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Abstract

In this work we present a microbenchmark methodology for assessing the over-
heads associated with nested parallelism in OpenMP. Our techniques are based on
extensions to the well known EPCC microbenchmark suite thatallow measuring
the overheads of OpenMP constructs when they are effected ininner levels of par-
allelism. The methodology is simple but powerful enough andhas enabled us
to gain interesting insight into problems related to implementing and supporting
nested parallelism. We measure and compare a number of commercial and free-
ware compilation systems. Our general conclusion is that while nested parallelism
is fortunately supported by many current implementations,the performance of this
support is rather problematic. There seem to exist issues which have not yet been
addressed effectively, as most OpenMP systems do not exhibit a graceful reaction
when made to execute inner levels of concurrency.

1 Introduction

OpenMP [1] has become a standard paradigm for shared memory programming, as
it offers the advantage of simple and incremental parallel program development, in a
high abstraction level. Nested parallelism has been a majorfeature of OpenMP since its
very beginning. As a programming style, it provides an elegant solution for a wide class
of parallel applications, with the potential to achieve substantial processor utilization,
in situations where outer-loop parallelism simply can not.Despite its significance,
nested parallelism support was slow to find its way into OpenMP implementations,
commercial and research ones alike. Even nowadays, the level of support is varying
greatly among compilers and runtime systems.

For applications that have enough (and balanced) outer-loop parallelism, a small
number of coarse threads is usually enough to produce satisfactory speedups. In many
other cases though, including situations with multiple nested loops, or recursive and
irregular parallel applications, threads should be able tocreate new teams of threads
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because only a large number of threads has the potential to achieve good utilization of
the computational resources.

Although many contemporary OpenMP compilation systems provide some kind of
support for nested parallelism, there has been no evaluation of the overheads incurred
by such a support. The well known EPCC microbenchmark suite [2, 3] is a valuable
tool with the ability to reveal various synchronization andscheduling overheads, but
only for single-level parallelism.

In this work, we present a set of benchmarks that are based on extensions to the
EPCC microbenchmarks and allow us to measure the overheads of OpenMP systems
when nested parallelism is in effect. To the best of our knowledge this is the first study
of its kind as all others have been based on application speedups [4, 5, 6, 7] which give
overall performance indications but do not reveal potential construct-specific problems.

The paper is organized as follows. In Section 2 we give an overview of OpenMP
specification and the current status of various implementations with respect to nested
parallelism. In Section 3 we present the microbenchmarks indetail. Section 4 reports
on the performance of several OpenMP compilation systems when used to execute our
benchmarks. The section also includes a discussion of our findings. Finally, Section 5
concludes this work.

2 Nested Parallelism in OpenMP

The OpenMP specification leaves support for nested parallelism as optional, allowing
an implementation to serialize the nested parallel region,i.e. execute it by only 1 thread.
In implementations that support nested parallelism, the user can choose to enable or
disable it either during program startup through theOMP_NESTED environmental vari-
able or dynamically at runtime through anomp_set_nested() call. The number of
threads that will comprise a team can be controlled by theomp_set_num_threads()
call. Because this is allowed to appear only in sequential regions of the code, there is
no way to specify a different number of threads for inner levels through this call; to
overcome this, the current version of OpenMP (2.5) providesthenum_threads(n)
clause. Such a clause can appear in a (nested)parallel directive and request that
this particular region be executed by exactlyn threads.

However, the actual number of threads dispatched in a (nested)parallel region
depends also on other things. OpenMP provides a mechanism for thedynamic adjust-
ment of the number of threads which, if activated, allows the implementation to spawn
fewer threads than what is specified by the user. In addition to dynamic adjustment,
factors that may affect the actual number of threads includethe nesting level of the
region, the support/activation of nested parallelism and the peculiarities of the imple-
mentation. For example, some systems maintain a fixed pool ofthreads, usually equal
in size to the number of available processors. Nested parallelism is supported as long
as free threads exist in the pool, otherwise it is dynamically disabled. As a result, a
nestedparallel region may be executed by a varying number of threads, depending
on the current state of the pool.

In general, it is a recognized fact that the current version of OpenMP has a number
of shortcomings when it comes to nested parallelism [7], andthere exist issues which
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need clarification. Some of them are settled in the upcoming version of the API (3.0),
which will also offer a richer functional API for the application programmer.

According to the OpenMP specification, an implementation which serializes nested
parallel regions, even if nested parallelism is enabled by the user, is considered
compliant. An implementation can claimsupport of nested parallelism if nestedparallel
regions may be executed by more than 1 thread. Because of the difficulty in handling
efficiently a possibly large number of threads, many implementations provide support
for nested parallelism but with certain limitations. For example, there exist systems
that support a fixed number of nesting levels; some others allow an unlimited number
of nesting levels but have a fixed number of simultaneously active threads.

