The original publication is available at link.springer.com 1

Targeting the Parallella

Spiros N. Agathos* Alexandros Papadogiannakis
Vassilios V. Dimakopoulos
Department of Computer Science and Engineering, University of loannina
P.O. Box 1186, Ioannina, Greece, GR-45110
{sagathos, apapadog, dimako}@cse.uoi.gr

Abstract

Heterogeneous computing involves the combined use of processing elements
with different architectures and is widely considered a prerequisite in the quest
for higher performance and lower power consumption. To support this trend, the
OpenMP standard has been recently augmented with directives that target systems
consisting of general-purpose hosts and accelerator devices that may execute por-
tion of a unified application code. In this work we present the first implementation
of the OpenMP 4.0 accelerator directives for the Parallella board, a very popular
credit-card sized multicore system consisting of a dual-core ARM host processor
and a distinct 16-core Epiphany co-processor. We discuss in detail the necessary
compiler and runtime infrastructures of our prototype, both for the host and the
co-processor sides.

1 Introduction

Multicore processing units have become the dominant elements of modern computing
systems. Personal workstations pack multiple compute cores in a socket, while high
performance supercomputers combine general purpose multicore CPUs with special-
ized accelerator devices such as GPGPUs, DSPs and application-specific FPGAs. As a
result, modern system architectures present a mix of different processor and memory
hierarchies within the same system. At the same time the building blocks of such het-
erogeneous computing nodes are designed for different workload scenarios; multicore
CPUs perform best in coarse grained tasks, while accelerators reach their computational
potential in large scale data and fine grained vector processing.

The real challenge is to provide programming models that enable the extraction of
satisfactory performance while also keeping programmer productivity at high levels in
application development. Programming models such as OpenCL and CUDA [10] pro-
vide very efficient albeit rather primitive mechanisms for an application to exploit the
hardware capabilities of GPGPUs and other devices. In addition, the heterogeneity of

*S.N. Agathos is supported by the Greek State Scholarships Foundation (IKY)

http://dx.doi.org/10.1007/978-3-662-48096-0_51

the system architecture leads to heterogeneous programming styles, requiring different
code bases for the host CPU and the accelerators.

OpenMP, the de facto standard for shared-memory programming has been recently
augmented with new directives that target arbitrary accelerator devices [2]. In the spirit
of OpenACC [16], OpenMP 4.0 provides a higher level directive-based approach which
allows the offloading of portions of the application code onto the processing elements
of an attached accelerator, while the main part executes on the general-purpose host
processor. What is important is that the application blends the host and the device code
portions in a unified and seamless way, even if they refer to distinct address spaces.

The Parallella computer platform [5] is a recent and very popular credit card-sized
multicore computer designed to be energy efficient and deliver high performance. It
is an open source project and its processing power comes from a dual-core ARM CPU
and a 16- or 64-core embedded accelerator, named Epiphany. The accelerator delivers
up to 32 GFLOPS (102 GFLOPS, for the 64-core version) and is based on a 2D-mesh
NoC of tiny, high performance, floating-point capable RISC cores with a shared global
address space.

In this work we present the design and implementation of an OpenMP infrastructure
for the Parallella board. It is the first OpenMP implementation for this particular system
and also one of few OpenMP 4.0 implementations in general. We discuss both the
compiler transformations and the runtime systems that provide the necessary support
for the host and the device parts. Our implementation supports concurrent execution
of multiple independent kernels. In addition it allows OpenMP directives within each
offloaded kernel, supporting dynamic parallelism within the Epiphany.

The rest of the the paper is organized as follows. In Section 1.1 we give an overview
of related work. In Section 2 we present background material on the new OpenMP 4.0
device directives and summarize the Parallella board architecture along with its native
programming models. We then describe our prototype implementation in detail in
Section 3 while in Section 4 we present the performance measurements. Section 5
concludes this work.

