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Abstract

Hypercycles is a class of multidimensional multiprocessor interconnection

networks which includes hypercubes, toruses, rings and other related topolo-

gies. In this paper we consider the one-to-all communication problem for the

general class of hypercycles. We present a nonredundant broadcasting algo-

rithm which is completed in the minimum number of steps. The algorithm is

given in distributed form, directly suggesting an efficient hardware implemen-

tation.
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1 Introduction

In a multiprocessor, one-to-all communication involves sending a message from a root

node to all the other nodes through the underlying interconnection network. Such a

communication primitive is necessary for system-level maintenance as well as for a

big number of parallel applications, such as linear algebra algorithms [1].

A number of network topologies have been suggested for the interconnection be-

tween the processors. Hypercycles [8, 6] is a class of multidimensional graphs that

includes such widely studied networks as the hypercubes, k-ary n-cubes, generalized

hypercubes [3], toruses, and rings. Many properties and algorithms used for example

in routing can be extended to the entire class of hypercycles, making it possible to

choose a topology that best suits system requirements.

In this work, we study the broadcasting problem as applied to the entire class of

hypercycles. We develop an algorithm that is nonredundant (i.e. no node receives the

message more than once) and time-optimal (i.e. terminates in the minimum possible

number of steps). Moreover, the algorithm is given in distributed form, suitable for

direct implementation.

Similar algorithms have been given for the hypercubes [11], the generalized hy-

percubes [3] and other networks. Broadcasting in hypercycles differs from the ones

given in [11, 3] because in the corresponding networks each dimension is a complete

graph so that a message can be transmitted to all nodes in one step and with no

redundancy. Hypercycles may not be fully connected in every dimension, making

repetitions, because of their circular nature, a problem.

The paper is organized as follows: section 2 introduces the hypercycles and some of

their graph theoretic properties; section 3 develops the backbone of our broadcasting

scheme: broadcasting in a single dimension. In section 4 we give the multidimensional

broadcasting algorithm and section 5 concludes the work.
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2 Hypercycles

2.1 Mixed-radix system

The mixed-radix system [2] is a generalization of base b representation, where each

digit of a number may have a different base. Given a number N , factored into r

factors m1,m2, ...,mr as

N = mr ×mr−1 × · · · ×m1,

any number x, 0 ≤ x ≤ N − 1, can be written as an r-tuple

(xrxr−1 . . . x1)mrmr−1...m1

where mi is the base of xi and 0 ≤ xi ≤ mi − 1 (i = 1, 2, ..., r). The corresponding

decimal number can be found as follows:

x =
r

∑

i=1

xiwi

where wi = mi−1 ×mi−2 × · · · ×m1, the weight of the ith digit (w1 is always 1). As

an example, let N = 24 = 3× 4× 2 = m3 ×m2 ×m1. Then w1 = 1, w2 = 2, w3 = 8,

and

(231)3,4,2 = 2× w3 + 3× w2 + 1× w1 = 1 + 6 + 16 = 23.

If the bases of the mixed radix system are clear from context, we are going to omit

them in order to simplify the notation, i.e.

(xrxr−1 . . . x1) ≡ (xrxr−1 . . . x1)mrmr−1...m1
.

Finally, we note that if m1 = m2 = · · · = mr = b, then the corresponding weights

become wi = mi−1 × mi−2 × · · · × m1 = bi−1, i.e. we obtain the standard base b

representation.
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2.2 Hypercycles and their properties

A hypercycle is a graph Gρr,ρr−1,...,ρ1

mr,mr−1,...,m1
= (V,E) with N nodes where N is factored as

N = mr ×mr−1 × · · · ×m1, generating a mixed radix system. The addresses of the

nodes range from 0 to N − 1 hence V = {0, 1, . . . , N − 1}. After representing the

address of each node in the mixed-radix system generated by the factors of N , the

edge set is determined by ρ1, ρ2, . . . , ρr, where

ρi ≤ mi/2, i = 1, 2, . . . , r

as follows: if a = (arar−1 . . . a1) ∈ V and b = (brbr−1 . . . b1) ∈ V then (a, b) ∈ E if and

only if:

∃ξj, 1 ≤ ξj ≤ ρj, 1 ≤ j ≤ r : bj = (aj ± ξj) mod mj

and ∀i, 1 ≤ i ≤ r, i 6= j ai = bi

(1)

Hypercycles consist of r dimensions with mi nodes in the ith dimension. Di-

mension i constitutes a circulant graph [4] Cmi
〈1, 2, . . . , ρi〉. The circulant graph

Cmi
〈1, 2, . . . , ρi〉, where ρi ≤ mi/2, is defined as an mi-node graph where node j is

adjacent to nodes

j ± 1, j ± 2, . . . , j ± ρi (modmi).

