
A runtime system architecture for ubiquitous support of OpenMP

Giorgos Ch. Philos Vassilios V. Dimakopoulos Panagiotis E.Hadjidoukas
University of Ioannina, Ioannina, Greece

{gfilos,dimako,phadjido}@cs.uoi.gr

Abstract

In this work we present the runtime architecture of the
OMPi OpenMP compiler. OMPi is a source-to-source
C translator featuring a portable, modular and extensible
runtime system. It allows for OpenMP threads to map to
different execution entities which range from kernel/user-
level threads to processes, providing transparent support
of OpenMP applications on both SMP machines and clus-
ters of SMPs. When operating within an SMP machine,
arbitrary threading libraries can be employed; currently
a multitude of such libraries is available, including one
which is based on portable user-level threading, for high-
performance nested parallelism support. When operating
on a cluster, processes are used as the execution entities
and different software DSM cores can be utilized under
a unified interface; the runtime system uses a hybrid ap-
proach whereby its internal bookkeeping is done through
explicit message passing, while user-program shared vari-
ables are handled by the DSM core.

1 Introduction

OpenMP [22] has become a standard paradigm for shared
memory programming, as it offers the advantage of sim-
ple and incremental parallel program development, in a
high abstraction level. Its usage is continuously increas-
ing as small SMP machines have become the mainstream
architecture even in the personal computer market, thanks
to the domination of multicore CPUs.

At the same time, computational clusters have emerged
as a cost-effective approach to high performance comput-
ing. Individual machines unified by a LAN, either using
a commodity or a high-performance interconnect, can be
viewed as a virtual large-scale machine with a big num-
ber of processors and can be programmed as such. They
offer an expandable and reliable computational environ-
ment which is quite more economic than large massively
parallel machines. However, programming for a cluster is
rather cumbersome. The most widely used and arguably
most efficient tool for cluster programming is the MPI li-
brary. MPI though forces the programmer to explicitly
distribute data and orchestrate communications by hand,

and as a result it has not find its way to mainstream com-
puting.

An alternative to MPI is the use of software DSM
(sDSM) libraries that give the illusion of shared memory,
simplifying program development. One downside of soft-
ware DSM libraries is that they usually employ relaxed
consistency protocols, which burdens a programmer with
inserting synchronization calls in order to make sure that
the program executes correctly. Although software DSM
systems don’t seem to be able to achieve the speedups
possible with carefully hand-coded MPI programs, they
have nevertheless been proved successful for a number
of data-intensive applications [9, 4]. A serious problem
with software DSM systems is the complete incompatibil-
ity between the various implementations and the esoteric
API they usually provide. As a result, it is not always easy
to experiment with and compare such systems.

Since the execution model of OpenMP is based on a
globally shared memory, combining OpenMP and soft-
ware DSM systems has been proposed by many re-
searchers as a convenient means of leveraging a cluster,
matching the programmer-friendliness of OpenMP with
the DSM layer that abstracts away the underlying dis-
tributed architecture. Any peculiarities of the DSM layer
are completely hidden from the programmer and are left
to the compiler and runtime system to handle.

Almost all OpenMP implementations are based on a
tight coupling between the compiler and the runtime li-
brary. The whole system targets SMP machines or clus-
ters but usually not both. Even in the few cases that sup-
port both, there is a fixed, built-in threading library and a
software DSM core and the generated code targets them
specifically, making it almost impossible to experiment
with alternative configurations.

OMPi [6] is an open-source OpenMP system that imple-
ments fully OpenMP 2.5 and features a compiler that tar-
gets both threading and software DSM libraries. Its run-
time system has an open architecture that allows arbitrary
threading libraries and arbitrary sDSM cores to be em-
ployed, by decoupling the actual execution entities from
the rest of the system. However, open-architecture, mod-
ularity and portability in no way limit performance.OMPi
exhibits quite low overheads and scalable performance
even when executing nested parallel regions, comparing

favorably even with commercial OpenMP systems.
This paper is organized as follows. An overview of

OMPi and its translator is given in Section 2. In Section 3
we present the general runtime architecture ofOMPi and
give details of the portion that is mostly independent of
the actual execution entity employed. Sections 4 and 5
deal with the two execution entities targeted byOMPi,
threads and sDSM processes correspondingly. Experi-
mentation with both entities is given in Section 6, while
Section 7 summarizes related work. Finally, Section 8
concludes the paper.