1.1 Related Work

Support for OpenMP 4.0 devices is fairly limited yet, both in the compiler side and the
device side. In fact, the only commercial compiler that currently supports the target
construct is the Intel 1ICC compiler and the only device it supports is the Xeon Phi [12].
Details of the offload procedure in the ICC compiler are given in [15].

Preliminary support for the OpenMP target construct is also available in the
ROSE compiler. Chunhua et al. [13] discuss their experiences on implementing a pro-
totype called HOMP on top of the ROSE compiler, which generates code for CUDA
devices.

The GNU C Compiler has very recently added generic target support, designed
to be tailored by device manufacturers, and combined with a runtime for the Intel
Xeon Phi [1] accelerator. Bertolli et al. [7] propose a method to coordinate threads in
an NVIDIA GPU using a single kernel as opposed to multiple kernels; they also discuss
how their methods could be implemented as part of the LLVM compiler implementation

of OpenMP 4.0. Finally, in [14] the authors present their implementation of OpenMP
4.0 on a TI Keystone II, where they use the DSP cores as devices to offload code to.

Regarding the Parallella board, higher-level parallel programming models are lack-
ing. Offloading code to the Epiphany multicore chip is possible mainly through the
native low-level eSDK [4] or using OpenCL as provided by the COPRTHR SDK [8].
The latter also provides a threading API similar to POSIX. Aaberge [3] analyzes the
performance of Parallella and compares the two programming models, finding that
generally the e SDK outperforms OpenCL. Finally, Varghese et al. [6] use the eSDK and
raw assembly code to benchmark the Epiphany IV 64-core chip. They assess the effort
required to extract good performance while noting the need for familiar, higher-level
programming models.

2 Background

2.1 The OpenMP 4.0 Device Model

One of the goals of version 4.0 of the OpenMP API [17] is to provide a state of art,
platform-agnostic model for heterogeneous parallel programming. The extensions in-
troduced since the previous version are designed to support multiple devices (for exam-
ple accelerators, coprocessors, GPGPUS, etc.) without the need to create separate code
bases for each device. The programmer simply marks portions of the (unified) source
code to be offloaded to a particular device; the details of data and code allocations,
mappings and movements are orchestrated by the compiler. The execution model is a
host-centric one: program execution starts at the host processor (also considered a de-
vice) until one of the newly introduced constructs is met, which may cause the creation
of data environment and the execution of a specified portion of code on a given device.
The most important new directives are the target -related ones which mark the code
and the data that are to be offloaded.

The target directive is used to transfer control flow to a device. The code in the
associated structured block (kernel) is offloaded and executed directly on the device
side, while the host task waits until the kernel finishes its execution. Each target
directive may contain its own data environment which is initialized when the kernel
starts and freed when the kernel ends its execution. In order to avoid repetitive creation
and deletion of data environments, the target data directive allows the definition of
a data environment which persists among successive kernel executions. Furthermore,
the programmer can use the target update directive between successive kernel
offloads to explicitly update the values of variables which are shared between the host
and the device.

The memory for the data environment of a device is regarded as an autonomous
extension of the OpenMP memory model. The data environment can be manipulated
through map clauses within target data and target directives. These clauses
determine how the specified variables are handled within the data environment. When
an alloc map type is used an uninitialized variable is defined, whereas with a to
map type the variable is additionally initialized from the value of the corresponding
host variable. If variable is mapped as from then an uninitialized device variable is

NORTH eLink connector

bufz 03 padauuoy
Aulle Lsv3

SOUTH eLink connector

63,12 69 6@ 63,63

Epiphany-16 : Cores emulated by the Zynq

Figure 1: The Epiphany mesh in a Parallella-16 board

defined; when the specified directive region finishes, the value of the device variable
is copied back to the original host variable. Finally, if no type is specified or the type
is tofrom, the variable is considered mapped as both to and from. Finally, the
variables declared within declare target directives are also allocated in the global
scope of the target device, and their lifetime equals the program execution time.

