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Abstract
The recent OpenMP device constructs enable application writ-
ers to utilize the host CPUs along with other attached com-
putational resources, in an intuitive and productive manner.
These target-related directives offload portions of the pro-
gram code (kernels) to any of the available computational de-
vices; the kernels themselves can take advantage of the multi-
plicity of processing elements within the target device by em-
ploying OpenMP constructs. However, most co-processors
or accelerators, especially embedded ones, have limited re-
sources. This severely constrains the extend of OpenMP sup-
port that can be implemented within a device. A usual design
decision is to support OpenMP partially, in effect hindering
the full exploitation of the device capabilities through a high-
level programming model. In this work, we present a novel
solution to this problem for embedded multicores. We pro-
pose a compiler-assisted, adaptive runtime system organiza-
tion, which generates application-specific support by imple-
menting only the OpenMP functionality required each time.
Full OpenMP support is available if needed. However, in the
usual scenario where kernels do not require complex OpenMP
functionalities, our method can lead to dramatically reduced
executable sizes. Our proposal is demonstrated by a complete
implementation on the popular Parallella board.

1 Introduction
Contemporary systems, from plain PCs to high-performance
supercomputers are heterogeneous in nature, including a mix
of different processor and memory hierarchies within the
same system. Responding to the ever increasing demand of
end-user applications for computational power and multitask-
ing, embedded systems have also joined the heterogeneous
paradigm trend. However, in order to exploit the computation
capabilities of a heterogeneous system efficiently, significant
programmer effort is required. The common case is to use
low-level SDKs in order to optimize portions of an application
with respect to the specific hardware unit features. This poses
significant challenges, even for expert programmers. More-
over, requiring different code bases for the host CPU and the
accelerator devices increases code complexity and decreases
portability.

Recently, OpenMP 4 [20], the de facto parallel program-
ming model for shared memory systems, has come to embrace
platforms based on a heterogeneous collection of processors,

co-processors and accelerators; it has been augmented with
new directives which allow offloading portions of the applica-
tion code onto the processing elements of an attached device.
One important and desirable characteristic of OpenMP is that
the application blends the host and the device code parts in a
unified and seamless way.

The new device extensions allow full OpenMP functional-
ity within the regions of code executed by a selected device
(also known as kernels). This provides flexibility and ease
of use regarding parallelization expressiveness. However, it
requires an OpenMP infrastructure within the co-processor.
In the general case, implementing such an infrastructure is a
non-trivial task. Supporting the required functionality, which
was originally designed for shared-memory multiprocessors,
can be a very difficult procedure due to limited resources.
As a result, common approaches are to either provide partial
OpenMP support (i.e. handle a subset of the directives on the
device side) or implement full but simplified OpenMP facili-
ties so as to avoid consuming the limited amount of resources.
For example, in devices such as embedded multicores or mul-
ticore systems-on-chip (MCSoC), the small amount of on-
chip memory and hardware synchronizers must accommo-
date both the OpenMP runtime libraries and the application
code/data. This holds even in cases where particular appli-
cation kernels do not make use of all the provided OpenMP
functionality.

In this paper we propose a novel runtime system (RTS) or-
ganization designed to work with an OpenMP infrastructure
which targets the aforementioned problems. Instead of hav-
ing a single monolithic OpenMP RTS for a given device, we
propose an adaptive RTS architecture which implements only
the features required by a particular application. More specifi-
cally, the compiler analyzes the kernels that are to be offloaded
to the device, and provides metrics which are later used to se-
lect a particular RTS configuration tailored to the needs of the
application. Our technique is quite general and can be also
utilized in the OpenMP runtime system executing on the host.

To the best of our knowledge this is the first time an
adaptive, application-specific OpenMP runtime system is pro-
posed. As such, we also present a concrete implementation
of our ideas on the popular Parallella-16 board, a credit-card
sized computer with two processors (a dual-core host and a
16-core accelerator). The OMPi OpenMP compiler [10] in-
frastructure was modified to analyze the kernels code and to
generate optimized runtime library versions according to the
results of the analysis. Our experimentation with a plethora of
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application codes confirms the benefits of our strategy, which
in some cases resulted in executable size reductions of more
than 30%.

1.1 Related Work
OpenMP was considered as a possible model for accelerators
or multicore embedded systems long before the introduction
of its recent device extensions [6, 8, 16, 17, 21]. All these
works refer to supporting older versions of OpenMP on a sin-
gle processor. That is, the multicore CPU plays the role of
the host in OpenMP 4 terminology and as such, they do not
address the heterogeneous host/device execution model.