Note that the above definition is in accordance with (1) assuming that the hypercycle

has only one dimension (r = 1). Examples of hypercycles are given in Figure 1. In

Figures 1(a) and (b) the hypercycles are one-dimensional, i.e. they are identical to

the circulants C6〈1〉 and C6〈1, 2〉, correspondingly.

For the above type of graph we know [4, 8] that it is regular with degree di and

diameter Di equal to

di =







2ρi if ρi < mi/2

2ρi − 1 if ρi = mi/2
(2)

Di =

⌈

bmi/2c

ρi

⌉

(3)
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Every node in an r-dimensional hypercycle belongs to r such circulants thus mak-

ing hypercycles regular graphs with degree [8]

d(Gρr,ρr−1,...,ρ1

mr,mr−1,...,m1
) =

r
∑

i=1

di

and diameter

D =
r

∑

i=1

Di (4)

where di and Di are given by (2) and (3) respectively.

If ρi = bmi/2c, for all i = 1, 2, . . . , r, then we obtain the generalized hypercube

that uses the same factoring of N . For m1 = m2 = · · · = mr = 2 we get the r-

dimensional hypercube. The k-ary cubes are also a subset of hypercycles, the k-ary

r-cube obtained for m1 = m2 = · · · = mr = k and ρ1 = ρ2 = · · · = ρr = 1.

Hypercycles have routing properties that are similar to those of the hypercubes.

The routing algorithm has been described and analyzed elsewhere [7, 5] and is not

needed for our purposes here.

3 Broadcasting in a single dimension

We first consider a single dimension of a hypercycle; it consists of the circulant graph

Cm〈1, 2, . . . , ρ〉. We recall that the diameter of this graph is equal to

D =

⌈

bm/2c

ρ

⌉

(5)

An optimal broadcasting algorithm should take exactly D steps to complete.

Assume that in the circulant Cm〈1, 2, . . . , ρ〉 the nodes are numbered 0 to (m−1) in

a clockwise manner and node 0 wants to broadcast a message to all the other nodes —

see for example Figures 1(a), (b) and Figure 3. In the message we attach a weight field

which is used as follows: when an intermediate node receives a broadcast message it

checks its weight; if it is unity then the node stops the message transmission, otherwise

5



it decrements the weight by 1 and sends the message to the node in distance ρ away,

continuing in the direction the message had when it was received.

Begin by giving a weight of D and sending the message from node 0 to nodes

1, 2, ..., ρ in the clockwise direction; this is accomplished in one step. After exactly D

steps, nodes (D− 1)ρ + 1, (D− 1)ρ + 2, . . . , (D− 1)ρ + (ρ− 1), Dρ will have received

the message with weight 1 and the transmission stops in this direction. Assume now

that node 0 also sent the message with weight a to nodes m − 1,m − 2, . . . ,m − ρ

in the counterclockwise direction. Then after exactly a steps, nodes m− (a − 1)ρ−

1,m− (a− 1)ρ− 2, . . . ,m− aρ will have received the message with weight 1.

We now want to make sure that no redundant transmissions are made, in other

words, the counterclockwise paths should not meet the clockwise paths. From the

above description, after D steps the furthest node reached in the clockwise direction

is node Dρ. At the same time, after a steps, the furthest node reached visiting nodes

in the counterclockwise direction from node 0, is node m − aρ; m − aρ should be

greater than Dρ. Solving for the maximum integer value of a, we obtain:

m− aρ > Dρ⇒ a <
m

ρ
−D ⇒ a =







m
ρ
− 1−D if m/ρ is integer

bm
ρ
c −D if m/ρ is not an integer

or equivalently,

a =

⌊

m− 1

ρ

⌋

−D.

Notice now that the transmission in the clockwise direction stopped at node Dρ

while in the opposite direction, it stopped at node m − aρ. Between nodes Dρ and

m − aρ there are exactly k = m− aρ−Dρ− 1 nodes. Hence, after the ath step,

k nodes should continue the transmission for one more step in the counterclockwise

direction to let the above nodes receive the message. This can be accomplished by

giving, in the beginning, weights of (a + 1) to the k closest to the origin nodes in the

counterclockwise direction. The remaining nodes receive a weight of a.

Based on the above analysis, we give a nonredundant broadcasting algorithm for

circulant graphs shown in Figure 2, which is completed in exactly D steps, as shown
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below. The node addresses in the algorithm are all modm and, a and k have the

following values:

a =

⌊

m− 1

ρ

⌋

−D

k = m− aρ−Dρ− 1.

(6)

Note that Algorithm 1 is clockwise preferential because of Case 1(a). Algorithm

1 can be written to be counterclockwise preferential by simply interchanging the

occurrence of the terms ‘clockwise’ and ‘counterclockwise’. The properties of the

algorithms are identical because of the rotational invariance of the circulant graphs.

