure 1. Example of how protein folds reaching
minimum energy

There are two different but equivalent coordinate systems
used to describe the conformation of a protein: internal and



Cartesian coordinates. In Cartesian coordinates each atom
is represented by its x, y and z coordinates. In the inter-
nal coordinates system, which is more closely related to
the structure of a protein, we use the bond length, bond an-
gle and dihedral angle notions to specify the coordinates
of the atom. The bond length is defined as the Euclidean
distance between to consecutive atoms. The bond angle is
the angle between three consecutive atoms. Finally, for ev-
ery sequence of four consecutive atoms the dihedral angle
is the angle defined by the plain of the first three atoms and
the last three atoms of the sequence. To describe a confor-
mation of a protein we need 3n numbers in Cartesian and
3n− 6 in internal coordinates.

Protein folding is considered one of the most challenging
global optimization problems due to the vast number of lo-
cal optimal conformations and the large objective function
computation time. Until recently, only small protein struc-
tures were examined thoroughly and their global minimum
conformations were revealed. It has been showed [6] that
in the native state of the protein there isn’t a lot of variation
in the values of the bond angles and the bond lengths. In
addition, the bond between two amino acids is very rigid
and may be kept fixed. It is easier to keep bond lengths and
bond angles fixed in internal coordinates than in Cartesian
coordinates. So for proteins, the use of internal coordinates
is computationally more efficient than the Cartesian coor-
dinate system. Fixing the bond lengths and bond angles to
the common values, leads to three free variables (dihedral
angles) for an amino acid. Hence, a large dimensionality
reduction can be achieved by using internal coordinates,
without limiting the folded states a protein can attain.

6. PERFORMANCE EXPERIMENTS

In this section we present experimental results from bench-
mark and application executions on a dedicated 16-node
Sun Fire x4100 cluster with Gigabit Ethernet, each node
with 2 dual-core AMD Opteron 275 CPUs. The software
setup includes Linux 2.6, GCC 4.3 and MPICH2.

Parallel Multistart In order to evaluate parallel Multi-
start we use a test function with 10 variables and artifi-
cial delays that range from 1ms to 1000ms. Fig. 2 depicts
the speedup for a single starting point, which represents
a worst-case but unlikely to occur scenario in global op-
timization problems. We observe that the Newton method
fails to scale as the number of workers increases, regardless
of the function evaluation time. This is mostly attributed
to the small sequential task ('2%) of the Newton method.
The speedup can be further affected by the communica-
tion overheads, especially when the computational cost of
the objective function is low. For function evaluation time

Figure 2. Speedup for 1 optimization

Figure 3. Speedup for 16 optimizations

Figure 4. Speedup for 64 optimizations

Figure 5. Speedup for 1024 optimizations

equal to 1000ms, however, the measured speedup is very
close to the maximum theoretical speedup as defined by
Amdahl’s law. Figs. 3 to 5 show the speedup of Multistart
for 16, 64 and 1024 optimizations. The attained speedup
increases with the number of optimizations, especially if
this exceeds the number of available processing cores. For
1024 optimizations, the speedup almost coincides with the
ideal for both 10ms and 100ms evaluation time.

The next experiment studies the performance behavior of
Multistart with respect to the number of variables. Fig. 6



Figure 6. Speedup for 64 optimizations, 1ms and 10ms
function evaluation time and 10-40 variables

Figure 7. Speedup for 1, 16 and 64 local searches for
Polyalaline-8

depicts the speedup on 64 workers for 64 initial points and
function evaluation time equal to 1ms and 10ms. We ob-
serve that the obtained speedup increases with the number
of function variables. For 10ms delay, the obtained speedup
is significantly higher for 10 variables and approximates
the ideal if more function variables are used.