In order to provide a unified model for systems consisting
of a host and a set of attached devices, extensions to OpenMP
were proposed before the release of OpenMP 4. Cabrera et
al in [7] propose extensions to provide a high level API for
executing code on heterogeneous systems with FPGA-based
accelerators. In [2] Agathos et al present an implementation
of OpenMP on the STHORM accelerator. The innovative fea-
ture of their design is the deployment of the OpenMP model
both at the host and the fabric sides in a seamless way, pro-
viding an interface similar to the device model of OpenMP 4
for offloading and executing OpenMP kernels on the MPSoC.
Other directive-based approaches for offloading code onto at-
tached devices include HMPP [11] and OMPSs [13]. It should
be noted that in all these works, with the exception of [2], the
offloaded portions of the code did not contain any OpenMP
functionality.

Support for OpenMP 4.0 devices is fairly limited both in
the compiler and the device sides. Details of the offload pro-
cedure in the Intel ICC compiler are given in [19]. Preliminary
support for the OpenMP target construct is also available
in the ROSE compiler. Chunhua et al [9] discuss their expe-
riences on implementing a prototype called HOMP on top of
the ROSE compiler, which generates code for CUDA devices.
Bertolli et al [4] propose a method to coordinate threads in
an NVIDIA GPU using a single kernel as opposed to multi-
ple kernels; they also discuss how their methods could be
implemented as part of the LLVM compiler implementation
of OpenMP 4.0. In [18] the authors present their implemen-
tation of OpenMP 4.0 on a TI Keystone II, where they use
the DSP cores as devices to offload code to. Finally, Agathos
et al in [3] present the first implementation of the OpenMP
4.0 accelerator directives for the Parallella board [1], a credit-
card sized multicore system consisting of a dual-core ARM
host processor and a 16-core Epiphany co-processor. All the
these works either propose a partial OpenMP implementation
or a monolithic full implementation, which may consume the
limited system resources. This is in contrast to our proposal,
where adaptive RTS configurations are utilized for different
applications, based on compiler instrumentation.

2 The OpenMP Device Model
One of the key features of version 4.0 of the OpenMP API
[20] is the introduction of a state-of-the-art, platform-agnostic
model for heterogeneous parallel programming. The pro-
grammer simply marks portions of the (unified) source code

to be offloaded to a particular device; the details of data and
code allocations, mappings and movements are orchestrated
by the compiler. The OpenMP device model requires that the
target devices are connected to a host processor which is also
considered a device. The program execution follows a host-
centric model; it starts executing at the host side until one of
the newly introduced constructs is met, which may trigger the
creation of data environments and the execution of a specified
portion of code on a given device.

In order to transfer data and control flow to a device, the
target directive is used. This directive has an associated
structured block representing the code (kernel) to be offloaded
and executed directly on the device. During the execution of
the kernel the host task waits until the device finishes and re-
turns back the control. Each target directive may contain
its own data environment, that is a set of variables accessible
in some way by both the host and the device, initialized when
the kernel starts and freed when the kernel ends its execu-
tion. A device data environment can be manipulated through
map clauses which determine how the specified variables are
handled within the data environment (alloc, from, to and
tofrom map types).

Data movements between the host and the devices may be
the cause of large delays during the launch or the completion
of the kernels. In order to avoid repetitive creation and dele-
tion of data environments, the target data directive allows
the definition of a data environment which persists among suc-
cessive kernel executions. Furthermore, the programmer can
use the target update directive between successive ker-
nel offloads to selectively update data values that reside in the
host and the device data environments. Finally, the declare
target directive specifies that the associated set of vari-
ables and functions are mapped to a device. In essence, the
declared variables are allocated in the global scope of the
target device, and their lifetime equals the program execution
time. The code of the declared functions is compiled to
produce device binaries accessible from the target regions.

2.1 OpenMP on the Device Side

A major characteristic regarding the kernels code is that they
can utilize arbitrary OpenMP functionality, with no restric-
tions whatsoever (except that they cannot offload code to other
devices). This implies that any code that adheres to v3.1 of
the OpenMP specifications can potentially form a legal ker-
nel. Thus, the constructs for dynamically creating a team of
threads, sharing work among them (for loops, sections),
using explicit tasking, even employing nested parallelism, are
all allowed within a target region. This flexibility makes
OpenMP a very powerful parallel programming model for tak-
ing advantage of all available compute resources of a hetero-
geneous system in a intuitive and efficient manner. Ideally any
OpenMP program originally written for a shared memory sys-
tem, can easily offload some of its computationally intensive
parts onto specialized hardware.