2 Overview of OMPi

OMPi consists of a source-to-source compiler for
OpenMP/C V2.5 and a runtime system that orchestrates
the execution of the produced program. The compiler
generates a transformed C program augmented with calls
to the runtime system; the system’s compiler links it with
the runtime library and produces the final executable.

Let us call ‘OpenMP threads’ the threads that are im-
plied by the OpenMP program. InOMPi, those OpenMP
threads can be implemented as portablePOSIX threads
or machine-specific threads (e.g. Solaris threads) or even
heavyweight processes.OMPi, through its compilation
process maps OpenMP threads to abstractexecution en-
tities (EEs). The runtime system provides and controls
those execution entities. It has been architected with an
internal interface that facilitates the integration of arbi-
trary EEs. It currently comes with two core libraries that
are based onPOSIX threads; one is optimized for single-
level (non-nested) parallelism, while the other provides
limited nested parallelism support through a fixed pool of
threads. Two more libraries are available that make use
of Solaris instead ofPOSIX threads. In order to efficiently
support unlimited nested parallelism, an additional high-
performance library based on portable user-level threads
has been developed [7]. Finally, there is one more library
that provides heavyweight processes as EEs and interfaces
with arbitrary software DSM cores, providing transparent
execution on clusters. We have successfully integrated
a number of DSM cores, including TreadMarks, JiaJia,
Mocha, Mome and Parade [17, 11, 18, 13, 16]. In the next
sections we discuss the details ofOMPi’s runtime archi-
tecture and provide experimental results for a multitude
of different EEs.

2.1 The compiler

OMPi’s source-to-source translator takes as input C source
code with OpenMP directives and outputs transformed but
equivalent C code augmented with calls toOMPi’s run-
time system. In its current version, it features a parser
capable of understanding programs with C99 syntax and

OpenMP V2.5 directives. During parsing, which is the
first phase of the compilation process, an abstract syntax
tree (AST) is built, which represents the original program.
TheAST is the input of the second (transformation) phase.
The transformer visits the tree nodes and acts whenever a
node containing an OpenMP statement is met; it then re-
places the whole subtree rooted at that node by a new one
which mostly maintains the original block of statements
but has additional calls to the runtime system inserted at
appropriate places.

While some transformations are relatively intuitive,
some others are quite involved. The most crucial one is
that of aparallel construct.OMPi’s translator follows
the outlining [3] approach, where the portion of code en-
closed in theparallel construct is removed and placed
within a new function, which will be executed by the
threads (or processes) that will be created. The most im-
portant problem arising is that of variable visibility, par-
ticularly for variables that are to be shared but are non-
global. For the following piece of code

1 int a;
2 void f() {
3 int b, c, d;
4 #pragma omp parallel private(d)
5 a = b+c+d;
6 }

the result of the transformation is given in Fig. 1. The
outlined code is moved to function_thrFunc0_ that is
to be executed by all threads. Global variablea (line 1)
needs no special treatment since global variables are by
nature shared among threads. Variabled must be private
to each thread; this is achieved easily by cloningd’s dec-
laration in the produced function. On the other hand,b
andc (line 3) are to be shared but are non-global, lying on
the stack segment. Sharing is achieved by creating point-
ers to those variables and passing them explicitly to the
thread function; threads can access them through a call
to ort_get_shared_vars(). This also necessitates
the transformation of the original code (line 5) since in the
new functiona andb are now pointers.

The third (final) phase of the compilation process sim-
ply traverses the transformedAST and prints out the cor-
responding C code. The resulting program is compiled by
the system’s native C compiler and linked with the run-
time library producing the final executable.

2.2 Support for processes

OMPi’s compiler can also target execution entities that are
processes, in addition to threads. The transformations and
the produced code are almost identical for both targets,
save a couple of differences. In particular,

• Because global variables which are shared among
OpenMP threads, are by nature private to each pro-

int a; /* shared global */

static void * _thrFunc0_(void *_arg) {
struct { int (*b); int (*c); }

*_shvars = ort_get_shared_vars();
int (*b) = _shvars->b; /* shared non-global */
int (*c) = _shvars->c; /* shared non-global */
int d; /* private() var */

a = (*b) + (*c) + d; /* pointers */
return (void *) 0;

}

void f() {
int b, c, d;
struct { int (*b); int (*c); }
_shvars = { &b, &c };

ort_execute_parallel(-1,_thrFunc0_,&_shvars);
}

Figure 1: Transformed parallel construct.

cess, they must be explicitly placed in a shared mem-
ory area. The compiler producesconstructor code
that allocates space for all global variables during
program startup, just beforemain() is executed,
through special calls to the runtime library.