Regarding proprietary compilers, not all of them support nested parallelism and
some support it only in part. Among the ones that provide unlimited support in their
recent releases are the FujitsuPRIMEPOWERcompilers, the HP compilers for the HP-
UX 11i operating system, the Intel compilers [8] and the Sun Studio compilers [9]. Full
support for nested parallelism is also provided in the latest version of the well known
open-sourceGNU Compiler Collection,GCC 4.2, through the libGOMP [10] runtime
library.

Research/experimental OpenMP compilers and runtime systems that support nested
parallelism include MaGOMP, a port of libGOMP on top of the Marcel threading li-
brary [11], the Omni compiler [12, 6] and OMPi [13, 14].

3 The microbenchmark methodology

The EPCC microbenchmark suite [2, 3] is the most commonly used tool for measuring
runtime overheads of individual OpenMP constructs. However, it is only applicable to
single-level parallelism. This section describes the extensions we have introduced to
this microbenchmark suite for the evaluation of OpenMP runtime support under nested
parallelism.

The technique used to measure the overhead of OpenMP directives, is to compare
the time taken for a section of code executed sequentially with the time taken for the
same code executed in parallel, enclosed in a given directive. LetTp be the execu-
tion time of a program onp processors andT1 be the execution time of its sequential
version. The overhead of the parallel execution is defined asthe total time spent collec-
tively by thep processors over and aboveT1, the time required to do the “real” work,
i.e. Tovh = pTp − T1. The per-processor overhead is thenTo = Tp − T1/p. The
EPCC microbenchmarks [2] measureTo for the case of single-level parallelism using
the method described below.

A reference time,Tr, is first fixed, which represents the time needed for a call
to a particular function nameddelay(). To avoid measuring times that are smaller
than the clock resolution,Tr is actually calculated by calling thedelay() function
sufficiently many times:

for (j = 0; j < innerreps; j++)
delay(delaylength);

and dividing the total time byinnerreps.
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Then, the same function call is surrounded by the OpenMP construct under mea-
surement, which in turn is enclosed within aparallel directive. For example, the
testfor() routine that measures thefor directive overheads, actually measures
the portion shown in Fig. 1 and then divides it byinnerreps, obtainingTp. Notice,
that because the measurement includes the time taken by theparallel directive,
innerreps is large enough so that the overhead of the enclosingparallel direc-
tive can be ignored. The overhead is derived asTp−Tr, since the total work done needs
actuallypTr sequential time. Of course, to obtain statistically meaningful results, each
overhead measurement is repeated several times and the meanand standard deviation
are computed over all measurements. This way, the microbenchmark suite neither re-
quires exclusive access to a given machine nor is seriously affected by background
processes in the system.

testfor() {
...
<start measurement>

#pragma omp parallel private(j)
{

for (j = 0; j < innerreps; j++)
#pragma omp for

for (i = 0; i < p; i++)
delay(delaylength);

}
<stop measurement>
...

}

Figure 1: Portion of thetestfor() microbenchmark routine.

3.1 Extensions for nested parallelism

To study how efficiently OpenMP implementations support nested parallelism, we have
extended both the synchronization and the scheduling microbenchmarks of the EPCC
suite. According to our approach, the core benchmark routine for a given construct
(e.g. thetestfor() discussed above) is represented by atask. Each task has a
unique identifier and utilizes its own memory space for storing its table of runtime
measurements. We create a team of threads, where each memberof the team executes
its own task. When all tasks finish, we measure their total execution time and compute
the global mean of all measured runtime overheads. Our approach is outlined in Fig. 2.
The team of threads that execute the tasks expresses the outer level of parallelism, while
each benchmark routine (task) contains the inner level of parallelism.

In Fig. 2, if the outer loop (lines 5–7) is not parallelized, the tasks are executed in
sequential order. This is equivalent to the original version of the microbenchmarks,
having each core benchmark repeated more than once. On the other hand, if nested
parallelism is enabled, the loop is parallelized (lines 2–4) and the tasks are executed
in parallel. The number of simultaneously active tasks is bound by the number of
OpenMP threads that constitute the team of the first level of parallelism. To ensure that
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void nested_benchmark(char *name, func_t originalfunc) {
int task_id;
double t0, t1;

1 t0 = getclock();
2 #ifdef NESTED_PARALLELISM
3 #pragma omp parallel for schedule(static,1)
4 #endif
5 for (task_id = 0; task_id < p; task_id++) {
6 (*originalfunc)(task_id);
7 }
8 t1 = getclock();

<compute global statistics>
<print construct name, elapsed time (t1-t0), statistics>

}

main() {
<compute reference time>
omp_set_num_threads(omp_get_num_procs());
omp_set_dynamic(0);
nested_benchmark("PARALLEL", testpr);
nested_benchmark("FOR", testfor);
...