Theorem 1 Algorithm 1 is a nonredundant broadcasting algorithm for the circulant

graph Cm〈1, 2, . . . , ρ〉.

Proof. Without loss of generality (due to the symmetry of the graph) we can assume

that the originating node is node 0. We consider broadcasting clockwise from node

0 (broadcasting in the counterclockwise direction is treated similarly). Case 1(a) of

Algorithm 1 generates ρ paths by following the routes:

0→















































1 → ρ + 1 → · · · → (D − 1)ρ + 1

2 → ρ + 2 → · · · → (D − 1)ρ + 2
...

ρ− 1 → ρ + (ρ− 1) → · · · → (D − 1)ρ + (ρ− 1)

ρ → 2ρ → · · · → Dρ.

Node Dρ is reached following the last path. Any number j between (ρ + 1) and Dρ

can be uniquely represented as j = qρ + r, where 0 ≤ r < ρ is the remainder of the

division by ρ. Since node j receives the message from node j − ρ = (q − 1)ρ + r and

sends the message to node j + ρ = (q + 1)ρ + r (Case 2 of Algorithm 1), we see that

the node addresses on any path have the same remainder. Hence, any node up to

and including node Dρ belongs to a path and the paths have no node in common.
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Exactly the same holds for the paths formed in the counterclockwise direction from

node 0.

To complete the proof we have to show that while the clockwise paths reach node

Dρ, the counterclockwise paths reach node Dρ + 1. We distinguish two cases:

Case 1: k = 0

In this case the counterclockwise paths reach node m− aρ:

0→ m− ρ→ m− 2ρ→ · · · → m− aρ

Since k = 0, from (6) we get

k = m− aρ−Dρ− 1 = 0⇒ m− aρ = Dρ + 1.

Case 2: k 6= 0

In this case the counterclockwise paths reach node m− k − aρ following the route:

0→ m− k → m− k − ρ→ · · · → m− k − aρ

starting with weight (a + 1). But

m− k − aρ = m− (m− aρ−Dρ− 1)− aρ = Dρ + 1. 2

Theorem 2 The broadcasting described in Algorithm 1 is completed in exactly D

steps (i.e. minimum number of steps).

Proof. Since we start with weights D, a, and possibly (a+1), and after each step the

weights are decreased by one, the algorithm is completed in max{D, a} or max{D, a+

1} steps.

Case 1: k = 0

In this case we do not have weights of (a + 1) so we have to show that a ≤ D; we get

k = m− aρ−Dρ− 1 = 0⇒ a−D =
m− 1

ρ
− 2D. (7)
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From (5) we obtain:

D =

⌈

bm/2c

ρ

⌉

≥
bm/2c

ρ
≥

m− 1

2ρ
(8)

and (7) gives a−D ≤ 0.

Case 2: k > 0

In this case we need to show that a < D; working as in Case 1 we get

k = m− aρ−Dρ− 1 > 0⇒ a−D <
m− 1

ρ
− 2D

and from (8), a−D < 0. 2

Four examples are shown in Figure 3.

A comment should be made now about the proposed broadcasting algorithm with

respect to the implementation cost. The hardware requirements are minimal since

all the intermediate nodes need only compare the received weight to 1 and possibly

decrement it by 1. All the computations for the different weights have to be performed

only once, and only in the originating node. This can be done easily in software or

by hardwiring the values of a, k and D to the router subsystem. We describe our

prototype implementation in detail in section 4.1.

4 The complete algorithm

The multidimensional broadcasting of a message to every node in a hypercycle is

similar to the one used for hypercubes [11] and generalized hypercubes [3]. The

complete procedure is formulated in Algorithm 2, in Figure 4, and is completed in

the minimum number of steps, equal to the diameter of the hypercycle.

Assuming that the r dimensions of the hypercycle Gρr ,ρr−1,...,ρ1

mr,mr−1,...,m1
are ordered (in

any fixed ordering), the originating node sends the message with a pair of weights

attached to it, (wd,wc), where wd is used for propagating through the dimensions

and wc is used for broadcasting within a single dimension (circulant graph). The
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nodes that receive the message with weights (wd,wc) send it to dimensions i =

1, 2, . . . , wd − 1 with weights (i, wci), where wci is computed according to case 1 of

Algorithm 1, because the message has to be broadcast along the whole circulant graph

that corresponds to dimension i. They also send it along dimension wd with weights

(wd,wc − 1) according to case 2 of Algorithm 1 since the node is an intermediate

node in the broadcasting along dimension wd. This way the message is received by

every node with no redundancy. An example is shown in Figure 5.