• All global variables are transformed to pointers that
point to appropriate offsets within the allocated
shared area; every occurrence of such a variable is
replaced correspondingly all over the program.

Notice that nothing changes for shared non-global vari-
ables. In contrast, other approaches use complex and
CPU-specific handling of stack frames [15] or involve, for
every parallel region, (a) creating a shared memory area,
(b) copying these variables there, (c) copying them back
to their original area at the end of the parallel region and
(d) releasing the shared memory area [12, 23]. This time
consuming process is avoided inOMPi, and is resolved
entirely in its runtime system which is presented next.

3 The runtime architecture of
OMPi

The runtime system ofOMPi provides the execution enti-
ties that will carry out the work of OpenMP threads and
controls their operation and synchronization. It consists
of two modules; the first module (ORT) groups EEs, coor-
dinates them and schedules their execution within work-
sharing regions, butit does not implement them. The sec-
ond module (EELIB) is the one that actually implements
the execution entities. A multitude ofEELIB libraries are
currently available, adhering to a unified interface.ORT’s
operation is independent of the actualEELIB employed.

When called to execute a parallel region (through the
ort_execute_parallel() call in Fig. 1),ORT en-
ters a negotiation phase withEELIB, asking for a partic-
ular number of EEs, depending on what the program re-
quests and whether nested parallelism and the dynamic
adjustment of the number of threads are enabled or not.
After EELIB confirms the availability of EEs, it gets in-
structed byORT to release them in a bunch, as a team.
When an EE from the team commences execution, its very
first obligation is to callort_get_ee_work(), which
supplies all the information for the work the EE is sup-
posed to do. Specifically, among other things, it provides
a pointer to the function to be executed (_thrFunc0_ in
Fig. 1). In addition,ORT constructs and manages the EE’s
control block (eecb). The control block contains every-
thing ORT needs in order to schedule the EE, including
the size of the team, the id of the EE within the team, its
parallel level and a pointer to theeecb of the team’s par-
ent. Through the latter pointers,ORT maintains a dynamic
tree ofeecbs which grows whenever a new team of EEs
is unleashed and shrinks whenever a team completes the
execution of a parallel region.

Upon startup, the sole EE running is theinitial EE and
operates in level 0. Whenever an EE encounters a parallel
region, it becomes the parent of the spawned team; if the
parent is in leveli, all its children lie in leveli + 1. There
is no prerequisite regarding an EE’s level, providing thus
full and unlimited support for nested parallelism, as long
as EELIB is willing to supply EEs. The parent also be-
comes a member of the team, with id 0, and is called the
master EE of the team.

Theeecb holds additional information in the case the
EE becomes the parent of a new team. This includes a
barrier structure for synchronizing the team members, a
copyprivate staging area forsingle constructs that
require it and a structure with scheduling information for
worksharing regions.

3.1 Workshare region scheduling

OpenMP defines three workshare constructs,for,
sections andsingle whereby the work is divided
appropriately among the participating EEs. These code
regions are normally blocking, in the sense that they con-
clude with an implied barrier that synchronizes the EEs
before letting them continue their execution. However,
when anowait clause is present, there is no implied bar-
rier and the region is non-blocking; such regions present
bookkeeping complications. This is because some EEs of
the team may advance without notice to subsequent work-
share regions, the number of which may not be known
statically at compile time. Consequently, there may ex-
ist multipleactive non-blocking regions and different EEs
may be in different regions at any given time; in contrast,
there can be at most 1 blocking region active.

Figure 2:EELIBs and interface withORT.