Protein folding To model the potential energy of Eq. 3
we used the Tinker [7] software, a flexible system of pro-
grams and routines for molecular mechanics and dynamics.
The potential energy function used is the AMBER96 [8]
potential implemented in Tinker. The AMBER96 potential
is minimized with Multistart, using the reduced scheme of
dihedral angles. That is, the free variables of minimiza-
tion are the dihedral angles between consecutive triads of
atoms. The protein tested consists of 8 Alaline amino acids
(Polyalaline-8) in the primary structure chain, plus one
ACE molecule at the beginning and a NME molecule at
the end of the chain. This results in a total of 92 atoms and
276 Cartesian/internal coordinates. By allowing only the
dihedral angles to vary while bond length and bond angle
are kept fixed the final number of optimization parameters
is reduced to 35. The specific protein is described from the
sequence of amino acids that it is composed of in a spe-
cial formatted file. The goal is to reproduce the already
known global minimum conformation of Polyalaline-8 that
was first explored in [9].

Figure 8. Polyalaline-8 minimum energy conformation,
EAMBER96 = −44.45

Fig. 7 shows the speedup of Multistart for 1, 16 and 64
initial points. Every energy function performed by Tinker
takes approximately 4 milliseconds for Polyalaline-8. We
observe that the speedup increases with the number of in-
dependent optimizations and that the results accord with
those presented previously using the test function. As the
number of initial points increases, the speedup of Multistart
approaches the ideal as better load balancing is achieved.
In all the experiments we compute the Hessian matrix with
function evaluations; an alternative approach is to use the
analytic gradient routine of the objective function, if this
is available. This reduces the number of function evalua-
tions of Multistart and equivalently the number of spawned
tasks. For instance, the computational cost of the gradient
function for Polyalaline-8 is approximately 1 ms. When
gradient calls are used, the performance scalability of Mul-
tistart remains the same, with only difference the consider-
ably smaller execution time of each local optimization. In
Fig. 8 we present the final conformation of Polyalaline-8 as
computed by the parallel Multistart. The result matches the
global best conformation presented in [9].

7. RELATED WORK

Although many parallel local and global optimization al-
gorithms were proposed in the last decades, only a hand-
ful of actual systems exist. One of the most widely used
scientific software programs, MATLAB, presented its first
parallel optimization solution in 2009 [10]. In the pio-
neer work of [11] an interval global optimization method
is implemented using dynamic load balancing. PGO [12]
is a general parallel computing based on the Genetic Algo-
rithm. In PGO, the parallel (and heterogeneous) comput-
ing framework is organized as a global master-slave sys-
tem using a central database management system for stor-



ing all the data during optimization progress. Oriented in
interoperability, the MHGrid platform [13] exploits meta-
heuristics based search methods and Grid computing to en-
able the transparent sharing of heterogeneous and dynamic
resources offering a versatile Global optimization frame-
work. MANGO [14] is a middleware that involves the
development of an extensible and flexible multiagent plat-
form, in which autonomous agents can solve global opti-
mization problems in cooperation. Finally, PaGMO [15]
is a recently released open source multi-threaded software
that offers a plethora of local and global optimization codes
exploiting modern multi-core architectures. In contrast to
our infrastructure, none of the above supports hierarchical
and multi-level task parallelism. In addition, our system is
platform-agnostic supporting transparently both shared and
distributed memory architectures. Some work on parallel
global optimization methods for protein folding problems
is reported in [16, 17, 18]. The proposed algorithms fo-
cus mainly on the independent execution of multiple local
optimization algorithms.

8. CONCLUSIONS

We presented a system for efficient exploitation of nested
and irregular parallelism in non-linear optimization prob-
lems. At the core of our system is TORC, a runtime library
that supports adaptive task-based parallelism on clusters of
multicores/SMPs. Using TORC, we manage to extract and
execute the multiple levels of parallelism inherent in the
Multistart optimization method, performing thus Newton-
based local searches, gradient and Hessian calculations and
function evaluations in parallel. The scalability of our sys-
tem was demonstrated on a multicore cluster with synthetic
benchmarks and a real application case that deals with the
protein folding problem. Our ongoing work includes the in-
tegration of additional numerical optimization techniques
into our infrastructure. Furthermore, we plan to extend
the applicability of our system to computational grids and
GPGPU environments.