2.2 Parallella Board Overview

The Parallella-16 board [5] is an 18-core credit card sized computer and comes with
standard peripheral ports such as USB, Ethernet, HDMI, GPIO, etc. The computational
power of the $99 board comes from its two processing modules. The main (host)
processor is a dual-core ARM Cortex A9 with 32 KiB L1 cache per core and 512KiB
shared L2 cache, built within a Zynq 7010 or 7020 SoC. The other is an Epiphany
16-core chip which is used as a co-processor. The board has 1 GiB of DDR3 RAM,
addressable by both the ARM CPU and the Epiphany. The former runs Linux OS and
uses virtual addresses while the latter runs no OS and has a flat, unprotected memory
map.

The Epiphany co-processor offers an impressive power efficiency that can reach up
to 70 GFLOP/Watt, depending on the chip version. Two configurations of the Epiphany
co-processor are currently available: the Epiphany-16 (with 16 cores and a 4 x 4 mesh
NoC) and the Epiphany-64 (with 64 cores and an 8 x 8 mesh NoC). Although our
discussion here holds for both versions, we refer mostly to the first one since it is
widely available and is what our board contains. This particular chip is clocked at
600MHz and has a peak performance of approximately 25 GFLOPS (single-precision)
with a maximum power dissipation of less than 2 Watt.

The architecture of the Epiphany is designed around a 64 x 64 mesh interconnect,
so (in theory) systems up to 4096 Epiphany cores (¢ COREs) are possible, by combining
16- and 64-core chips. On the Parallella-16 board, the Epiphany chip is pinned on a

4x4 submesh of the virtual 64x64 mesh whose north-west coordinates are (32, 8), as
shown in Fig. 1. The chip has four eLinks (west, east, north and south), that may be
used to interconnect it with other chips. In the current version of the Epiphany-16 chip
the west eLink is inactive and the east eLink is connected to the Zynq host. Notice that
the mesh NoC actually contains three separate meshes: the fast cMesh for writing on-
chip memory, the xMesh for off-chip writes and the slowest ¥Mesh for reading remote
memory.

Each eCORE is a 32-bit superscalar RISC processor, capable of performing single-
precision floating point operations, equipped with with 32 KiB local scratchpad mem-
ory and two DMA engines. All eCOREs share a 32-bit address space with each one
owning a 1MiB unique addressable slice; the scratchpad memory provides physically
32KiB of this slice. All memory is available through regular load/store instructions.

The Zyng, which is connected to the east eLink of the Epiphany, is perceived as
the eastern part of the mesh. Based on the column-first routing scheme of the NoC,
the Zynq can emulate the memory space of the cores in the 52 leftmost columns of
the 64x64 virtual mesh, giving access to most of the board RAM to the Epiphany. A
32-MiB portion of the system RAM is left outside the Linux virtual memory manager
area. From the Epiphany side it corresponds to the 32 cores located in coordinates from
(35, 32) to (35, 63). This is designated as shared memory and is physically addressable
by both the ARM and the Epiphany.

All common programming tools are available for the ARM host processor. For
the Epiphany, the Epiphany Software Development Kit (e SDK) is available [4], which
includes a C compiler and runtime libraries for both the host (eHAL) and the Epiphany
(eLIB). A typical C program that utilizes the eSDK adheres to the following pattern:
Initially the host executes some initialization and the sequential part of the application.
Next, in order to offload code (kernel) to the co-processor it a) initializes the Epiphany,
b) prepares the shared memory with all the data needed for the computation, c¢) forms
a workgroup of eCOREs and d) triggers the execution of the kernel. All host-eCORE
communication occurs through the shared memory.

3 Implementing OpenMP 4.0 on the Parallella

Our implementation is based on the OMPi OpenMP compiler [11]. OMP1i is a lightweight
OpenMP C infrastructure, composed of a source-to-source compiler and a flexible,
modular runtime system. The input of the compiler consists of C code annotated with
OpenMP pragmas and the output is an intermediate multithreaded code augmented
with calls to the runtime system. A native compiler is used to generate the final ex-
ecutable. OMPi is an open source project that adheres to OpenMP V3.1 and targets
general purpose SMPs and multicore platforms.