Solutions to this problem include bookkeeping using a
dynamically allocated list of workshare region structures
[2] or avoiding the problem altogether by disallowing
more than one non-blocking regions to be simultaneously
active, as in the runtime library of the Omni compiler [23].
The approach followed inOMPi is similar to [26]. In the
control block of the parent of a team,ORT maintains a pre-
allocated workshare queue of fixed size (MAXWS) with
bookkeeping information about each active workshare re-
gion. Stored information includes construct-specific data
(e.g. the number of remaining sections for asection
construct; the upper bound and the increment for afor
construct; locks for protecting access to this data by the
EEs of the team) plus queue-related data, such as the num-
ber of EEs that have entered and the number of EEs that
have exited (finished) this region. When the tail and the
head of the queue are MAXWS regions apart, i.e. there
are MAXWS simultaneously active regions, any EE that
tries to activate a new region gets blocked until the tail
of the queue advances. This way, we avoid the cost of
dynamic adjustment of the capacity of the queue, without
introducing the artificial barrier required in [26].

ORT optimizes the operation of the workshare queue by
using lock-free accesses when possible and by employing
atomic operations if available, resorting to plain locking
only when necessary. A final optimization is the avoid-
ance of full initialization of the queue. Every time a new
team of EEs is created, all regions of the queue must be
properly initialized by the parent before being put to use.
If MAXWS is not small this results in a major overhead.
ORT avoids this by initializing only the first region of the
queue; the first EE to enter a new non-blocking region is
responsible for initializing the next region in the queue.
This way, at any given time, the queue has one extra re-
gion ready for use.

3.2 The interface with EELIB

The EELIB is responsible for providing all execution en-
tities, except the master EE, and three types of locks:
normal, nested and spin locks. The first two types are
made available to the OpenMP application programmer
while the third type is used internally byORT. EELIB

has no other obligation, as everything else is handled en-
tirely by ORT. Upon initialization,EELIB announces its
capabilities toORT, which include support of nested par-
allelism, support for dynamic adjustment of the number
of EEs, the maximum number of EEs and the maximum
number of nested parallelism levels supported. Regarding
the EEs,EELIB implements 3 functions that are called by
ORT (see Fig. 2):ee_request(),ee_create() and
ee_waitall(). The first two are used when creating a
new team. The parent asks for a particular number of EEs,
andee_request() replies with the actual number it
can provide. InEELIBs that do not support nested par-
allelismee_request() always returns 0 when called
from level≥ 1. If ee_request() returns a number
smaller than the one requested and the dynamic adjust-
ment of the number of EEs is not enabled/supported, the
program terminates. If everything was OK,ORT calls
ee_create() to instructEELIB to actually create the
requested EEs. Upon completion of the parallel region,
the master callsee_waitall() and blocks until all the
other EEs in the team have terminated.

4 Threading libraries

A number ofEELIBs that provide thread EEs are avail-
able forOMPi, including libraries that are based onPOSIX

threads, Solaris threads and a portable user-level thread
package (Fig. 2). The default library ofOMPi (PTHR)
uses a pool ofPOSIX threads as its EEs. The pool is
formed upon initialization, and the number of pre-created
threads is equal toN , which is the maximum of the num-
ber available processors and the number specified in the
OMP_NUM_THREADS environmental variable; after that
the pool size cannot change. The threads spin, yielding
the processor frequently, waiting for work. Upon a re-
quest for a number of EEs, no matter at what parallelism
level, theEELIB checks the pool population; it can only
supply as many threads as are available at that particu-
lar moment in the pool. This means that nested paral-
lelism is supported as long as the total number of threads
in all nesting levels is at mostN ; if the programmer has
chosen to disable the dynamic adjustment of the num-
ber of EEs, then the library may not be able to supply
the requested number of threads. Upon completion of its
work, a thread returns to the pool, decrementing first a
counter in the parent’seecb. The master thread blocks
at theee_waitall() call until this counter becomes 0,

which means that all threads of the team have finished.
The defaultEELIB of OMPi, although providing lim-

ited support of nested parallelism, is mostly optimized
for single-level parallelism. For cases where deep nest-
ing levels are expected, we have developed a high-
performance library calledPSTHREADS[7]. The library is
based on portable user-level threads that are executed by
its virtual processors, which never exceed the number of
physical processors. In contrast to most OpenMP imple-
mentations, which utilize kernel-level threads,OMPi maps
OpenMP threads to non-preemptivePSTHREADS. This
approach minimizes the OpenMP runtime overheads, es-
pecially when nested parallelism is enabled, and manages
to exploit fine-grain parallelism. In addition, the internal
thread scheduling scheme of thePSTHREADSlibrary fa-
vors the execution of threads on a single processor and
improves data locality.