An informal proof of the no-redundancy property can be stated as follows: assume

without loss of generality that node (00 · · · 0) is the origin. Because Algorithm 1 is

nonredundant (as used in the first condition of Case 2 in Algorithm 2), we can assume

that each dimension behaves like a fully connected graph and all its nodes receive the

message in one step; thus nodes (ar00 · · · 0), for all ar = 0, 1, . . . ,mr − 1, receive

the message at the same time. The remaining transmissions originate from these

nodes and route through strictly lower dimensions (second condition in Case 2 of

Algorithm 2). Hence all nodes that will receive the message from node (ar00 · · · 0)

must have their first address digit equal to ar. Consequently, they could never receive

the message from a node (a′
r00 · · · 0), a′

r 6= ar. A simple induction shows that nodes

receiving the message from a node (arar−1 · · · ak00 · · · 0) cannot receive it from any

node (a′
ra

′
r−1
· · · a′

k00 · · · 0) where for at least one i in {k, k + 1, . . . , r}, a′
i 6= ai.

The only thing to note is that since the maximum value for wd is r and the

maximum value for wc, when in dimension i, is the diameter Di of the corresponding

circulant graph (Theorem 2), the number of steps needed to complete the broadcasting

for the whole hypercycle is

max{wd}
∑

i=1

max{wc in dimension i} =
r

∑

i=1

Di

which according to (4) is equal to the diameter of the hypercycle. Hence the algorithm

requires the minimum number of steps to complete.
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4.1 An FPGA prototype

We have developed CoDeL [9], a novel hardware description language suitable for

rapid prototyping of algorithmic machines. The compiler generates synthesizeable

VHDL code which can be mapped to technologies like FPGAs and ASICs. Algorithms

1 and 2 were expressed as a CoDeL source program; The module was made completely

programmable: during startup it inputs the machine’s configuration, i.e. the number

of dimensions, the mi’s, the ρi’s and the Di’s. Up to four dimensions are supported,

each dimension having up to 15 nodes, allowing for a maximum of 154 ≈ 50K nodes

in total. The maximum allowable degree is 16. The constants a and k are calculated

for each dimension according to (6) and stored in registers. The module then waits

until a broadcast message is received whereby it generates the appropriate weights

based on the the presented algorithms.

The resultant VHDL code was simulated for functional correctness and targeted

to a XILINX 4013Q208 FPGA chip [12]. The statistics of the implementation were as

follows: 2106 primitive XILINX cells, 62 used pins and 98% utilized area. With a clock

of 25MHz the worst-case delay for the source and intermediate nodes (corresponding

to a 4-dimensional graph of degree 16) is 5µs and 4µs, respectively. The delay drops

to 0.6µs for an intermmediate node in a single-dimension graph (Case 2 of Algorithm

1). We expect the delays to be reduced significantly if the implementation technology

is full custom VLSI, instead of XILINX gate arrays.

5 Conclusion

We presented a nonredundant broadcasting algorithm for the entire class of hypercy-

cles. The algorithm was proven to be time-optimal and also quite efficient in terms of

hardware requirements. Also, the algorithm was presented in fully distributed form,

which leads to easy implementation.

In the course of our research we have already designed and manufactured a VLSI
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chip that implements parts of the router engine for hypercycles in Northern Telecom’s

CMOS 4S 1.2µ technology [10]. The broadcasting algorithm presented here has been

implemented in FPGA technology using CoDeL, a novel hardware description lan-

guage we have developed. We are currently using CoDeL to design the rest of the

communication subsystem with our ultimate goal being a fully functional hypercycle

network.
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Case 1: ORIGINATING NODE (node i)

• Send the message with weight D to all ρ nodes in the

clockwise direction, i.e. nodes i + 1, i + 2, . . . , i + ρ

• Send the message with weight (a + 1) to the first k nodes

counterclockwise, i.e. nodes i− 1, i− 2, . . . , i− k

• Send the message with weight a to the remaining ρ− k nodes

(counterclockwise), i.e. nodes i− (k + 1), i− (k + 2), . . . , i− ρ

Case 2: THE OTHER NODES (wc is the weight of the received message)

s If (wc = 1)

then Stop

else • wc← wc− 1

• Send the message with the new weight wc to the node at

distance ρ in the direction the message was received

Figure 2: Algorithm 1 (all node addresses are mod m)
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Case 1: ORIGINATING NODE

For every dimension i = 1, 2, . . . , r send the message with weight (i, wci)

to all the adjacent nodes. The weight wci is to be calculated according to

Case 1 of Algorithm 1, applied to the circulant graph of the ith dimension

Case 2: THE OTHER NODES ((wd,wc) is the weight of the received message)

• If (wc > 1) then

Within dimension wd send the message with weight (wd,wc − 1)

following Case 2 of Algorithm 1

• If (wd > 1) then

For every dimension i = 1, 2, . . . , wd− 1 send the message with

weight (i, wci) to the corresponding adjacent nodes. The weight wci

is to be calculated according to Case 1 of Algorithm 1, applied to the

circulant graph of the ith dimension

Figure 4: Algorithm 2
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