To make all the above possible, the attached devices are
effectively required to provide complete OpenMP support.
However, OpenMP was originally designed for shared mem-
ory multiprocessors, i.e. systems with abundant resources



(memory, caches, OS). On the other hand, embedded or at-
tached accelerators have different architectures and are de-
signed to serve different purposes. For example, the organi-
zation of some accelerators aims at streaming applications or
may be better suited to speed up matrix-based computations.
Co-processors are synonymous to hardware diversity, since
each product is equipped with specialized hardware modules
and targets a specific class of applications.

With some notable exceptions such as the Xeon Phi ac-
celerator [19], a common characteristic of the various types
of co-processors is that they offer a limited amount of re-
sources. Hence, the challenges posed when implementing
an OpenMP RTS for such devices depend on these resource
limitations. The absence of a POSIX-like interface for ma-
nipulating threads may add design difficulties or considerable
offloading costs regarding dynamic or nested parallelism. Ar-
guably, one of the most important limitations is the size of
the available memory; small private or shared memories at
the co-processor cores impose restrictions regarding the ker-
nel executable size and/or the actual application data. This is
particularly pronounced in the absence of a fast global mem-
ory; the kernel code has to include the OpenMP RTS, further
limiting the available memory space. The Epiphany accelera-
tor used in the Parallella [1] is an example of an embedded ac-
celerator with severely limited memory resources; each core
is equipped with just 32KiB of fast local memory. While it
can also access a larger 32MiB memory shared with the host
processor, its access times are almost an order of magnitude
larger.

There are two approaches for supporting OpenMP on a de-
vice with limited resources:

• Partial support: Partial support of the constructs is a
pragmatic solution that works in practical situations [8,9,
18]. For example, there is no point in trying to implement
an optimized tasking infrastructure for a GPGPU which
lacks fine grain synchronization primitives. Of course,
partial support minimizes the expressiveness of the pro-
gramming environment. The application code may have
to be redesigned to match the availability of OpenMP
constructs, a fact that also reduces code portability and
re-usability.

• Full support: Some works [14, 15] choose to support
OpenMP fully on the device side. This strategy pro-
vides a powerful tool for developing parallel applica-
tions based on a high level hardware abstraction. Nev-
ertheless, the design of a complete OpenMP RTS is not
a trivial task. Furthermore, the hardware limitations may
lead to poor performance for some of the OpenMP con-
structs [3, 4, 9].

3 Proposed System
In this work we propose a general methodology which can
be utilized to offer flexible and adaptive OpenMP runtime
support. The goal is the development of an RTS architecture
which implements only the OpenMP features required by each
particular application. That is, it results in an application-
specific RTS configuration. This is possible because of a key

Figure 1: Compilation system for adaptive, kernel-specific
OpenMP RTSs

observation: all kernel code must lie within a single source
file. This enables a compiler to analyze the behavior of the
kernel with respect to OpenMP constructs, through detailed
interprocedural analysis. Thus, it can decide exactly what
constructs are used, their nesting levels, the types of employed
loop schedules, etc.

The proposed system is shown in Fig. 1. The compiler is re-
sponsible for analyzing and transforming the code. It takes as
input an OpenMP program with target-related constructs.
The output is a set of files; the main one is to be executed on
the host and the other files represent the kernels to be executed
on the devices. Along with each kernel, a set of metrics gath-
ered during its analysis are output. The metrics are passed to
the mapper. The latter is responsible for choosing the most
efficient runtime configuration for the given metrics.

3.1 Kernel Analysis
An OpenMP kernel is a block of code enclosed lexically
within a target construct. The actual kernel region in-
cludes any code in called routines. Such routines are defined
within declare target constructs and are offloaded with
the kernel. The compiler has thus access to the whole kernel
region and can employ inter-procedural analysis in order to
analyze the entire dynamic extend of the kernel.

The compiler can build the call graph of each kernel and
visit each of the called routines. Our thesis it that the compiler
can then extract information about the employed OpenMP
constructs (if any), and thus determine the actual OpenMP
functionality that is necessary for the execution of each par-
ticular kernel. More often than not, a given kernel will not re-
quire the entire OpenMP functionality but a rather small por-
tion of it. Given this information, the offloaded kernel can be
accompanied by a suitable subset of the OpenMP runtime li-
brary, potentially decreasing the total offloaded footprint. For
example, kernel analysis may reveal that there are no task
constructs utilized, thus there is no need for the RTS to pro-
vide a mechanism for the support of explicit tasking.