Providing the simple interface described in Section 3.2
is enough to makeOMPi utilize any arbitrary threading li-
brary. For example, we have incorporated Marcel threads
[25] unmodified, by providing anEELIB with about 150
lines of code.

5 Processes and software DSM

OMPi comes with one moreEELIB (OPRC) which pro-
vides processes as its execution entities. The interface
with ORT is exactly the same, except that theEELIB of-
fers one more facility,ee_shalloc() which explic-
itly allocates shared memory areas. In the case of pro-
cesses,ORT initially allocates an appropriately-sized area
and then copies all the shared global variables of the pro-
gram in there (see Section 2.2). Because non-global vari-
ables of the initial EE in the user program may be shared
among the children it will create,the stack of the initial
EE is also placed in shared memory. As such, any of
its local variables can be accessible by any other process.
Since the initial EE’s stack is system-specified and cannot
be changed, we achieve the desired effect by switching to
a new thread, just before the program’smain() is exe-
cuted; this thread has its stack explicitly allocated in the
shared memory area and will be the one to callmain()
and ultimately execute the program.

Except for shared variables in the user program,ORT

maintains its own internal variables that are to be shared.
For example, all scheduling information presented in Sec-
tion 3.1 is stored in the control block of the master EE, and
all team members need to have access to it. For perfor-
mance reasons the implementation ofOMPi’s runtime sys-
tem follows a hybrid approach, whereby shared access to
ORT’s internal variables is not handled by the underlying
sDSM core but is done by explicit message passing, using
MPI. To make this possible, upon startupOPRCcreates a
server thread at each node of the cluster. Its sole purpose

Figure 3: Runtime organization for clusters (hybrid
sDSM+MPI).

is to provide asynchronous communication among the lo-
cal and remote computation threads. The organization is
depicted in Fig. 3. Whenever an EE needs access to the
team’s mastereecb, a request is made to its local server
thread (1). The server thread forwards the request to the
master’s server thread (2). The latter replies directly to
the computation thread with a copy of the control block
of the master EE. Local server threads know which the
master of the team is because initially it contacts them to
distribute the work among the EEs. Recapping, the sole
use of the sDSM core is to store, in a consistent manner,
the user program’s shared variables. Everything else is
implemented using MPI.

A number of sDSM cores have been ported toOMPi.
To achieve this,OPRC has a unified back-end interface
which makes it straightforward to attach arbitrary sDSM
libraries. Although most sDSM APIs provide similar
functionality, there are some important issues that have
to be taken care of. One is the consistency model offered.
This directly affects the implementation of theflush op-
eration of OpenMP, which is provided byOPRC. For sys-
tems offering sequential consistency such as Mome [13]
nothing needs to be done, but for others with relaxed con-
sistency models, e.g. Mocha [18], the flush operation is
implemented through a full sDSM barrier. One more con-
sideration is the style of shared memory allocation. The
implementation ofee_shalloc() in OPRCis global, in
that all processes ultimately callee_shalloc() in or-
der to complete the operation; this is achieved through ap-
propriate coordination between the server threads and fits
exactly the allocation style of many libraries, e.g. JiaJia
[11]. In contrast, in TreadMarks [17] allocation is local,
done only by one EE, and then followed by an address
distribution operation. In this case,ee_shalloc() is
coded to do nothing when called from any EE but the one
that triggered the operation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 4 6 8

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of nodes

NAS BT (class W)

GCC
ICC

OMPi

 0

 5

 10

 15

 20

 25

 1 2 4 6 8

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of nodes

NAS LU (class W)

GCC
ICC

OMPi

Figure 4: Execution times for BT and LU.

6 Experiments

In this section, we present representative experimental re-
sults of our OpenMP environment on both an SMP system
and a software DSM cluster.GCC was used asOMPi’s
back-end compiler.

6.1 Physically shared memory

We conducted our experiments on a server with 4 dual-
core Intel Xeon 3.0GHz CPUs running Linux 2.6. We
include results forGCC 4.2 and the Intel 10.0 (ICC) com-
piler.

Figure 4 depicts the execution times for two applica-
tions (BT, LU) of the NAS Parallel Benchmarks suite.
Since nested parallelism is not exploited in the NAS
benchmarks, we present results only for the defaultEELIB

of OMPi. We observe thatOMPi is comparable to GCC
and ICC in terms of performance and scalability.