3.1 Compiling for the New Device Directives

The compiler has been extended to support the new OpenMP device model. In partic-
ular the input grammar has been modified to accommodate the new target-related
directives. New nodes have been defined for the abstract syntax tree that represent the

user code and new code generation routines have been introduced to produce the trans-
formed code. The code generation phase now produces multiple output files, one for
each different kernel (i.e. target region), plus the host code. The later contains the
host part of the user program plus all kernels, since the host may be called to execute
any of them, upon various runtime conditions. The kernel files are compiled using the
eSDK tools.

When handling a target data directive, the compiler prepares a new data en-
vironment by injecting calls to the runtime system for each variable that appears in a
map clause. The calls depend on the map type; specifically,

e For alloc-mapped variables, memory allocation calls are injected at the start
of the construct block.

e For t o-mapped variables, we additionally inject memory copy calls.

e from-mapped variables, are treated as a1l 1oc ones with additional calls to copy
their values back to the original variable at the end of the construct block.

e For variables mapped as tofrom, we inject code as if the variable was both a
to- and a from-mapped one.

The above calls are preceded by a runtime call to mark the beginning of a new data
environment; this is needed because the runtime system has to track the nesting of
target / target data constructs for each device so as to activate the appropriate
data environment when offload time comes.

The target construct is more complex because it behaves like a target data
construct while in addition it offloads and executes code on the device by actually trans-
ferring both the code and the data environment to / from the device. For its transfor-
mation outlining is used, in a manner similar to the parallel and task constructs:
the associated construct block is moved to a new function (kernel) which will serve as
the offloaded kernel, with a single argument which points to the necessary data envi-
ronment. In its place, a runtime call to offload the outlined kernel is placed.

Before the actual outlining of the construct takes place, the construct block is ana-
lyzed in order to discover any variables used in the code which were created outside of
the construct (i.e. in parent target data regions). These, combined with the ones
explicitly marked by map clauses, form the complete data environment of the kernel
function. Depending on the type of mapping, variables in the data environment will be
created as local copies of the original variable, initialized or not, or as pointers to the
shared memory. Variables already existing in a parent data environment are replaced
by pointers to their storage. For the Parallella, all such variables are stored in the shared
memory area. For alloc-mapped variables we simply create a local variable with the
same name within the kernel. We treat t o-mapped variables in the same way we treat
firstprivate variables in a t ask construct; a snapshot of the original variable is created
by allocating space in the shared memory which is then initialized from the original
variable. If the variable is of scalar type, a local variable is also defined within the
kernel function and its value is copied from the shared memory in order to optimize
access speed. No local copies are created for array types, due to the very stringent
eCORE memory budget. The situation is similar for from-mapped variables. Here

1 int X[10], Y[10]; 32MiB shared memory
2 int k;
3

4 #pragma omp target data map(X,Y)
5 #pragma omp target map (to:k)

6 {
7
8

/* Kernel code */ \ i
} v Y

data target data device
environment variables control data
(4KB)

(a) (b)

Figure 2: Shared memory organization

however, after the offload returns, the value is copied back from the shared memory to
the original variable. Variables mapped as t of rom as well as variables which did not
appear in any map clause are treated as if they appeared in a map (to:) clause with
the extra copy-back steps of the f rom-mapped variables.

Finally, the target update directive is replaced by runtime calls to copy every
variable in a from (or t o) motion clause from (to) the shared memory to (from) the
original host variable.