3.2 Mapper: Utilizing Compiler Metrics
The set of metrics generated by the compiler are passed to the
mapper module which is responsible for choosing the most



appropriate runtime “flavor”. The RTS library which is to be
linked with the kernel code consists of some RTS-specific data
along with the code implementing the required functionalities.
The internal data are related to:

• the execution entities, represented mainly by some kind
of thread abstraction and

• the implicit (or explicit) tasks executed by the threads

The smaller the total footprint of the RTS library, the more
beneficial would be in cases where the cores of a co-processor
are equipped with small amounts of local memory.

Implementing a general, full fledged RTS which is capa-
ble of offering OpenMP support is a typical approach in the
bibliography. What we propose here is to utilize custom,
application-driven RTSs, that only supply the functionality re-
quired by the particular application. In Fig. 1 the mapper is the
module responsible for this: based on the application charac-
teristics as depicted by the compiler-generated metrics, it op-
timizes the RTS by tuning its internal data and functionalities
to best fit the particular application.

Possible realizations of specialized RTS libraries include:

• A fixed set of pre-compiled libraries. The set of libraries
is selected to address specific classes of applications, as
derived from typical use-case scenarios. For example,
there can exist a library that does not provide tasking
support. Another possibility would be a trimmed down
library that only supports a selected work-sharing con-
struct (e.g. for loops). The mapper then undertakes the
task of mapping the provided kernel metrics to the set
of available libraries; the most appropriate one should be
selected so as to minimize the offered OpenMP function-
ality while at same time covering all kernel requirements.

• A set of on-the-fly parameterizable libraries. Because
not all applications can benefit from the default values of
the runtime parameters, the mapper can choose to tune
some parameters according to kernel characteristics and
build different library flavors. For example, the barrier
data structures can be tuned to service a specific number
of threads, if this information is known at compile time.
Of course, parametrization requires recompiling and thus
custom libraries need to be built at the compile-time of
the application.

4 Implementation in the OMPi Com-
piler

The OMPi compiler [10] is a lightweight OpenMP C infras-
tructure, composed of a source-to-source translator and a flex-
ible, modular RTS. OMPi is an open source project and targets
general-purpose SMPs and multicore platforms. It adheres to
OpenMP V3.1 specifications, while also supporting a number
of V4.0/V4.5 constructs including the target-related device
ones.

The compilation process for an accelerator-assisted pro-
gram is shown in Fig. 2. The compiler takes as input C
code with OpenMP directives, and after the pre-processing

Figure 2: OMPi compilation chain

and transformation steps, it outputs a multi-threaded C file for
executing on the host and another set of intermediate files,
one for each kernel (i.e. one for each target region in the
user program). Every intermediate file has been augmented
with calls to the RTS of the corresponding device. In the last
stage, the intermediate files are compiled with the appropriate
system compiler in order to provide the final executables. To
implement the proposed mechanism, this last stage is where
the mapper module is inserted. The intermediate files must
carry the deduced metrics so as to guide the mapper. Finally,
we modified the compiler and equipped it with new kernel
analysis capabilities in order to derive the desired metrics.

4.1 Kernel Analysis
The analysis of the kernels is done at a high level. The whole
program is represented by an abstract syntax tree. Upon en-
countering an OpenMP target node, the compiler analyzes
its body and follows the chain of routine calls (if any) in or-
der to discover the OpenMP functionality required by this
particular kernel. To avoid visiting a routine multiple times
(since it may be called by multiple kernels), all routines de-
fined within declare target regions are analyzed before
any other program transformations. The compiler constructs
the call graph and traverses it; for each visited function f , the
following are some of the metrics currently gathered:

• The total number of OpenMP constructs

• The number of parallel constructs (N (f)
p ).

• The number of for loop (N (f)
l ), sections (N (f)

s ) and
single (N (f)

i ) constructs; a counter for the number
of constructs with nowait clauses is also maintained
(N (f)

nw ).

• The number of task constructs (N (f)
t ).

• The number of explicit barrier directives (N (f)
b ).

• The maximum level of parallelism (L(f)
p ).

All the metrics except the last one count the constructs en-
countered in the function itself. The parallelism nesting level
is determined from the function and all the functions called



by it as follows: If a function g is called by f at nesting level
lf→g , then the nested parallelism level for this particular call
is given by lf→g + L

(g)
p . The maximum parallelism level ob-

served for function f is given by:

L(f)
p = max

g called by f

{
lf→g + L(g)

p

}
.