}

Figure 2: Extended microbenchmarks for nested parallelismoverhead measurements

each member of the team executes exactly one task, a static schedule with chunksize
of 1 was chosen at line 3. In addition, to guarantee that the OpenMP runtime library
does not assign fewer threads to inner levels than in the outer one, dynamic adjustment
of threads isdisabled through a call toomp set dynamic(0).

By measuring the aggregated execution time of the tasks, we use the microbench-
mark as an individual application. This time does not only include the parallel portion
of the tasks, i.e. the time the tasks spend on measuring the runtime overhead, but also
their sequential portion. This means that even if the mean overhead increases when
tasks are executed in parallel, as expected due to the highernumber of running threads,
the overall execution time may decrease.

In OpenMP implementations that provide full nested parallelism support, inner
levels spawn more threads than the number of physical processors, which are mostly
kernel-level threads. Thus, measurements exhibit higher variations than in the case of
single-level parallelism. In addition, due to the presenceof more than one team parents,
the overhead of the parallel directive increases in most implementations, possibly caus-
ing overestimation of other measured overheads (see Fig. 1). To resolve these issues,
we increase the number of internal repetitions (innerreps) for each microbench-
mark, so as to be able to reach the same confidence levels (95%). A final subtle point
is that when the machine is oversubscribed, each processor will be timeshared among
multiple threads. This leads to an overestimation of the overheads because the mi-
crobenchmarks account for the sequential work (Tr) multiple times. We overcame
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this by decreasingdelaylength so thatTr becomes negligible with respect to the
measured overhead.

4 Results

All our measurements were taken on a Compaq Proliant ML570 server with 4 Intel
Xeon III single-core CPUs running Debian Linux (2.6.6). Although this is a relatively
small SMP machine, size is not an issue here. Our purpose is tocreate a significant
number of threads; as long as a lot more threads than the available processors are active,
the desired effect is achieved. We provide performance results for two free commercial
and three freeware OpenMP C compilers that support nested parallelism. The commer-
cial compilers are the Intel C++ 10.0 compiler (ICC) and Sun Studio 12 (SUNCC) for
Linux. The freeware ones areGCC4.2.0, Omni 1.6 andOMPi 0.9.0. As Omni andOMPi
are source-to-source compilers, we have usedGCC as the native back-end compiler for
both of them. In addition, becauseOMPi is available with a multitude of threading
libraries, we have used two different configurations for it,namelyOMPi+POSIXand
OMPi+PSTHREADS. The first one uses the default runtime library, based onPOSIX

threads which, although optimized for single-level parallelism, provides basic support
for nested parallelism. The second one uses a high-performance runtime library based
on POSIX threads and portable user-level threads [14].

Most implementations start by creating an initial pool of threads, usually equal
in size to the number of available processors, which is 4 in our case. Because the
number of threads in the second level is implementation dependent, in all our exper-
iments we have explicitly set it to 4 through anomp_set_num_threads(4) call
and we have disabled the dynamic adjustment of the number of threads. I.e., when
executing the second level of parallelism, there are in total 4 × 4 = 16 active threads.
However, some implementations cannot handle this situation. In particular, the Omni
compiler andOMPi+POSIX cannot create more threads on the fly, even if needed; they
support nested parallelism as long as the initial pool has idle threads, otherwise nested
parallel regions get serialized. To overcome this problem,for those two implemen-
tations we set theOMP_NUM_THREADS environmental variable equal to 16 before
executing the benchmarks, so that the initial pool is forcedto have 16 threads; the
omp_set_num_threads(4) call then limits the outer level to exactly 4 threads,
while all 16 threads are utilized in the inner level. We have,however, been careful
not to give those two implementations the advantage of zero thread creation overhead
(since with the above trick the 16 threads are pre-created),by including a dummy nested
parallel region at the top of the code. This way, all implementations get a chance to
create 16 threads before the actual measurements commence.

A selection of the obtained results is given in Figs 3–4, for the synchronization
and scheduling microbenchmarks. Fig. 3 includes the overheads of all six systems for
the parallel, for, single andcritical constructs. Each plot includes the
single-level overheads of each system for reference.

As the number of active threads increases when nested parallelism is enabled,
the overheads are expected to increase accordingly. We observe, however, that the
parallel construct does not scale well for the Intel,GCC and Omni compilers, al-
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Figure 3: Overheads forparallel, for, single andcritical
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though ICC remains quite fast. For all three of them, the runtime overhead is more
than an order of magnitude higher in the case of nested parallelism. ForICC this could
be attributed, in part, to the fact that threads join a uniquecentral pool before getting
grouped to teams [8]. On the other hand, bothOMPi+PSTHREADSandSUNCCclearly
scale better and their overheads increase linearly, withSUNCC, however, exhibiting
higher overheads thanOMPi for both single level and nested parallelism.