REFERENCES

[1] A.H.G Rinnooy Kan and G.T. Timmer, “Stochastic global
optimization methods. Part I: Clustering methods,” Math.
Progr., 39, 27-56, 1987.

[2] C. Voglis and I.E. Lagaris, Towards ideal multistart, “A
stochastic approach for locating the minima of a continuous
function inside a bounded domain,” Applied Math. and Com-
put., 213, pp. 216-229, 2009.

[3] C. Voglis, P.E. Hadjidoukas, I.E. Lagaris and D.G. Papageor-
giou, “A numerical differentiation library exploiting parallel

architectures,” Comput. Phys. Commun., 180(8), pp. 1404-
1415, 2009.

[4] P.E. Hadjidoukas, V.V. Dimakopoulos, C. Voglis, I.E. Lagaris
and D.G. Papageorgiou, “High-performance numerical opti-
mization on multicore clusters,” 17th Intl. Euro-Par Conf.,
2011.

[5] C.B. Anfinsen, “Principles that Govern the Folding of Protein
Chains,” Science, 181, pp. 223-230, 1973.

[6] G.N. Ramachadran et al., Biochim Biophysics, 74, pp.
359:298-302, 1974.

[7] J.W. Ponder, “TINKER-software tools for molecular design,”
St. Louis:Washington University, Version 3.7, 1999.

[8] S.J. Weiner et al., “An All Atom Force Field for Simulations
of Proteins and Nucleic Acids,” J. Comp. Chem., 7(2), pp.
230-252, 1986.

[9] P.N. Mortenson and D.J. Wales, “Energy landscapes, global
optimization and dynamics of the polyalanine Ac (ala)
NHMe,” The Journal of Chemical Physics, 114, pp. 6443-
6454, 2001.

[10] S. Kozola, “Improving Optimization Performance with Par-
allel Computing,” MATLAB Digest, 2009.

[11] J. Eriksson and P. Lindstrom, “A parallel interval method
implementation for global optimization using dynamic load
balancing,” Rel. Comput., 1/2, pp. 77-91, 1995.

[12] K. He et al., “PGO: a Parallel Computing Platform for
Global Optimization Based on Genetic Algorithm,” Comput-
ers & Geosciences, 2006.

[13] M. Wahib et al., “Mhgrid: Towards an ideal optimization en-
vironment for global optimization problems using grid com-
puting,” 8th Int’l Conf. on Parallel and Distr. Comput., Ap-
plic. and Technologies, pp. 167-168, 2007.

[14] A. Günay et al., “Solving global optimization problems us-
ing MANGO,” Agent and Multi-Agent Systems: Technolo-
gies and Applic., pp. 783-792, 2009.

[15] F. Biscani, D. Izzo and C. Yam, “A global optimisation tool-
box for massively parallel engineering optimisation,” Int’l
Conf. on Astrodynamics Tools and Techniques, 2010.

[16] R. H. Byrd et al., “A Parallel Global Optimization Method
for Solving Molecular Cluster and Polymer Conformation
Problems,” 7th Siam Conf. on Parallel Processing for Sci-
entific Comput., SIAM Philadelphia, pp. 72-77, 1995.

[17] T.F. Coleman and Z. Wu, “Parallel continuation-based
global optimization for molecular conformation and protein
folding,” J. Global Optimization, 8:1, 49-65, 1996.

[18] S. Crivelli, T. Head-Gordon, R. Byrd, E. Eskow and R.
Schnabel, “A hierarchical approach for parallelization of a
global optimization method for protein structure prediction,”
Euro-Par99 Parallel Processing, pp. 579-585, 1999.