Consequently, if for example L(f)
p = 1, there may be no need

to add support for nested parallelism to a kernel that calls
function f . If the compiler detects recursion, this particular
metric is disabled.

The gathered metrics are used at every encounter of a
target tree node during code transformations. Before actu-
ally transforming the construct, its body is analyzed in a sim-
ilar way as above, and the metrics are combined with the pre-
computed ones for every function called from the kernel. The
final set of metrics is stored in a table and the compiler pro-
ceeds to the transformation of the kernel body. During code
generation, the computed metrics for each target construct
are embedded into the corresponding kernel file as C language
comments, for passing them to the mapper.

4.2 A Concrete Target: The Epiphany Acceler-
ator

The Parallella-16 board is a popular 18-core credit card-sized
computer equipped with two processing modules; the main
CPU, a dual-core ARM Cortex A9 with 32 KiB L1 cache per
core and 512KiB shared L2 cache (built within a Zynq 7010
SoC), and an Epiphany-III 16-core CPU which is used as a co-
processor. The former runs Linux and uses virtual addresses
while the latter does not have an OS and uses a flat, unpro-
tected memory map. The Epiphany-III has a peak perfor-
mance of approximately 25 GFLOPS (single-precision) with
a maximum power dissipation of less than 2 Watt. The ARM
and the Epiphany use a 32 MiB portion of the system RAM
as shared memory which is physically addressable by both of
them.

A closer look at the architecture of the Epiphany reveals a
64 × 64 mesh interconnect, so in theory systems up to 4096
cores are possible. In Epiphany-III the chip is pinned on a
4 × 4 submesh of the virtual 64 × 64 mesh whose north-
west coordinates are (32, 8), as shown in Fig. 3. The chip
has four eLinks that may be used to interconnect it with other
chips. In the Parallella board version, the west eLink is inac-
tive and the east eLink is connected to the Zynq host. Each
Epiphany core (eCORE) is a 32-bit superscalar RISC proces-
sor, capable of performing single-precision floating point op-
erations, and owns 1 MiB of the total address space, which is
addressable by all cores. However it comes with just 32 KiB
of local scratchpad memory; in addition it is equipped with
two DMA engines. All memories are available through regular
load/store instructions by all eCOREs.

Currently OMPi supports most of the device directives of
OpenMP and is the first compiler to support the Epiphany
accelerator of the Parallella board. Here we present the key
aspects of the original RTS for the Epiphany; more details
can be found in [3]. It consists of two parts; the first is ex-

Figure 3: The Epiphany co-processor

ecuted at the host space and is used for controlling and ac-
cessing the Epiphany device. The second part is executed by
the Epiphany cores and provides support of OpenMP within
the device side. The communication between the two parts oc-
curs through the shared memory portion of the system RAM.
The eCOREs do not execute any operating system and there
is no provision for creating and handling dynamic parallelism
within the Epiphany chip.

The limited local memory of the device cores makes it im-
possible to fit sophisticated OpenMP RTS structures along-
side the application data. The original RTS started as a cus-
tomized version of the host OpenMP runtime library, care-
fully trimmed so as to minimize its memory footprint. The
coordination among the participating eCOREs occurs through
structures stored in the local memory of a team’s master core.
The synchronization mechanisms (locks and barriers) are cus-
tomized versions of those provided by the native libraries. The
tasking infrastructure is based on a simple blocking shared
queue which is also stored in the local memory of the team’s
master eCORE, for speed. On the other hand, the correspond-
ing data environments for each task are stored in the slower
shared memory area, due to space requirements.

This original RTS was used as a basis for the design of a set
of adjustable RTSs, each one specialized for a certain type of
kernels. For the rest of the text we will refer to the original
RTS as the Full RTS. It is built as a Linux static library, and is
linked with each offloaded kernel. It is organized as a collec-
tion of largely independent routines so that the system linker
can attach only the necessary ones with each kernel. However,
the complex relations between the internal data structures and
the routines usually force the linker to include sizable portions
of the library. As a result, the Full RTS has a relatively large
footprint, even when it accompanies an effectively empty ker-
nel [3]. Furthermore, because dynamic memory allocation is
not supported at the eCORE level, the RTS must reserve in
advance enough local space to cover the worst case. Conse-
quently, the actual local memory left for pure application data
is well below the 32 KiB available.



