The SMart Autonomous Storage (SMAS) System*

V. V. Dimakopoulos, A. Kinalis, S. Mastrogiannakis, F. Pitoura

Computer Science Department,

University of Ioannina, GR 45110 Ioannina, Greece

E-mail: {dimako, pitoura}@cs.uoi.gr

Abstract

The increasing demand for storage capacity and through-
put has generated a need for storage architectures that
scale their processing power with the growing size of
datasets. In this paper, we give an overview of the SMAS
system that employs network attached disks with process-
ing capabilities. In the SMAS system, users can deploy
and execute code at the disk. At-the-disk executed ap-
plication code is written in a stream-based language that
enforces code security and bounds the code’s memory re-
quirements. The SMAS disk’s system software provides
basic support for process scheduling and memory man-
agement. We present an initial implementation of the
system and report performance results that validate our
approach.

1 Introduction

There is an increasing demand for storage capacity and
storage throughput [4]. This demand is driven largely by
new data types such as video data and satellite images
as well as the growing use of the Internet and the web
that generate and transmit rapidly evolving datasets.

Recent disks embed powerful ASIC designs in order to
deliver their high bandwidth; such chips are capable of
doing considerable processing. In addition, current disks
have caches in the order of MB (for example, Seagate’s
Cheetah has up to 16 MB of cache). This suggests that
data can be processed locally at the disk. Such disks are
called active [1, 5] or intelligent [3] disks. They have been
proposed as a cheap replacement to expensive disks; they
communicate with the host processor through the local
bus (typically SCSI or Fiber Channel). It is envisioned
that they will be able to relieve the host processor by
acquiring and executing part of the application very close
to the data.

Active disks have been mainly envisioned as attach-
ments to the local bus of a server [6]. This would how-
ever require expensive server architectures especially if

IWork supported in part by the Hellenic General Secretariat of
Research and Technology through grant PENED-99/495.

one also considers the resources required for supporting
multiple interconnected active disks. Furthermore, it is
essential, from a practical point of view, to investigate
devices that do not require alterations to a given infras-
tructure. To this end, a smart disk should use part of
its processing capabilities to support a simple TCP/IP
stack and attach itself on a local network.

In this paper, we present the SMart Autonomous Stor-
age (SMAS) system and give an overview of its imple-
mentation. SMAS devices are autonomous (i.e. network-
ready) disks that have significant processing capabilities
like active disks. SMAS disks reduce the communication
overhead of transmitting large volumes of data over the
network by executing data-intensive applications at the
disk. In addition, they take processing load off the client
by undertaking part of the computation.

2 The SmAS System API

SMAS disks are network-attached disks with process-
ing power. In order for the disk to be employed seam-
lessly in an existing network, all standard operations are
supported (open(), read(), write(), lseek() etc.); a
SMAS disk can easily replace a conventional NF'S server.

Client applications for such a system consist of two
portions: the client-side part, executed at the client,
and the SMAS-side part, executed at the smart disk.
The latter is called a filter, and is written in a special-
purpose, C-like language, which we will present shortly.
In general, filters are expected to implement processing
that reduces the volume of data to be transfered from
the disk to the client. For example, instead of trans-
ferring the whole file at the client side and performing
an SQL-select there, a filter may perform an SQL-select
locally and thus communicate only the selected data to
the application.

Filters are cross-compiled at the client’s side. Their
executable code can then be downloaded (‘registered’) to
the smart disk. The client-side portion of the application
invokes filters through a specific series of function calls.
The filter code is executed at the disk and relevant data
are passed to the client-side program.

#define FILENAME "smas.cs.uoi.gr:testfiles/test1"
typedef struct
{ int key; char data[96]; } MyRecord;

main()

{
int fd, k, filtid, rsize;
MyRecord r;

/* PART1: create a sample file */

fd = smas_open(FILENAME, O_CREAT | O_RDWR);
for (k = 0; k < 1000; k++)
{
r = randomrecord(); /* Creates a record */
smas_write(fd, (char *) &r, sizeof(r));
}

smas_close(£d);
/* PART2: filter the records */

fd = smas_open(FILENAME, O_RDONLY) ;

/* Download and utilize a filter */

filtid = smas_registerfilter(fd, "simpleselect");
smas_applyfilter(fd, filtid);

while (smas_nextrec(fd, &r, &rsize) > 0)
showrecord(r); /* Get & show records */

Figure 1: An example application

2.1 An example application

In Fig. 1, we present an example of a simple application
to demonstrate the SMAS API. The first part of the
application creates a file with 100-byte records at the
smart disk using standard file operations.

The second part of the application demonstrates the
use of a SMAS filter. The precompiled “simpleselect”
filter is first registered at (i.e. downloaded to) the smart
disk and then utilized (smas_applyfilter()) in order
to process data.