3.2 Runtime Architecture

At the host (Zynq) side the runtime system consists of two parts; the first is a full-
fledged OpenMP runtime library, part of the regular OMPi infrastructure, necessary
for supporting execution on the two ARM cores. The second part provides additional
functionality, which is required for controlling and accessing the Epiphany device.
The communication between the Zynq and the e CORESs occurs through the shared
memory portion of the system RAM as described earlier. The shared memory is divided
in two sections, see Fig. 2(b). The first section is called Device Control Data (DCD)
area, and it has a fixed size of 4KiB; it is used transparently by OMPi for kernel coordi-
nation and manipulation of parallel teams created within the Epiphany. The second part
is used for storing the kernel data environments and part of the tasking infrastructure
of the Epiphany OpenMP runtime described later. More specifically, during the prepa-
ration for offloading a kernel, a region is allocated to store the data environment of the
kernel. This contains variables or pointers to variables which appeared in enclosing
target or target data constructs and are not stored in the local memories of the
€COREs. An example is shown in Fig. 2(a). Variables X and Y in line 4 are annotated
as tofrom. This causes a copy of each one to be created in the shared memory. In
line 5 the variable k is annotated as t o and along with two pointers to X and Y form the
data environment of the kernel. The beginning of the data environment is stored as a
pointer in DCD, and is used by the kernel when starting its execution. All the above are
stored at the higher end of the shared memory, leaving the lower end available for the
programmer (e.g. for storing libraries which do not fit in the e CORE local memories).
In order to be able to control the eCOREs independently through eLIB calls, the
initialization phase creates 16 workgroups, one for each of the available Epiphany’s

Time =——»

Zynq

Bogk Ack Book
keeping keeping
\ / J

Offload
kernel

p p \
Reply to
master

core)

Start
worker
cores

AN

Shared memory

Parallel
code

On-chip memory

Master core

Other cores

Epiphany

Figure 3: Offloading a kernel containing dynamic parallelism

cores and puts them to the idle state for energy and thermal efficiency. For offloading
a kernel, the first idle core is chosen and the precompiled object file is loaded to it for
immediate execution. Because the current version of eHAL does not provide a way for
an e CORE to notify directly the host for kernel completion, a special region of the DCD
is designated to store special flags set by the eCOREs. The DCD infrastructure has a
thread-safe design; this allows multiple host threads to offload multiple independent
kernels concurrently onto the Epiphany.

3.3 OpenMP within the Epiphany

The eCOREs do not execute any operating system and there is no provision for creating
and handling dynamic parallelism (e.g. threads) within the Epiphany chip. In addition,
the 32KiB local memory of each eCORE is quite limited, unable to handle sophisti-
cated OpenMP runtime structures in addition to application data. As such, supporting
OpenMP within the device side of the board is non-trivial.

The creation of a parallel team within an offloaded kernel is depicted graphically in
Fig. 3. When a kernel is offloaded to a specific eCORE, the core executes its sequential
part until a parallel region is encountered; the core will create a new team and become
the master of the team. Because only the host can activate other Epiphany cores, the
master core sends a request to the host through the device control data (DCD) section
in shared memory, requesting the activation of a number of cores. The host-side thread
which offloaded the kernel will activate as many cores as possible to satisfy the mas-
ter request. A copy of the same kernel is then offloaded to the newly activated cores.
The activated cores begin their execution by fetching all the appropriate information
regarding the parallel team and its master core from the DCD section in shared mem-
ory. Immediately after that they spin waiting for the master to signal the execution of
the parallel code. Once all required cores have been activated, the master has access to
the actual team size and the coordinates of the team cores. A local flag is then set to

release the team cores and let them execute the parallel region. During the parallel code
execution all synchronization between the cores occurs through their fast local memo-
ries. When the region completes, the cores return to the idle, power saving state, while
the master core informs the host thread about the termination of the parallel team. The
host marks the idling cores as available for future use, and sends an acknowledgment
to the master. The latter continues with the rest of kernel code.

We note that another, possibly faster, strategy for supporting dynamic parallelism
would be to have all eCOREs loaded with the kernel(s) in advance and spin, waiting for
the master to signal them which kernel to execute. However, this would increase power
consumption dramatically and thus we did not pursue it further.