4.3 Runtime Flavors
Our strategy for implementing the proposed mechanism was
to create different library flavors, aiming to minimize the li-
brary footprint. In particular, based on detailed analysis of the
runtime organization, we identified three parts that contribute
the most both because of the size of the involved routines and
the size of the required data structures:

• Dynamic parallelism. A substantial amount of data and
routines are needed in order to support dynamic paral-
lelism within a kernel. In particular, beyond the data
structures needed for controlling parallel team mem-
bers, extra room is necessary for communicating with the
host processor. Furthermore, the thread synchronization
mechanisms, especially the barrier, consume additional
memory space. All this becomes more than doubled if a
second level of parallelism is to be supported. Support-
ing more than two levels is pointless.

• Worksharing. The OpenMP worksharing constructs
(single, for, sections) may have different
combinations of nowait, reduction, schedule,
collapse and ordered clauses. Supporting all of
them requires data structures with a large memory foot-
print. In practice, typical applications do not utilize all
possible variations. As a result, supporting specific com-
binations of the above constructs and clauses may poten-
tially benefit some kernel cases.

• Tasking. The tasking infrastructure for the Epiphany is
the module with the largest memory requirements. The
required functionalities include fine grain synchroniza-
tion so most of the runtime data must be stored in local
memories; in particular they are stored in the local mem-
ory of the team’s master eCORE. This means that the
local memory of one eCORE stores the tasking data of
all eCOREs. Because all eCOREs are candidates for team
masters, preallocated tasking structures must be present
in the local memories of all eCOREs. Furthermore, bar-
rier synchronization is charged with task execution duties
which impact overall performance.

Based on the above analysis of the original RTS, we de-
signed and implemented manually 12 different runtime fla-
vors. Each flavor is a modified version of the original,
trimmed to support a limited number of constructs. For each
flavor we removed the unnecessary internal data structures
and modified all routines respectively. The set of the RTSs
is as follows:

(1) NoOMP. This RTS does not support any OpenMP direc-
tives within the kernel; eCOREs execute sequential code.

(2) ParallelOnly. This RTS provides the mechanism for an
eCORE to form and deform a parallel team. No other
OpenMP functionality is supported.

(3) ParReduction. This is an extension of the previous one,
and implements the reduction clause.

(4) ParCritical. This RTS extends (2) and allows only
the critical synchronization construct between the
eCOREs of a parallel team.

(5) ForStatic. This is the ParallelOnly RTS where the team
members can also utilize the for worksharing construct.
Only the static schedule is supported. No other work-
sharing constructs are offered.

(6) ForOrdered. This extends the previous one by adding the
ability to utilize the ordered clause of the for directive.

(7) SingleOnly. Here we extend the ParallelOnly flavor by
supporting only the single worksharing construct.

(8) NoTasks. We developed this RTS for kernels with no ex-
plicit tasks. The rest of the OpenMP functionality (e.g.
worksharing, synchronization, etc) is present.

(9) BlockingOnly. This is an almost complete OpenMP RTS
but the support for nowait worksharing regions is dis-
abled so as to reduce the footprint of the related structures.

(10) NoTasksBO. We added a variation of the BlockingOnly fla-
vor where the tasking support has been removed.

(11) TasksNoICVs. This RTS provides support for teams of
eCOREs that can create explicit tasks. It is assumed that
per-task ICVs are kept unmodified and thus can be omitted
from the task descriptor of all but the initial task.

(12) Full. This is the original RTS.

The above set does not cover all possible use cases, i.e. it
does not include all possible combinations of OpenMP con-
structs. Instead it was guided by common sense for support-
ing usual application scenarios. Anyway, our goal is to prove
the potential of the proposed mechanism, and not to derive all
possible runtime flavors for all possible kernels.

In all cases, the RTS routines were carefully re-implemented
to offer only the required support. Barrier routines constitute
a characteristic example; in a complete OpenMP runtime sys-
tem a barrier has to synchronize team threads and also act
as a task scheduling point. In all flavors but BlockingOnly,
TasksNoICVs and Full there is no tasking support and con-
sequently barriers were simplified to handle only thread syn-
chronization.

The mapper imports the set of metrics provided by the com-
piler and uses them in order to choose the most appropriate
RTS flavor to be linked with a kernel. The mapper is designed
to work exclusively with the specific device (Epiphany-III).
This means that the mapper is aware of the characteristics of
the 12 RTS flavors described in the previous section and maps
the compiler metrics onto them. The mapper operation can be
summarized in two steps: First, it reads the metrics generated
by the compiler and decides the RTS flavor to be used; then,
it parametrizes (if needed) the chosen RTS and compiles its
sources to provide the final binary of the library.