The application accesses the file records that satisfy
the filter’s condition one-at-a-time through the repeti-
tive use of smas nextrec(). Each smas nextrec() call
returns to the client the next record that satisfies the
“simpleselect” filter’s condition. This is exactly the
point where SMAS disks reveal their potential: not all
records are passed back to the application; only those
accepted by the filter. This has the desired effect of re-
ducing the traffic on the network.

2.2 Filters

Filters are coded in a special-purpose language which
resembles C to a high degree. However, there are par-
ticular requirements from the filters structure, which are
enforced by the filter compiler. In particular, filters are
not allowed to utilize pointers and/or dynamically al-

typedef struct
{ int key; char str[96]; } myrec;

init() { }
body (myrec r)
{

if (r.key <= 15)
pass(r, sizeof(r));
else
nopass () ;

}
tini() { }

Figure 2: An example filter

locate memory; all needed storage must be declared in
the form of global variables. This way, apart from the
obvious security benefits, we can statically calculate the
exact memory requirements of each filter.

A filter consists of four parts. The first part includes
all (if any) variable declarations, which indirectly de-
termine the filter’s memory consumption. The second
part, init() is a function which is executed upon a
smas_applyfilter() request from the client. Its main
purpose is to initialize the filter’s variables.

Each subsequent smas nextrec() call from the
client’s part causes the disk to execute the third part of
the filter, its body () function. Notice that filters cannot
directly access file data; the disk reads the next record
from the file and hands it over to filter’s body () for pro-
cessing. The filter then decides whether the record is
acceptable or not, i.e., whether it satisfies some condi-
tion (e.g., in Fig. 2 whether the value of the key is smaller
than or equal to 15). If the record is acceptable, the filter
specifies exactly what data to send back to the client’s
side through the use of the pass() primitive. If the
record is unacceptable, an invocation of the nopass()
primitive results is a new execution of body() on the
next record.

Finally, the fourth part of the filter, its tini () func-
tion, is called by the disk’s system software upon meeting
an EOF condition.

The simpleselect filter for our example application
is shown in Fig. 2.

3 SmAS Implementation

‘We have implemented an initial prototype of a SMAS de-
vice and its programming interface (API) using an old
Pentium-based PC, running at 166 MHz, with 32MB of
memory and with a minimized version of Linux as its
operating system. The hardware components are analo-
gous to that found inside a present-day disk only much
more economical.

The SMAS system software (SMASOS) is written in
C and is running as a Linux daemon, awaiting at a par-
ticular port for client connections. Communication is
handled by the standard sockets library.

The services offered by SMASOS, except for network-
ing, are simple process (filter) management and memory
management. Process management is required in order
to schedule the filter execution, since many clients may
be actively connected to the SMAS device. A simple
run-to-completion policy is currently used, but we also
study the effects of other scheduling strategies.

Memory management is probably the most important
service since disk’s memory is usually its most limited re-
source. In our implementation, SMASOS acquires, upon
startup, a 16MB memory chunk, and uses it for imple-
menting its own memory management. We use a first-fit
memory allocation strategy.

o
¥
I
&
=}
=}
=2
3
(=9
=
a
I
=
g
8
=

smas Server

smas Client

Figure 3: The SMAS Architecture

The SMAS system is complemented with smasfc, the
filter compiler. The compiler we have implemented,
takes filter code written in the C-like language that we
described earlier and produces an intermediate file of
standard C code. The intermediate file is, then, cross-
compiled to produce the final filter code. This filter code
is in the Linux shared library format; it can be directly
downloaded to the SMAS disk at run time, and be exe-
cuted on demand.

The overall architecture of SMAS is depicted in Fig. 3.

4 Experiments and Performance

We have tested our implementation exhaustively both
for asserting its functional correctness as well as for
studying its performance potential. SMAS performance
was compared to the traditional NFS approach. The re-
sults we report here are (a) for an SQL-select like filter
that returns all records that satisfy some condition (such
as the example filter in Fig. 2) and (b) for a simple im-
plementation of the grep facility which searches a text
file for a particular pattern.

4.1 Experiment 1: select

Let s be the selectivity factor, that is the probability
that a data record is selected by the SQL-select filter. If
a file contains N records then the SMAS code will only
deliver sV of them to the application. We generated files
that would result in prescribed values for the selectivity
factor s (between 10% and 100%).

If Tspass and Typg are the corresponding running
times of the two approaches, the observed speedup is de-
fined as TNFS/TSMASS and is plotted in Fig. 4, for var-
ious record sizes. We experimented for file sizes in the
area of 100MB. The performance results show clearly
that the SMAS version is able to deliver superior per-
formance, especially for smaller selectivity values. This
fact should actually be expected because of the reduced
network communication.

To determine the socket messaging overheads we ex-
perimented with various record sizes. It can be seen
from the figure that the performance did not exhibit a
wide variance; however, the smaller the record size the
smaller the observed speedup. This is due to the headers
inserted by the socket library to a message; these extra
bytes account for a smaller percentage as the message
size grows, thus improving performance.