To support the OpenMP worksharing constructs (single, for, sections), the
infrastructure originally designed for the host was trimmed down to a minimum so
as to minimize its memory footprint; this is linked and offloaded with each kernel.
The corresponding coordination among the participating e COREs utilizes the structures
stored in the local memory of the team’s master core. This is possible because an
eCORE can access any address in the Epiphany address space. In particular, while an
eCORE may access its own scratchpad memory using local addresses (which range
from 014 to 7FFFy4), its memory can also be globally accessed by all cores using its
row and column coordinates: if 7 and c are the row and the column of a core, the start
of its scratchpad memory is at address r x 4000000;6 + ¢ x 100000;6. The mesh
coordinates of the master core are available to all team cores through the DCD area in
shared memory.

The eSDK libraries for the Epiphany provide mechanisms for locks and barriers be-
tween the eCOREs. Their implementation is highly optimized to exploit the fast cMesh
subnetwork as much as possible. Because they assume that the synchronized cores
belong to the same workgroup, we modified them in order to adhere with our multi-
ple cooperating workgroup organization. Additionally the barrier was augmented with
task execution extensions. Our prototype tasking infrastructure is based on a blocking
shared queue stored in the local memory of the master eCORE. The corresponding task
data environments are stored in the shared memory.

4 Measurements

We have conducted a number of tests in order to measure the efficiency of our of-
floading mechanisms alongside the space and timing performance of the OpenMP run-
time within the Epiphany accelerator. Our board is the Parallella-16 SKUA101020 and
we use eSDK 5.13.9.10. The systems runs Ubuntu 14.04 with kernel 3.12.0 armv71
GNU/Linux. GCC and e-GCC v.4.8.2 were used as back-end compilers for OMPi.

4.1 Memory Footprint

To examine the memory overhead of our Epiphany runtime, which gets linked with
each offloaded kernel, we created a set of simple OpenMP programs. The kernels were
compiled with “-O3 -funroll-loops” flags and we used the e-size tool of the eSDK to
examine the produced ELF object files. The results are shown in Table 1. In the first

200 0.2
-&-Parallel -#-For

160 Single - Barrier 016
Table 1: Size of empty kernel (bytes) t 120 /// 012

overhead (psec)
single, for, barrier
overhead (sec)
parallel

80 0.08
l Scenario \ OMPi \ eSDK ‘
£ 40 0.04
1 kernel 7092 2232 -
16-core team | 10560 | 3084 % 2 3 e 1

eCores

Figure 4: Overhead results of EPCC
benchmark

scenario, one effectively empty kernel is offloaded, containing only a single assign-
ment. It can be seen that OMPi incures a 4.5KiB overhead as compared to an identical
kernel created using the native eLIB. Examining the ELF, it is seen that our runtime
requires approximately 1KiB more for its internal data and another 3.5KiB for its run-
time routines. In the second scenario we create a team of 16 cores running the previous
trivial kernel; for OMPi this is accomplished through a parallel directive while for
the eSDK program we create a workgroup of 16 cores which are synchronized using
a barrier. While the data section remains constant, the additional offloaded runtime
routines cause an increase in the text section; approximately 7KiB more than the corre-
sponding native kernel are required. Additional functionality is offloaded if the kernel
contains worksharing constructs and this accounts for another 3KiB approximately.
All in all, oMPi was found to require 4-10KiB more than a similarly structured e SDK-
based kernel. While this is certainly non-negligible, we note that a) our prototype has
not been optimized yet, b) some portions could be moved to shared memory as a trade-
off between local memory space and speed and c) the programmability gains are rather
significant.

4.2 Overheads

The EPCC micro-benchmarks suite [9] is widely used to measure OpenMP construct
overheads for a particular implementation. In order to measure OMPi overheads within
the Epiphany, we created a modified version of the benchmarks. Their basic rou-
tines are offloaded through target directives and executed as kernels without fur-
ther modifications. Measurements are taken from the host side, after subtracting any
offloading costs. In Fig. 4 we present a sample of the results regarding the overheads
of parallel, for, single and barrier constructs. The results are quite sat-
isfactory, in all but the parallel construct. This is explained in part, because as
described in Section 3.2, the formation of a dynamic team of cores incurs significant
host-device communication, which includes additional kernel offloads. However, it
should be stressed that offloading even an empty kernel has an overhead of at least 0.1
sec, needed for resetting the core(s) that will execute it. Eliminating this cost, would
require keeping all eCOREs active all the time, sacrificing power efficiency.