Here is an overview of the decision making mechanism of
the first step: RTS (1) is chosen to accompany kernels which
do not include OpenMP constructs. Based on the tasking met-
rics, RTSs (9), (11) or (12) are used when tasks are present;
the actual choice depends on the type of worksharing regions
observed. If no explicit tasks are used RTSs (2)-(8) and (10)
are candidates. The decision is driven by the presence of
parallel, reduction and worksharing constructs.



5 Evaluation

To evaluate our proposed method, we used the Parallella-
16 SKU-A101020 board, which comes with standard periph-
eral ports such as USB, Ethernet, HDMI, GPIO, etc. and is
equipped with a dual-core ARM Cortex A9, which is the host
and an Epiphany-III 16-core co-processor, considered as our
device. All common programming tools are available for the
ARM host processor. For the Epiphany, a Software Develop-
ment Kit is available (eSDK), which includes a C compiler
and runtime libraries for both the host (eHAL) and the co-
processor (eLIB). We used eSDK v5.13.9.10 which includes
the GCC and E-GCC compilers for the host and the Epiphany
executables respectively.

For our experiments we use as a reference the Full RTS (12)
with the default parameters, and compare it with the optimized
RTSs resulting from the combination of the kernel analysis and
the mapper selection. The kernels were compiled with “-O3
-funroll-loops” flags and we used the e-size eSDK tool to
examine the produced ELF object files.

The first set of tests included a modified version of the EPCC
microbenchmark suite [5] where their basic routines are off-
loaded through target directives. These benchmarks are
intended for measuring the overheads of specific constructs;
we utilized them to exhibit possible size benefits for the pro-
duced kernels. We present a representative sample of re-
sults pertaining to the following benchmarks: barrier, for
with static schedule, critical, single, for with the
ordered clause, and locks.

Next, we implemented three simple applications. The first
one is the scenario of a kernel which does not include any
OpenMP functionality at all. In practice, this is an empty
kernel containing only one assignment instruction. The sec-
ond one is the iterative computation of π = 3.14159, based
on the trapezoid rule with 2,000,000 intervals, and using an
OpenMP kernel which spawns a parallel team of 16 threads.
The third application is a modified version of the NQueens
task benchmark, taken from the Barcelona OpenMP Tasks
Suite [12]. This application computes all solutions of the N -
queens placement problem on an N × N chessboard, so that
none of the queens threatens any other. Due to the severe
memory limitations of the Epiphany, we considered the man-
ual cut-off version of the benchmark, where the nested pro-
duction of tasks stops at a given depth. We present the results
for N = 12 queens, and a cut-off value of 2, where a total of
144 tasks are produced.

Our experimentation concluded with two more complex ap-
plications. The first one is the well-known Conway’s Game
of Life which is one of the available Parallella code examples.
The original code is rather simplistic and refers to a 4 × 4
field of cells. We implemented a more sophisticated version,
which is based on an 16×C field, parallelized with OpenMP.
The program code is offloaded as a target region, with the
initial field array residing in shared memory. Each core starts
by bringing its assigned field row along with the next and the
previous one, to its local memory for speed. From then on, it
operates exclusively on local data. The value of C (the num-
ber of columns) depends on the available local space. For the
Full RTS we were able to fit fields with C = 184 columns

Table 1: Kernel analysis
Application Computed metrics
Mandelbrot Np = 1, Nb = 1, Lp = 1
Pi calculation Np = 1, Nred = 1, Lp = 1
Game of Life Np = 1, Nf = 1, Nb = 4, Lp = 1
NQueens Np = 1, Nt = 1, Lp = 1

Table 2: Elf sizes (bytes)
Application Full RTS Optimized RTS Reduction
Empty kernel 8648 2252 (NoOMP ) 73.96%
Mandelbrot 13724 9620 (ParallelOnly) 29.90%
Pi calculation 12744 8864 (ParReduction) 30.45%
Game of Life 15412 11320 (ForStatic ) 26.55%
NQueens 20908 19148 (TasksNoICVs ) 8.42%
EPCC-barrier 12316 8268 (ParallelOnly) 32.87%
EPCC-for-static 14744 10992 (ForStatic ) 25.45%
EPCC-critical 13184 9420 (ParCritical ) 28.55%
EPCC-single 12768 8944 (SingleOnly ) 29.95%
EPCC-ordered 14704 10992 (ForOrdered ) 25.24%
EPCC-locks 12932 8716 (ParallelOnly) 32.60%

which is the value used in our experiments. However, it is
worth noting that from the size reductions possible when op-
timized runtimes are employed, we managed to experiment
with fields of up to C = 950 columns.