If its EELIB is based onPSTHREADS, OMPi supports
multiple levels of parallelism in a very efficient way.
To evaluate the OpenMP overheads when nested paral-
lelism is used, we have developed an extension of the
EPCC microbenchmarks [5]. Table 1 depicts a sample
of the runtime overheads for three of the OpenMP syn-

chronization constructs (parallel, for, single). ForOMPi,
we provide results for both the defaultEELIB and the
one based onPSTHREADS. In this experiment, we have
two nesting levels with 8 threads at the outer level and 4
threads at the inner parallel region. Therefore, there are 32
threads that compete for computational resources.OMPi
with PSTHREADSexhibits the lowest runtime overheads
mainly because it avoids oversubscribing the 8 process-
ing cores.

Table 1:Nested parallelization overheads (µs)
OpenMP compiler parallel for single

GCC4.2.0 1426.89 246.38 277.23
ICC 10.0 377.82 22.86 15.15

OMPi + PTHR 139.79 155.17 154.31
OMPi + PSTHREADS 6.75 8.22 5.61

6.2 Software distributed shared memory

Our experiments on sDSM were performed on 8 nodes
of a HP XC cluster system. Each node has 2 AMD
Opteron 248 processors and 4GB main memory, while the
nodes are interconnected with Gigabit Ethernet. We pro-
vide results for three page-based software DSM systems
that OMPi targets (Mome, Mocha and Parade). Mome
supports kernel threads, sequential consistency, and pro-
vides several advanced features, like memory mapping,
prefetching, and page manager migration. Mocha uses
scope consistency similarly to JiaJia but utilizes an im-
proved method that reduces acknowledgment overheads.
Finally, Parade is a multithreaded sDSM system that pro-
vides home-based lazy release consistency (HLRC) and
makes use of MPI. The MPI library used in our exper-
iments for communication and application launching is
MPICH2 (1.0.6). We also present results for an evalua-
tion copy of the Intel 10.0 compiler with cluster OpenMP
support [10].

For our experiments we use three OpenMP C appli-
cations: NAS EP, MM (matrix multiplication) and MD
(molecular dynamics). It is important to mention that
we have not introduced any modifications to the OpenMP
code of these applications in order to run the executables
produced byOMPi on the software DSM cluster. For in-
stance, MD is the C version of the sample application
available at the official site of OpenMP. In contrast, the
Intel compiler requires the user to explicitly annotate both
the global and the stack variables that need to be shared.

The speedups of the three OpenMP applications are de-
picted in Figure 5. We use exactly one OpenMP thread per
computing node because Mocha does not support kernel
threads. Moreover, we do not run more than one process
on a single node because both the sDSM systems and the
OpenMP runtime library utilize server threads.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
pe

ed
up

Number of nodes

NAS EP (class A)

OMPi+Mome
OMPi+Mocha

OMPi+ParADE
ICC

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
pe

ed
up

Number of nodes

Matrix Multiplication

OMPi+Mome
OMPi+Mocha

OMPi+ParADE
ICC

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8

S
pe

ed
up

Number of nodes

Molecular Dynamics

OMPi+Mome
OMPi+Mocha

OMPi+ParADE
ICC

Figure 5: Speedups on the sDSM cluster.

We observe that NAS EP scales efficiently for all
OpenMP configurations. This is reasonable because EP
is embarrassingly parallel and is not seriously affected
by the underlying sDSM protocol. In MM, which mul-
tiplies two square matrices of size N=1024, the master
thread performs the initialization and then each OpenMP
thread (node) computes its statically assigned chunk of
iterations. After the parallel region, the master thread ac-
cesses the result matrix. Despite the page faults that incur
before and after the parallel region, the application scales
well for all sDSM systems but Mome. Finally, MD runs
for 4096 particles and exhibits lower speedups mainly due
to false sharing and the overheads introduced by the im-
plicit movement of data. The performance degradation is
significantly higher for Mome due to its sequential con-
sistency protocol.