10

Table 2: Frames per second for the Mandelbrot deep zoom application (1024x768)
[#frames | esDK@Epiphany | oMPi@Epiphany | oMPi@Zynq |

204 17.854 15.829 4.139
408 15.250 13.630 3.469
612 13.411 12.292 3.015
816 12.528 11.632 2.794
1020 13.330 12.304 2.997
1224 14.486 13.234 3.288

4.3 Mandelbrot Application

We tested OMPi using a simple version of the Mandelbrot deep zoom application which
calculates a Mandelbrot set and zooms in and out up to 10500 at six predefined points.
The whole frame by frame image is written directly to the frame buffer of the Parallella
board (with a resolution of 1024 x 768), resulting in an impressive colorful video. The
full traversal generates 204 frames per zoom point. The code for this application is one
of the examples included with the eSDK in order to exhibit the real time performance
possibilities of the Epiphany chip. Initially a host thread activates all 16 cores to exe-
cute the computation kernel. The kernel itself distributes the work statically among the
cores; each core calculates the colors for a region of the image and writes the values to
the frame buffer. At the end of each frame, all cores inform the host thread and wait to
be synchronized. When all cores finish their caclulations for the particular frame the
host signals them to continue with the next one.

In order to utilize OpenMP, we unified the host and Epiphany code in a single file,
moving the kernel code into a target region. Next, we removed all calls to eSDK
and replaced them with OpenMP pragmas, and finally we removed the synchronization
code, since this functionality is now carried out by a barrier. The generated kernel
size was 11794 bytes; the original kernel was 4728 bytes, in comparison. The execu-
tion results are shown in Table 2. We give the total number of frames and the frame rate
(i.e. the total number of frames divided by the execution time) for the original appli-
cation and the OpenMP-based version. For comparison we also provide results of the
application when the Zynq is used as the device that executes the kernels. In any given
column, the differences between the frame rates is natural because of the variability of
pixel calculations (darker pixels incur fewer computations).

As it can be easily seen, the original eSDK application performs from 8% to 13%
better than the OpenMP-based one. We consider this as a very small difference, given
that our prototype is not yet highly optimized. Moreover, the OpenMP version, without
any further modifications resulted in a total of 198 program lines, while the original
required 301 lines of code. What is more important is that the programmability gains
are huge. We achieved on average 90% of the performance of the original application
with a mere 5 OpenMP pragmas. Finally, notice that the Epiphany achieves up to 4 x
more frames per second as compared to the Zynq.

11

5 Conclusion and Future Work

We presented the design of the first OpenMP 4.0 infrastructure for the Parallella board.
Our system treats the Epiphany-16 as an accelerator device, attached to a dual-core
ARM host processor and allows the dynamic creation of parallel teams within the device
itself. While not highly optimized yet, our prototype is able to support OpenMP 4.0
applications delivering performance up to 92% of hand-written low-level eSDK code
as observed for a particular application.

Currently, our prototype has a number of limitations which have to do with the
handling of OpenMP internal control variables (ICVs) which are mostly lacking for the
Epiphany. Another limitation is the lack of sophisticated management for the shared
memory in the host runtime. The memory segments defined for kernel and tasking
data environments are relinquished in the order they were allocated, which may cause
unnecessary fragmentation. We are currently working on an improved allocator.

Our future work is concentrated mostly on two areas; first, optimize the current
implementation and second, implement additional OpenMP functionality. For the for-
mer, we are working on minimizing both the memory footprint of the device runtime
as well as its overheads for the OpenMP constructs. For the latter, our next target is the
support of the new teams and distribute directives, which create a given number
of thread teams within the accelerator, and divide loop iterations among them.