Similar behavior is seen for thefor andsingle constructs, except thatGCC

shows significant but not excessive increase. The Sun compiler seems to handle loop
scheduling quite well showing a decrease in the actual overheads. This, combined with
the decrease in thesingle overheads, reveals efficient team management since both
constructs incur mostly inter-team contention. Especially in the single construct,
OMPi+PSTHREADSshows the advantage of user-level threading: inner levels are exe-
cuted by user-level threads, which mostly live in the processor where the parent thread
is, eliminating most inter-team contention and the associated overheads. In contrast,
the (unnamed)critical construct incurs global contention since all threads from
all teams must compete for a single lock protecting the critical code section. Over-
heads are increased significantly in all systems, suggesting thatunnamed critical
constructs should be avoided when nested parallelism is required.

Fig. 4 includes results from the scheduling microbenchmarks. For presentation
clarity, we avoided reporting curves for a wide range of chunksizes; instead we include
only results for static, dynamic and guided schedules with achunksize of 1, which
represent the worst cases, with the highest possible scheduling overhead. Schedul-
ing overheads increase, as expected, for the static and guided schedules in the case of
nested parallelism. However, the overheads of the dynamic scheduling policy seem
to increase at a slower rate and in some cases (SUNCC, GCC andOMPi+PSTHREADS)
actually decrease, which seems rather surprising. This canbe explained by the fact
that for this particular scheduling strategy and with this particular chunk size, the over-
heads are dominated by the excessive contention among the participating threads. With
locality-biased team management, which groups all team threads onto the same CPU,
and efficient locking mechanisms, which avoid busy waiting,the contention has the
potential to drop sharply, yielding lower overheads than inthe single-level case. This
appears to be the case for the Sun Studio andGCC compilers. OMPi with user-level
threading achieves the same goal because it is able to assigneach independent loop
to a team of non-preemptive user-level OpenMP threads that mainly run on the same
processor. However, as the chunksize increases, assigned jobs become coarser and any
gains due to contention avoidance vanish. This is confirmed in the last plot of Fig. 4;
with a chunksize of 8 all implementations show increased overheads with respect to
the single-level case.

In Fig. 5 we present the results of our next experimentation:we delved into dis-
covering how the behavior of our subjects changes for different populations of threads.
We fixed the number of first-level threads to 4 but changed the second-level teams to
consist of 2, 4 and 8 threads, yielding in total 8, 16 and 32 threads on the 4 processors.
Because this was only possible using thenum_threads() clause (an OpenMP V.2.0
addition), Omni was not included, as it is only V.1.0 compliant. Fig. 5 contains one
plot per compiler, including curves for most synchronization microbenchmarks. The
results confirmed what we expected to see: increasing the number of threads in the
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Figure 4: Scheduling overheads forstatic, guided anddynamic.
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Figure 5: Overheads per compiler, for increasing team sizesat the second level of
parallelism
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second level leads to increased overheads. Due to space limitations, we cannot com-
ment on every aspect of the plots but we believe that they present the situation very
vividly. It is enough to say that for some implementations things seems to get out of
control, especially forparallel andreduction. By far, the most scalable behav-
ior is exhibited by theOMPi+PSTHREADSsetup, although in absolute numbers the Intel
compiler is in many cases the fastest.

5 Conclusion

In this paper we presented an extension to the EPCC microbenchmark suite that allows
the measurement of OpenMP construct overheads under nestedparallelism. Using
this extension we studied the behavior of various OpenMP compilation and runtime
systems when forced into inner parallel regions. We discovered that many implemen-
tations have scalability problems when nested parallelismis enabled and the number
of threads increases well beyond the number of available processors. This is most
probably due to the kernel-level thread model the majority of the implementations use.
The utilization of kernel threads introduces significant overheads in the runtime library.
When the number of threads that compete for hardware recourses significantly exceeds
the number of available processors, the system is overloaded and the parallelization
overheads outweigh any performance benefits. Finally, it becomes quite difficult for
the runtime system to decide the distribution of inner-level threads to specific proces-
sors in order to favor computation and data locality.

Although our study was limited to two nesting levels, it became clear that studying
deeper levels would only reveal worse behavior. It is evident that there are several
design issues and performance limitations related to nested parallelism support that
implementations have to address in an efficient way. In the near future we plan to
expand the microbenchmark suite appropriately so as to be able to study the overheads
at any arbitrary nesting level.
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