7 Related work

Apart from commercial/proprietary implementations, the
well-known GCC compiler starting from version 4.2 sup-
ports OpenMP through itsGOMP [21] runtime library.
In addition, a number of experimental / research com-
pilers for OpenMP have been developed and used ex-
tensively, e.g. [14, 23, 1]. Most implementations target
only SMP architectures and are tied to some fixed thread-
ing library, which is usuallyPOSIX threads. However,
experimentation with other threading libraries is gener-
ally required. For example, it has been shown [7] that
kernel-levelPOSIX threads do not always exhibit scal-
able behavior when utilized in nested parallel levels. In
such cases high-performance user-level threads become
relevant andOMPi provides an interface for trivial port-
ing. PSTHREADSand Marcel threads [7, 25] have been
seamlessly integrated intoOMPi runtime. Omni/ST [24]
was an experimental version of Omni equipped with the
StackThreads/MP library; it provided an efficient but non
portable implementation of user-level threading for nested
irregular parallelism.

Providing the illusion of shared memory over a clus-
ter of workstations has been pioneered by TreadMarks
[17] and has been followed by a multitude of other sDSM
libraries, providing similar functionality but potentially
higher performance through more relaxed consistency
models (e.g. [11, 18, 13]). The idea of utilizing an sDSM
library in combination with OpenMP was presented in
[20, 12], where the authors implemented a compiler for a
subset of OpenMP that targeted TreadMarks specifically.
A modified version of TreadMarks is also the target of
the Intel compiler for clusters [10]. All other known sys-
tems employ custom-designed sDSM libraries as targets
to modified research compilers, e.g. [4, 8] based on the
NanosCompiler, and [16, 19] based on the Omni com-
piler. Parade’s runtime system [16] follows a hybrid ap-
proach, employing MPI for synchronization and schedul-
ing purposes.

8 Conclusion

We presented the runtime architecture of theOMPi com-
piler for OpenMP/C.OMPi is unique with respect to what
it provides. The translator can target execution entities
which are either threads or processes. The runtime system
is modularized in such a manner that arbitrary thread or
sDSM cores can be integrated with minimal effort.OMPi
currently supports more that 7 thread libraries and 5 dif-
ferent software DSM implementations, forming an ideal
testbed for research and experimentation.

OMPi’s performance is highly optimized, especially
when targeting threads. We are currently investigating op-
timization techniques for boosting performance on clus-

ters.

Acknowledgement

Information dissemination of this work was supported by the
European Union in the framework of the project “Support of
Computer Science Studies in the University of Ioannina” of
the “Operational Program for Education and Initial Vocational
Training” of the 3rd Community Support Framework of the Hel-
lenic Ministry of Education, funded by national sources andby
the European Social Fund (ESF).

References
[1] E. Ayguade, M. Gonzalez, X. Martorell, J. Labarta,

N. Navarro, and J. Oliver. NanosCompiler: Supporting
Flexible Multilevel Parallelism in OpenMP.Concurrency:
Practice and Experience, 12(12):1205–1218, Oct. 2000.

[2] C. Brunschen. OdinMP/CCp – A Portable Compiler for C
with OpenMP to C with POSIX Threads. Master’s thesis,
Dept. of Inform. Techn., Lund University, Sweden, 1999.

[3] J.-H. Chow, L. E. Lyon, and V. Sarkar. Automatic paral-
lelization for symmetric shared-memory multiprocessors.
In Proc. Conf. of the Centre for Advanced Studies on
Collaborative Research (CASCON’96), Toronto, Canada,
Nov. 1996.

[4] J. J. Costa, T. Cortes, X. Martorell, E. Ayguade, and
J. Labarta. Running OpenMP Applications Efficiently on
an Everything-Shared SDSM.Journal of Parallel and Dis-
tributed Computing, 66(5):647–658, 2006.

[5] V. V. Dimakopoulos, P. E. Hadjidoukas, and G. C. Phi-
los. A Microbenchmark Study of OpenMP Overheads Un-
der Nested Parallelism. InProc. of the Int’l Workshop on
OpenMP (IWOMP ’08), West Lafayette, USA, May 2008.

[6] V. V. Dimakopoulos, E. Leontiadis, and G. Tzoumas. A
Portable C Compiler for OpenMP V.2.0. InProc. of the 5th
European Workshop on OpenMP (EWOMP ’03), Aachen,
Germany, Oct. 2003.

[7] P. E. Hadjidoukas and V. V. Dimakopoulos. Nested Paral-
lelism in the OMPi OpenMP C Compiler. InProc. of the
European Conference on Parallel Computing (EUROPAR
’07), Rennes, France, Aug. 2007.