T T
"4K_recsize" —+—
"6K_recsize" —<—
"8K_recsize" —x—

"10K_recsize" —&—

3.5

Speedup over NFS

05 L L L L L L L L
10 20 30 40 50 60 70 80 90 100

Selectivity (%)

Figure 4: Performance of the select filter

4.2 Experiment 2: the grep facility

We examined files of sizes 100MB and 200MB stored at
the server’s disk, consisting of 100-character lines. The
search pattern was 10-characters long. Our implemen-
tation of the grep facility was rather straightforward, it
did not take advantage of any advanced string matching
algorithms. Performance results are depicted in Fig. 5.
The experiment demonstrates SMAS scalability: for file
sizes of 100MB, SMAS grep is about 3 times faster than
the system grep; for files sizes of 200MB, SMAS grep
becomes more than 5 times faster than the system grep.

o
=3
=]

T T
SMAS grep, filesize = 100MB —+—
SMAS grep, filesize = 200MB —<—

system grep, filesize = 100MB ---%--- |

system grep, filesize = 200MB ---&---

IS

a

=3
T

IS

S

S
T
!

time (sec)
N w w
a S &
S S} S
T T T
L L L

N
8
3

T
*
.

=

a

=]
T
!

.
a o
=] S

\\
!

o

L L L L
0 2000 4000 6000 8000 10000
pattern appearances

Figure 5: Performance of the grep facility

5 Related Work

A stream-based programming model for disklets (i.e.,
disk-resident code) is presented in [6, 1, 7]. Their active
disks are attached to the local bus of the host proces-
sor. The disklet programming model is similar to ours.
They justify their design decisions by providing a de-
tailed simulation of active disks. In contrast, our focus
is on building an actual system which introduces practi-
cal restrictions. The IDISKs (Intelligent disks) architec-
ture proposed in [3] is based on replacing the nodes in a
shared-nothing cluster server with intelligent disks that
is disks capable of local processing. The main difference
in the IDISKs architecture is that the disks are directly
connected with each other via switches thus exhibiting
much higher bandwidth disk-to-disk communication.

The architecture closest to SMAS is the active disks of
[6]. The authors of [5] concentrate on developing a num-
ber of applications to validate the active disks approach.
Their analytical and experimental results promise linear
speed-ups in disk arrays of hundreds of active disks for
certain data-intensive applications. Instead, the alterna-
tive of directly attaching a number of traditional SCSI
disks to the local bus of a single server machine caused
the server CPU or the interconnect bandwidth to satu-
rate even when a small number of disks (less that ten)
was attached.

6 Summary and Future Work

In this paper, we presented the SMAS network attached
disk architecture with programming functionality on the
disk. As compared to a classical file server, SMAS of-
fers significant advantages. First of all, the cost is much
smaller, so that one could purchase a number of smart
disks for the price of a mid-sized server. Second, SMAS
devices have dedicated processing on the disk that pro-

vides for efficient distributed processing. A server on the
other hand is a general purpose machine that has to deal
with many other things apart from file processing.

Our work currently focuses on the development of effi-
cient operating system support at the disk. In particular,
we are looking into efficient scheduling techniques for the
SMAS filters. We are working on a new SMASOS imple-
mentation which is based on modifying the GNU Hurd
operating system [2]. Hurd is a collection of servers that
run on the Mach microkernel to implement file systems,
network protocols, file access control, and other features
that are implemented by the Unix or similar kernels.
We have chosen Hurd over other available kernels such
as Linux because Hurd is easily extensible and modular.
In the future, we intend to investigate optimizations for
pipelining disk access, processing at the disk and com-
munication.

References

[1] A. Acharya, M. Uysal, and J. Saltz. Active disks:
programming model, algorithms and evaluation.
In ASPLOS 98, 8th Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 212-217, San Jose, California, Oc-
tober 1998.

[2] HURD Operating System http://www.gnu.org/
software /hurd/

[3] K. Keeton, D. A. Patterson, and J. M. Heller-
stein. A case for intelligent disks (idisks). SIGMOD
Record, 27(3):42-52, July 1998.

[4] G. Lawton. Storage technology takes central state.
IEEE Computer, 32(11), November 1999.

[5] E. Riedel, G. Gibson, and C. Faloutsos. Active
storage for large-scale data mining and multimedia.
In VLDB ’98, 24th Int’l Conference on Very Large
Data Bases, pages 62-73, New York, USA, August
1998.

[6] M. Uysal, A. Acharya, and J. Saltz. An evalua-
tion of architectural alternatives for rapidly growing
datasets: active disks, clusters, SMPs. Technical re-
port, Dept. of Computer Science, University of Cal-
ifornia, Santa Barbara, Technical Report TRCS98-
27, October 1998.

[7] M. Uysal, A. Acharya, and J. Saltz. Evaluation
of active disks for decision support databases. In
HPCA, 2000.