Acknowledgment. The authors would like to thank Adapteva for providing them
with a Parallella-16 board through the Parallella University Program.

References

[1] GCC 5 Release Series, https://gcc.gnu.org/gcc—5/changes.html
[2] OpenMP/Clang, http://clang-omp.github.io/

[3] Aaberge, T.: Analyzing the Performance of the Epiphany Processor. Master’s the-
sis, Norwegian Univ. of Science and Technology (Aug 2014)

[4] Adapteva: Epiphany SDK reference Manual (Sept 2013)
[5] Adapteva: Parallella Reference Manual (Sept 2014)

[6] Anish Varghese, Bob Edwards, G.M., Rendell, A.P.: Programming the adapteva
epiphany 64-core network-on-chip coprocessor. In: Proc. of IPDPSW ’14. pp.
984-992. Phoenix, USA (Dec 2014)

[7] Bertolli, C., Antao, S.F., Eichenberger, A.E., O’Brien, K., Sura, Z., Jacob, A.C.,
Chen, T., Sallenave, O.: Coordinating GPU Threads for OpenMP 4.0 in LLVM.
In: Proc. of LLVM-HPC ’14. pp. 12-21. Piscataway, NJ, USA (Nov 2014)

[8] Brown Deer Technology, LLC: COPRTHR API Reference (2014)

12

https://gcc.gnu.org/gcc-5/changes.html
http://clang-omp.github.io/

[9]

[10]

[12]

[13]

[14]

[15]

[16]

(17]

Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP.
In: Proc. of 1st EWOMP. pp. 99—-105. Lund, Sweden (Sept 1999)

David B. Kirk, Wen-mei W. Hwu: Programming Massively Parallel Processors,
Second Edition: A Hands-on Approach. Morgan Kaufmann, MA 01803, USA
(Dec 2012)

Dimakopoulos, V.V., Leontiadis, E., Tzoumas, G.: A portable C compiler for
OpenMP V.2.0. In: Proc. of EWOMP 2003. pp. 5-11. Aachen, Germany (Sept
2003)

Intel Corporation: User and Reference Guide for the Intel C++ Com-
piler 15.0, OpenMP* Support, https://software.intel.com/en-us/
node/522679

Liao Chunhua, Yan Yonghong, Bronis R. de Supinski, Daniel J. Quinlan, Barbara
M. Chapman: Early experiences with the openmp accelerator model. In: Proc. of
IWOMP 2013. vol. 8122, pp. 84-98 (Sept 2013)

Mitra, G., Stotzer, E., Jayaraj, A., Rendell, A.: Implementation and Optimization
of the OpenMP Accelerator Model for the TI Keystone II Architecture. In: Proc.
of IWOMP 2014, vol. 8766, pp. 202-214. Salvador, Brazil (Sept 2014)

Newburn, C.J., Deodhar, R., Dmitriev, S., Murty, R., Narayanaswamy, R.,
Wiegert, J., Chinchilla, F., McGuire, R.: Offload Compiler Runtime for the In-
tel Xeon Phi Coprocessor. In: Proc. of ISC 2013, pp. 239-254. Leipzig, Germany
(June 2013)

OpenACC: The OpenACC Application Programming Interface Vesion 2.0 (Jun
2013)

OpenMP ARB: OpenMP Application Program Interface V4.0 (July 2013)

13

https://software.intel.com/en-us/node/522679
https://software.intel.com/en-us/node/522679

	1 Introduction
	1.1 Related Work

	2 Background
	2.1 The OpenMP 4.0 Device Model
	2.2 Parallella Board Overview

	3 Implementing OpenMP 4.0 on the Parallella
	3.1 Compiling for the New Device Directives
	3.2 Runtime Architecture
	3.3 OpenMP within the Epiphany

	4 Measurements
	4.1 Memory Footprint
	4.2 Overheads
	4.3 Mandelbrot Application

	5 Conclusion and Future Work