[8] P. E. Hadjidoukas, E. D. Polychronopoulos, and T. S.
Papatheodorou. OpenMP Runtime Support for Clusters
of Multiprocessors. InProc. of the Int’l Workshop on
OpenMP Applications and Tools (WOMPAT ’03), Toronto,
Canada, 2003.

[9] M. Hess, G. Jost, M. Müller, and R. Rühle. Experi-
ences Using OpenMP Based on Compiler Directed Soft-
ware DSM on a PC Cluster. In3rd Workshop on OpenMP
Applications and Tools (WOMPAT 2002), Aug. 2002.

[10] J. P. Hoeflinger. Extending OpenMP to Clusters, 2006.
White Paper, Intel Corporation.

[11] W. Hu, W. Shi, and Z. Tang. JIAJIA: An SVM System
Based on A New Cache Coherence Protocol. InProc.
of the 7th Int’l Conference on High Performance Comput-
ing and Networking (HPCN ’99), Amsterdam, The Nether-
lands, Apr. 1999.

[12] Y. C. Hu, H. L. amd A. L. Cox, and W. Zwaenepoel.
OpenMP for Networks of SMPs.Journal of Parallel and
Distributed Computing, 60:1512–1530, 2000.

[13] Y. Jéegou. Implementation of Page Management in Mome,
a User-Level DSM. InProc. of the 3rd IEEE International
Symposium on Cluster Computing and the Grid (CCGRID
’03), Tokyo, Japan, May 2003.

[14] S. Karlsson. A Portable and Efficient Thread Library for
OpenMP. InProc. 6th European Workshop on OpenMP
(EWOMP ’04), Stockholm, Sweden, Oct. 2004.

[15] S. Karlsson. An Introduction to Balder—An OpenMP
Run-time Library for Clusters of SMPs. InProc. of the 1st
Int’l Workshop on OpenMP (IWOMP ’05), Eugene, USA,
2005.

[16] Y.-S. Kee, J.-S. Kim, and S. Ha. ParADE: An OpenMP
Programming Environment for SMP Cluster Systems. In
Proc. of the 15th Int’l Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’03),
Phoenix, AZ, USA, Nov. 2003.

[17] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. InProc. of the Win-
ter 94 USENIX Conference, San Francisco, CA, USA, Jan.
1994.

[18] K. Kise, T. Katagiri, H. Honda, and T. Yuba. Evaluation of
the Acknowledgment Reduction in a Software-DSM Sys-
tem. InProc. of the 6th Int’l Conf. on Parallel Processing
and Applied Mathematics (PPAM ’05), Poznan, Poland,
Sept. 2005.

[19] T.-Y. Liang, S.-H. Wang, C.-K. Shieh, C.-M. Huang, and
L.-I. Chang. Design and Implementation of the OpenMP
Programming Interface on Linux-based SMP Clusters.
Journal of Information Science and Engineering, 2:785–
798, 2006.

[20] H. Lu, Y. C. Hu, and W. Zwaenepoel. OpenMP on Net-
works of Workstations. InProc. ACM/IEEE Conf. on High
Perf. Networking and Computing (SC’98), Orlando, FL,
1998.

[21] D. Novillo. OpenMP and automatic parallelization in
GCC. InProc. of the 2006 GCC Summit, Ottawa, Canada,
2006.

[22] OpenMP Architecture Review Board.OpenMP C and
C++ Application Program Interface, Version 2.5. May
2005.

[23] M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. Design of
OpenMP Compiler for an SMP Cluster. InProc. of the
1st European Workshop on OpenMP (EWOMP ’99), Lund,
Sweden, Sept. 1999.

[24] Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa. Perfor-
mance Evaluation of OpenMP Applications with Nested
Parallelism. InProc. of the Fifth Workshop on Languages,
Compilers and Run-Time Systems for Scalable Computers
(LCR ’00), Rochester, NY, USA, May 2000.

[25] S. Thibault. A Flexible Thread Scheduler for Hierarchical
Multiprocessor Machines. InProc. of the 2nd Int’l Work-
shop on Operating Systems, Programming Environments
and Management Tools for High-Performance Computing
on Clusters (COSET-2), Cambridge, USA, June 2005.

[26] G. Zhang, R. Silvera, and R. Archambault. Structure and
algorithm for implementing OpenMP workshares. InProc.
of the 5th Workshop on OpenMP Applications and Tools
(WOMPAT ’04), Houston, TX, USA, 2004.