Finally, we consider the Mandelbrot deep zoom application
which calculates a Mandelbrot set and zooms in and out up to
10500× at six predefined points, generating 204 frames per
zoom point. The source code for this application is provided
as a performance exhibition example included with the eSDK.
We have parallelized it using OpenMP [3].

We summarize the kernel metrics reported by the compiler
for the 4 applications in Table 1. Each EPCC microbench-
mark contains 1 parallel region (Np = 1) with an addi-
tional OpenMP construct (which the microbenchmark mea-
sures) and a single level of parallelism (Lp = 1). The
ordered one contains an additional for region (Nf = 1).

In Table 2 we present the sizes in bytes of the resulting ob-
ject files when our mechanism is employed. Each application
is linked with an appropriate optimized RTS as selected by
the mapper. For comparison we show the corresponding sizes
without applying our mechanism (i.e. the Full RTS is linked
with the kernels). The last column represents the reduction
percentage with respect to Full RTS. A quick glance reveals
significant improvements in all cases.

For the special case of a kernel with no OpenMP directives
the mapper clearly utilized the NoOMP RTS, listed as (1) in
Section 4.3 and the savings were almost 6 KiB, freeing pre-
cious space in local memories for the eCOREs to fit more ap-
plication data. For the case of the Mandelbrot application the
chosen RTS was the ParallelOnly one, which provides only
functionalities for creating and synchronizing a parallel team.
This resulted in object file smaller by 3 KiB.

The kernel for the calculation of π creates a team of
eCOREs that share evenly the workload. The code utilizes the
reduction clause to combine the partial results. Therefore,
the mapper selected the ParReduction RTS, which resulted in
a savings of 3 KiB. The NQueens application utilizes only the
parallel and task directives. In addition, no OpenMP
internal control variables are modified in the user code. Con-



sequently, the TasksNoICVs runtime library was linked with
the kernel. For the EPCC-based kernels the mapper employed
the RTSs (2) and (4) through (7) according to kernel directives;
the final result exhibits savings in excess of 3 KiB.

For completeness, we note that the eSDK versions of the
Empty kernel and the Mandelbrot application gave object files
with sizes 2248 and 4728 bytes, respectively. Obviously, one
cannot compare these with what an OpenMP compiler pro-
duces, since the lower-level eSDK API lacks most of the func-
tionality provided by OpenMP. However, we consider impor-
tant the fact that when OpenMP is not utilized in a kernel of
the application, OMPi does not introduce any bloat to the ex-
ecutable (just 6 bytes). Furthermore, the productivity benefits
should be clear. For example, while the eSDK version of the
Mandelbrot application requires separate host and Epiphany
programs with a total of 301 lines of code, the OpenMP pro-
gram lies in a single file with 198 lines.

Due to limited room, we only focus on size results here.
However, we also note that the different RTSs result in dif-
ferent OpenMP construct overheads which in turn manifest
themselves in different kernel execution times. In particular,
we have measured ≈ 7% reduction in execution time for the
π calculation kernel and an impressive ≈ 69% reduction for
the Game of Life as compared to the Full RTS.

6 Conclusions and Future Work

In this work we present a novel RTS organization that is able to
produce specialized and optimized OpenMP support, tailored
to the needs of each particular application. The compiler per-
forms a detailed inter-procedural analysis of the target ker-
nel regions and calculates a set of metrics depicting the kernel
behavior with respect to OpenMP functionality. These metrics
are fed to a mapper mechanism which decides on the most ap-
propriate runtime library flavor to employ, and parametrize it
according to the functionality requirements. As a result, each
kernel offloaded to a device is accompanied by an optimized
kernel-specific runtime library that is able to provide exactly
the OpenMP features required.

We have implemented our ideas on the Parallella-16 board,
in the context of the OMPi compiler. Our experiments show
dramatic decrease in kernel sizes as compared to the original,
monolithic RTS. We are currently optimizing the runtime li-
brary flavors so as to produce even smaller and faster kernels.
while also we examine whether new metrics can be added to
our code analysis. We are also generalizing our idea to pro-
vide application-specific runtime support for the main (host)
part of traditional OpenMP programs.
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